1
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
2
|
Turkel I, Tahtalioglu S, Celik E, Yazgan B, Kubat GB, Ozerklig B, Kosar SN. Time-course and muscle-specific gene expression of matrix metalloproteinases and inflammatory cytokines in response to acute treadmill exercise in rats. Mol Biol Rep 2024; 51:667. [PMID: 38780696 DOI: 10.1007/s11033-024-09637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The extracellular matrix (ECM) of skeletal muscle plays a pivotal role in tissue repair and growth, and its remodeling tightly regulated by matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and inflammatory cytokines. This study aimed to investigate changes in the mRNA expression of MMPs (Mmp-2 and Mmp-14), TIMPs (Timp-1 and Timp-2), and inflammatory cytokines (Il-1β, Tnf-α, and Tgfβ1) in the soleus (SOL) and extensor digitorum longus (EDL) muscles of rats following acute treadmill exercise. Additionally, muscle morphology was examined using hematoxylin and eosin (H&E) staining. METHODS AND RESULTS Male rats were subjected to acute treadmill exercise at 25 m/min for 60 min with a %0 slope. The mRNA expression of ECM components and muscle morphology in the SOL and EDL were assessed in both sedentary and exercise groups at various time points (immediately (0) and 1, 3, 6, 12, and 24 h post-exercise). Our results revealed a muscle-specific response, with early upregulation of the mRNA expression of Mmp-2, Mmp-14, Timp-1, Timp-2, Il-1β, and Tnf-α observed in the SOL compared to the EDL. A decrease in Tgfβ1 mRNA expression was evident in the SOL at all post-exercise time points. Conversely, Tgfβ1 mRNA expression increased at 0 and 3 h post-exercise in the EDL. Histological analysis also revealed earlier cell infiltration in the SOL than in the EDL following acute exercise. CONCLUSIONS Our results highlight how acute exercise modulates ECM components and muscle structure differently in the SOL and EDL muscles, leading to distinct muscle-specific responses.
Collapse
Affiliation(s)
- Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey.
| | - Sema Tahtalioglu
- Department of Biotechnology, Institute of Sciences, Amasya University, Amasya, Turkey
| | - Ertugrul Celik
- Department of Pathology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Burak Yazgan
- Department of Medical Services and Techniques, Sabuncuoğlu Serefeddin Health Services Vocational School, Amasya University, Amasya, Turkey
| | - Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Sukran Nazan Kosar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Abstract
Primary mitochondrial diseases (PMDs) are the most prevalent inborn metabolic disorders, affecting an estimated 1 in 4,200 individuals. Endurance exercise is generally known to improve mitochondrial function, but its indication in the heterogeneous group of PMDs is unclear. We determined the relationship between mitochondrial mutations, endurance exercise response, and the underlying molecular pathways in mice with distinct mitochondrial mutations. This revealed that mitochondria are crucial regulators of exercise capacity and exercise response. Endurance exercise proved to be mostly beneficial across the different mitochondrial mutant mice with the exception of a worsened dilated cardiomyopathy in ANT1-deficient mice. Thus, therapeutic exercises, especially in patients with PMDs, should take into account the physical and mitochondrial genetic status of the patient. Primary mitochondrial diseases (PMDs) are a heterogeneous group of metabolic disorders that can be caused by hundreds of mutations in both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) genes. Current therapeutic approaches are limited, although one approach has been exercise training. Endurance exercise is known to improve mitochondrial function in heathy subjects and reduce risk for secondary metabolic disorders such as diabetes or neurodegenerative disorders. However, in PMDs the benefit of endurance exercise is unclear, and exercise might be beneficial for some mitochondrial disorders but contraindicated in others. Here we investigate the effect of an endurance exercise regimen in mouse models for PMDs harboring distinct mitochondrial mutations. We show that while an mtDNA ND6 mutation in complex I demonstrated improvement in response to exercise, mice with a CO1 mutation affecting complex IV showed significantly fewer positive effects, and mice with an ND5 complex I mutation did not respond to exercise at all. For mice deficient in the nDNA adenine nucleotide translocase 1 (Ant1), endurance exercise actually worsened the dilated cardiomyopathy. Correlating the gene expression profile of skeletal muscle and heart with the physiologic exercise response identified oxidative phosphorylation, amino acid metabolism, matrisome (extracellular matrix [ECM]) structure, and cell cycle regulation as key pathways in the exercise response. This emphasizes the crucial role of mitochondria in determining the exercise capacity and exercise response. Consequently, the benefit of endurance exercise in PMDs strongly depends on the underlying mutation, although our results suggest a general beneficial effect.
Collapse
|
4
|
Incretin-induced changes in the transcriptome of skeletal muscles of fa/fa Zucker rat (ZFR) with obesity, without diabetes. Int J Obes (Lond) 2022; 46:1311-1318. [PMID: 35383269 DOI: 10.1038/s41366-022-01114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Glucagon-like peptide-1 receptor agonists (GLP-1ra) are increasingly used in treating type 2 diabetes and obesity. Exendin-4 (Ex-4), a long acting GLP-1ra, was previously reported to decrease oxidative stress in hepatocytes, adipocytes and skeletal muscle cells in obese nondiabetic fa/fa Zucker rats (ZFR), thereby improving insulin resistance. AIM We aimed first to identify Ex-4-induced changes in the transcriptome of skeletal muscle cells in ZFR. RESULTS Ontology analysis of differentially expressed genes (DEGs) in ZFR versus lean animals (LR) showed that the extracellular matrix (ECM) is the first most affected cellular compartment, followed by myofibrils and endoplasmic reticulum (ER). Interestingly, among 15 genes regulated in ZFR versus LR, 14 of them were inversely regulated by Ex-4, as further confirmed by RT-qPCR. Picro-Sirius red histological staining showed that decreased ECM fiber area in ZFR is partially restored by Ex-4. Ontology analysis of the myofibril compartment revealed that decreased muscle contractile function in ZFR is partially restored by Ex-4, as confirmed by Phalloidin histological staining that showed a partial restoration by Ex-4 of altered contractile apparatus in ZFR. Ontology analysis of ER DEGs in ZFR versus LR showed that some of them are related to the AMP-activated protein kinase (AMPK) signaling pathway. Phosphorylated AMPK levels were strongly increased in Ex-4-treated ZFR. CONCLUSION Altogether, our results suggest that GLP-1ra strongly restructure ECM and reinforce contractile capabilities in ZFR, while optimizing the cellular metabolism through AMPK.
Collapse
|
5
|
Vieira Ramos G, de Sousa Neto IV, Toledo-Arruda AC, Marqueti RDC, Vieira RP, Martins MA, Salvini TF, Durigan JLQ. Moderate Treadmill Training Induces Limited Effects on Quadriceps Muscle Hypertrophy in Mice Exposed to Cigarette Smoke Involving Metalloproteinase 2. Int J Chron Obstruct Pulmon Dis 2022; 17:33-42. [PMID: 35027823 PMCID: PMC8752871 DOI: 10.2147/copd.s326894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/29/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Long-term cigarette smoke (CS) induces substantive extrapulmonary effects, including musculoskeletal system disorders. Exercise training seems to protect long-term smokers against fiber atrophy in the locomotor muscles. Nevertheless, the extracellular matrix (ECM) changes in response to aerobic training remain largely unknown. Thus, we investigated the effects of moderate treadmill training on aerobic performance, cross-sectional area (CSA), fiber distribution, and metalloproteinase 2 (MMP-2) activity on quadriceps muscle in mice exposed to chronic CS. METHODS Male mice were randomized into four groups: control or smoke (6 per group) and exercise or exercise+smoke (5 per group). Animals were exposed to 12 commercially filtered cigarettes per day (0.8 mg of nicotine, 10 mg of tar, and 10 mg of CO per cigarette). The CSA, fibers distribution, and MMP-2 activity by zymography were assessed after a period of treadmill training (50% of maximal exercise capacity for 60 min/day, 5 days/week) for 24 weeks. RESULTS The CS exposure did not change CSA compared to the control group (p>0.05), but minor fibers in the frequency distribution (<1000 µm2) were observed. Long-term CS exposure attenuated CSA increases in exercise conditions (smoke+exercise vs exercise) while did not impair aerobic performance. Quadriceps CSA increased in mice nonsmoker submitted to aerobic training (p = 0.001). There was higher pro-MMP-2 activity in the smoke+exercise group when compared to the smoke group (p = 0.01). Regarding active MMP-2, the exercise showed higher values when compared to the control group (p = 0.001). CONCLUSION Moderate treadmill training for 24 weeks in mice exposed to CS did not modify CSA, despite inducing higher pro-MMP-2 activity in the quadriceps muscle, suggesting limited effects on ECM remodeling. Our findings may contribute to new insights into molecular mechanisms for CS conditions.
Collapse
Affiliation(s)
- Gracielle Vieira Ramos
- Physical Therapy Division, University of Brasilia, Brasília, DF, Brazil
- Department of Physical Therapy, University Paulista, Brasília, DF, Brazil
| | - Ivo Vieira de Sousa Neto
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Brasília, DF, Brazil
| | - Alessandra Choqueta Toledo-Arruda
- Faculty of Physiotherapy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Medicine Clinical (LIM 20), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rita de Cassia Marqueti
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Brasília, DF, Brazil
| | - Rodolfo P Vieira
- Universidade Brasil, Post-Graduation Program in Bioengineering, São Paulo, Brazil
- Laboratory of Pulmonary and Exercise Immunology (LABPEI), Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE) and Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
- Federal University of Sao Paulo, Post-Graduation Program in Sciences of Human Movement and Rehabilitation, São Paulo, Brazil
| | - Milton A Martins
- Department of Medicine Clinical (LIM 20), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Tânia F Salvini
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | | |
Collapse
|
6
|
Wei X, Nicoletti C, Puri PL. Fibro-Adipogenic Progenitors: Versatile keepers of skeletal muscle homeostasis, beyond the response to myotrauma. Semin Cell Dev Biol 2021; 119:23-31. [PMID: 34332886 PMCID: PMC8552908 DOI: 10.1016/j.semcdb.2021.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
While Fibro-Adipogenic Progenitors (FAPs) have been originally identified as muscle-interstitial mesenchymal cells activated in response to muscle injury and endowed with inducible fibrogenic and adipogenic potential, subsequent studies have expanded their phenotypic and functional repertoire and revealed their contribution to skeletal muscle response to a vast range of perturbations. Here we review the emerging contribution of FAPs to skeletal muscle responses to motor neuron injuries and to systemic physiological (e.g., exercise) or pathological metabolic (e.g., diabetes) perturbations. We also provide an initial blueprint of discrete sub-clusters of FAPs that are activated by specific perturbations and discuss their role in muscle adaptation to these conditions.
Collapse
Affiliation(s)
- X Wei
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - C Nicoletti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - P L Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
7
|
Salomão R, Neto IVDS, Ramos GV, Tibana RA, Durigan JQ, Pereira GB, Franco OL, Royer C, Neves FDAR, de Carvalho ACA, Nóbrega OT, Haddad R, Prestes J, Marqueti RDC. Paternal Resistance Exercise Modulates Skeletal Muscle Remodeling Pathways in Fathers and Male Offspring Submitted to a High-Fat Diet. Front Physiol 2021; 12:706128. [PMID: 34646148 PMCID: PMC8503191 DOI: 10.3389/fphys.2021.706128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022] Open
Abstract
Although some studies have shown that a high-fat diet (HFD) adversely affects muscle extracellular matrix remodeling, the mechanisms involved in muscle trophism, inflammation, and adipogenesis have not been fully investigated. Thus, we investigated the effects of 8 weeks of paternal resistance training (RT) on gene and protein expression/activity of critical factors involved in muscle inflammation and remodeling of fathers and offspring (offspring exposed to standard chow or HFD). Animals were randomly distributed to constitute sedentary fathers (SF; n = 7; did not perform RT) or trained fathers (TF n = 7; performed RT), with offspring from mating with sedentary females. After birth, 28 male pups were divided into four groups (n = 7 per group): offspring from sedentary father submitted either to control diet (SFO-C) or high-fat diet (SFO-HF) and offspring from trained father submitted to control diet (TFO-C) or high-fat diet (TFO-HF). Our results show that an HFD downregulated collagen mRNA levels and upregulated inflammatory and atrophy pathways and adipogenic transcription factor mRNA levels in offspring gastrocnemius muscle. In contrast, paternal RT increased MMP-2 activity and decreased IL-6 levels in offspring exposed to a control diet. Paternal RT upregulated P70s6k and Ppara mRNA levels and downregulated Atrogin1 mRNA levels, while decreasing NFκ-B, IL-1β, and IL-8 protein levels in offspring exposed to an HFD. Paternal physical training influences key skeletal muscle remodeling pathways and inflammatory profiles relevant for muscle homeostasis maintenance in offspring submitted to different diets.
Collapse
Affiliation(s)
- Rebecca Salomão
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Brasília, Brazil
| | - Ivo Vieira de Sousa Neto
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Brasília, Brazil
| | | | - Ramires Alsamir Tibana
- Graduate Program in Health Sciences, Faculdade de Medicine, Universidade Federal do Mato Grosso (UFTM), Cuiabá, Brazil
| | | | - Guilherme Borges Pereira
- Interinstitutional Program of Post-Graduation in Physiological Sciences (UFSCar/UNESP), Department of Physiological Sciences, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Octávio Luiz Franco
- Graduate Program in Genomics Science and Biotechnology, Universidade Católica de Brasília, Brasília, Brazil.,S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Carine Royer
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Laboratory of Molecular Pharmacology, Faculty of Health Sciences, Universidade de Brasília, Brasília, Brazil
| | | | | | - Otávio Toledo Nóbrega
- Graduate Program of Medical Sciences, Universidade de Brasília, Brasília, Brazil.,Center for Tropical Medicine, Universidade de Brasília, Brasília, Brazil
| | - Rodrigo Haddad
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Center for Tropical Medicine, Universidade de Brasília, Brasília, Brazil
| | - Jonato Prestes
- Graduate Program of Physical Education, Universidade Católica de Brasilia, Brasília, Brazil
| | - Rita de Cássia Marqueti
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Brasília, Brazil.,Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
8
|
Klyne DM, Barbe MF, James G, Hodges PW. Does the Interaction between Local and Systemic Inflammation Provide a Link from Psychology and Lifestyle to Tissue Health in Musculoskeletal Conditions? Int J Mol Sci 2021; 22:ijms22147299. [PMID: 34298917 PMCID: PMC8304860 DOI: 10.3390/ijms22147299] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 01/02/2023] Open
Abstract
Musculoskeletal conditions are known to involve biological, psychological, social and, often, lifestyle elements. However, these domains are generally considered in isolation from each other. This siloed approach is unlikely to be adequate to understand the complexity of these conditions and likely explains a major component of the disappointing effects of treatment. This paper presents a hypothesis that aims to provide a foundation to understand the interaction and integration between these domains. We propose a hypothesis that provides a plausible link between psychology and lifestyle factors with tissue level effects (such as connective tissue dysregulation/accumulation) in musculoskeletal conditions that is founded on understanding the molecular basis for interaction between systemic and local inflammation. The hypothesis provides plausible and testable links between mind and body, for which empirical evidence can be found for many aspects. We present this hypothesis from the perspective of connective tissue biology and pathology (fibrosis), the role of inflammation locally (tissue level), and how this inflammation is shaped by systemic inflammation through bidirectional pathways, and various psychological and lifestyle factors via their influence on systemic inflammation. This hypothesis provides a foundation for new consideration of the development and refinement of personalized multidimensional treatments for individuals with musculoskeletal conditions.
Collapse
Affiliation(s)
- David M. Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane 4072, Australia; (G.J.); (P.W.H.)
- Correspondence: ; Tel.: +61-7-3365-4569
| | - Mary F. Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Greg James
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane 4072, Australia; (G.J.); (P.W.H.)
| | - Paul W. Hodges
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane 4072, Australia; (G.J.); (P.W.H.)
| |
Collapse
|
9
|
Time trajectories in the transcriptomic response to exercise - a meta-analysis. Nat Commun 2021; 12:3471. [PMID: 34108459 PMCID: PMC8190306 DOI: 10.1038/s41467-021-23579-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/28/2021] [Indexed: 01/07/2023] Open
Abstract
Exercise training prevents multiple diseases, yet the molecular mechanisms that drive exercise adaptation are incompletely understood. To address this, we create a computational framework comprising data from skeletal muscle or blood from 43 studies, including 739 individuals before and after exercise or training. Using linear mixed effects meta-regression, we detect specific time patterns and regulatory modulators of the exercise response. Acute and long-term responses are transcriptionally distinct and we identify SMAD3 as a central regulator of the exercise response. Exercise induces a more pronounced inflammatory response in skeletal muscle of older individuals and our models reveal multiple sex-associated responses. We validate seven of our top genes in a separate human cohort. In this work, we provide a powerful resource (www.extrameta.org) that expands the transcriptional landscape of exercise adaptation by extending previously known responses and their regulatory networks, and identifying novel modality-, time-, age-, and sex-associated changes. Regular exercise promotes overall health and prevents non-communicable diseases, but the adaptation mechanisms are unclear. Here, the authors perform a meta-analysis to reveal time-specific patterns of the acute and long-term exercise response in human skeletal muscle, and identify sex- and age-specific changes.
Collapse
|
10
|
Ahmad K, Shaikh S, Lee EJ, Lee YH, Choi I. Consequences of Dicarbonyl Stress on Skeletal Muscle Proteins in Type 2 Diabetes. Curr Protein Pept Sci 2021; 21:878-889. [PMID: 31746292 DOI: 10.2174/1389203720666191119100759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/27/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
Skeletal muscle is the largest organ in the body and constitutes almost 40% of body mass. It is also the primary site of insulin-mediated glucose uptake, and skeletal muscle insulin resistance, that is, diminished response to insulin, is characteristic of Type 2 diabetes (T2DM). One of the foremost reasons posited to explain the etiology of T2DM involves the modification of proteins by dicarbonyl stress due to an unbalanced metabolism and accumulations of dicarbonyl metabolites. The elevated concentration of dicarbonyl metabolites (i.e., glyoxal, methylglyoxal, 3-deoxyglucosone) leads to DNA and protein modifications, causing cell/tissue dysfunctions in several metabolic diseases such as T2DM and other age-associated diseases. In this review, we recapitulated reported effects of dicarbonyl stress on skeletal muscle and associated extracellular proteins with emphasis on the impact of T2DM on skeletal muscle and provided a brief introduction to the prevention/inhibition of dicarbonyl stress.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| | - Yong-Ho Lee
- Department of Biomedical Sciences, Daegu Catholic University, Gyeongsan, 38430, Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| |
Collapse
|
11
|
Garcia LA, Day SE, Coletta RL, Campos B, Benjamin TR, De Filippis E, Madura JA, Mandarino LJ, Roust LR, Coletta DK. Weight loss after Roux-En-Y gastric bypass surgery reveals skeletal muscle DNA methylation changes. Clin Epigenetics 2021; 13:100. [PMID: 33933146 PMCID: PMC8088644 DOI: 10.1186/s13148-021-01086-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The mechanisms of weight loss and metabolic improvements following bariatric surgery in skeletal muscle are not well known; however, epigenetic modifications are likely to contribute. The aim of our study was to investigate skeletal muscle DNA methylation after weight loss induced by Roux-en-Y gastric bypass (RYGB) surgery. Muscle biopsies were obtained basally from seven insulin-resistant obese (BMI > 40 kg/m2) female subjects (45.1 ± 3.6 years) pre- and 3-month post-surgery with euglycemic hyperinsulinemic clamps to assess insulin sensitivity. Four lean (BMI < 25 kg/m2) females (38.5 ± 5.8 years) served as controls. We performed reduced representation bisulfite sequencing next generation methylation on DNA isolated from the vastus lateralis muscle biopsies. RESULTS Global methylation was significantly higher in the pre- (32.97 ± 0.02%) and post-surgery (33.31 ± 0.02%) compared to the lean (30.46 ± 0.02%), P < 0.05. MethylSig analysis identified 117 differentially methylated cytosines (DMCs) that were significantly altered in the post- versus pre-surgery (Benjamini-Hochberg q < 0.05). In addition, 2978 DMCs were significantly altered in the pre-surgery obese versus the lean controls (Benjamini-Hochberg q < 0.05). For the post-surgery obese versus the lean controls, 2885 DMCs were altered (Benjamini-Hochberg q < 0.05). Seven post-surgery obese DMCs were normalized to levels similar to those observed in lean controls. Of these, 5 were within intergenic regions (chr11.68,968,018, chr16.73,100,688, chr5.174,115,531, chr5.1,831,958 and chr9.98,547,011) and the remaining two DMCs chr17.45,330,989 and chr14.105,353,824 were within in the integrin beta 3 (ITGB3) promoter and KIAA0284 exon, respectively. ITGB3 methylation was significantly decreased in the post-surgery (0.5 ± 0.5%) and lean controls (0 ± 0%) versus pre-surgery (13.6 ± 2.7%, P < 0.05). This decreased methylation post-surgery was associated with an increase in ITGB3 gene expression (fold change + 1.52, P = 0.0087). In addition, we showed that ITGB3 promoter methylation in vitro significantly suppressed transcriptional activity (P < 0.05). Transcription factor binding analysis for ITGB3 chr17.45,330,989 identified three putative transcription factor binding motifs; PAX-5, p53 and AP-2alphaA. CONCLUSIONS These results demonstrate that weight loss after RYGB alters the epigenome through DNA methylation. In particular, this study highlights ITGB3 as a novel gene that may contribute to the metabolic improvements observed post-surgery. Future additional studies are warranted to address the exact mechanism of ITGB3 in skeletal muscle.
Collapse
Affiliation(s)
- Luis A Garcia
- Department of Medicine, Division of Endocrinology, The University of Arizona College of Medicine, 1501 N. Campbell Ave, PO Box 245035, Tucson, AZ, 85724-5035, USA
| | - Samantha E Day
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Richard L Coletta
- Department of Medicine, Division of Endocrinology, The University of Arizona College of Medicine, 1501 N. Campbell Ave, PO Box 245035, Tucson, AZ, 85724-5035, USA
| | - Baltazar Campos
- Department of Medicine, Division of Endocrinology, The University of Arizona College of Medicine, 1501 N. Campbell Ave, PO Box 245035, Tucson, AZ, 85724-5035, USA
| | - Tonya R Benjamin
- Department of Endocrinology, Metabolism and Diabetes, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Eleanna De Filippis
- Department of Endocrinology, Metabolism and Diabetes, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | - Lawrence J Mandarino
- Department of Medicine, Division of Endocrinology, The University of Arizona College of Medicine, 1501 N. Campbell Ave, PO Box 245035, Tucson, AZ, 85724-5035, USA
| | - Lori R Roust
- Department of Endocrinology, Metabolism and Diabetes, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Dawn K Coletta
- Department of Medicine, Division of Endocrinology, The University of Arizona College of Medicine, 1501 N. Campbell Ave, PO Box 245035, Tucson, AZ, 85724-5035, USA. .,Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
12
|
Moriggi M, Belloli S, Barbacini P, Murtaj V, Torretta E, Chaabane L, Canu T, Penati S, Malosio ML, Esposito A, Gelfi C, Moresco RM, Capitanio D. Skeletal Muscle Proteomic Profile Revealed Gender-Related Metabolic Responses in a Diet-Induced Obesity Animal Model. Int J Mol Sci 2021; 22:ijms22094680. [PMID: 33925229 PMCID: PMC8125379 DOI: 10.3390/ijms22094680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023] Open
Abstract
Obesity is a chronic, complex pathology associated with a risk of developing secondary pathologies, including cardiovascular diseases, cancer, type 2 diabetes (T2DM) and musculoskeletal disorders. Since skeletal muscle accounts for more than 70% of total glucose disposal, metabolic alterations are strictly associated with the onset of insulin resistance and T2DM. The present study relies on the proteomic analysis of gastrocnemius muscle from 15 male and 15 female C56BL/J mice fed for 14 weeks with standard, 45% or 60% high-fat diets (HFD) adopting a label-free LC–MS/MS approach followed by bioinformatic pathway analysis. Results indicate changes in males due to HFD, with increased muscular stiffness (Col1a1, Col1a2, Actb), fiber-type switch from slow/oxidative to fast/glycolytic (decreased Myh7, Myl2, Myl3 and increased Myh2, Mylpf, Mybpc2, Myl1), increased oxidative stress and mitochondrial dysfunction (decreased respiratory chain complex I and V and increased complex III subunits). At variance, females show few alterations and activation of compensatory mechanisms to counteract the increase of fatty acids. Bioinformatics analysis allows identifying upstream molecules involved in regulating pathways identified at variance in our analysis (Ppargc1a, Pparg, Cpt1b, Clpp, Tp53, Kdm5a, Hif1a). These findings underline the presence of a gender-specific response to be considered when approaching obesity and related comorbidities.
Collapse
Affiliation(s)
- Manuela Moriggi
- Gastroenterology and Digestive Endoscopy Unit, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy;
| | - Sara Belloli
- Institute of Molecular Bioimaging and Physiology, CNR, 20090 Segrate, Italy; (S.B.); (R.M.M.)
- Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20090 Segrate, Italy; (P.B.); (C.G.)
| | - Valentina Murtaj
- Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | | | - Linda Chaabane
- Experimental Imaging Center, Preclinical Imaging Facility, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.C.); (T.C.); (A.E.)
| | - Tamara Canu
- Experimental Imaging Center, Preclinical Imaging Facility, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.C.); (T.C.); (A.E.)
| | - Silvia Penati
- Laboratory of Pharmacology and Brain Pathology, Neuro Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (S.P.); (M.L.M.)
- Institute of Neuroscience, Humanitas Mirasole S.p.A, 20089 Rozzano, Italy
| | - Maria Luisa Malosio
- Laboratory of Pharmacology and Brain Pathology, Neuro Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (S.P.); (M.L.M.)
- Institute of Neuroscience, Humanitas Mirasole S.p.A, 20089 Rozzano, Italy
| | - Antonio Esposito
- Experimental Imaging Center, Preclinical Imaging Facility, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.C.); (T.C.); (A.E.)
- Experimental Imaging Center, Radiology Department, IRCCS San Raffaele Scientific Institute, School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, 20090 Segrate, Italy; (P.B.); (C.G.)
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
| | - Rosa Maria Moresco
- Institute of Molecular Bioimaging and Physiology, CNR, 20090 Segrate, Italy; (S.B.); (R.M.M.)
- Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, 20090 Segrate, Italy; (P.B.); (C.G.)
- Correspondence: ; Tel.: +39-0250330411
| |
Collapse
|
13
|
Anguita-Ruiz A, Bustos-Aibar M, Plaza-Díaz J, Mendez-Gutierrez A, Alcalá-Fdez J, Aguilera CM, Ruiz-Ojeda FJ. Omics Approaches in Adipose Tissue and Skeletal Muscle Addressing the Role of Extracellular Matrix in Obesity and Metabolic Dysfunction. Int J Mol Sci 2021; 22:2756. [PMID: 33803198 PMCID: PMC7963192 DOI: 10.3390/ijms22052756] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular matrix (ECM) remodeling plays important roles in both white adipose tissue (WAT) and the skeletal muscle (SM) metabolism. Excessive adipocyte hypertrophy causes fibrosis, inflammation, and metabolic dysfunction in adipose tissue, as well as impaired adipogenesis. Similarly, disturbed ECM remodeling in SM has metabolic consequences such as decreased insulin sensitivity. Most of described ECM molecular alterations have been associated with DNA sequence variation, alterations in gene expression patterns, and epigenetic modifications. Among others, the most important epigenetic mechanism by which cells are able to modulate their gene expression is DNA methylation. Epigenome-Wide Association Studies (EWAS) have become a powerful approach to identify DNA methylation variation associated with biological traits in humans. Likewise, Genome-Wide Association Studies (GWAS) and gene expression microarrays have allowed the study of whole-genome genetics and transcriptomics patterns in obesity and metabolic diseases. The aim of this review is to explore the molecular basis of ECM in WAT and SM remodeling in obesity and the consequences of metabolic complications. For that purpose, we reviewed scientific literature including all omics approaches reporting genetic, epigenetic, and transcriptomic (GWAS, EWAS, and RNA-seq or cDNA arrays) ECM-related alterations in WAT and SM as associated with metabolic dysfunction and obesity.
Collapse
Affiliation(s)
- Augusto Anguita-Ruiz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mireia Bustos-Aibar
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Andrea Mendez-Gutierrez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jesús Alcalá-Fdez
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain;
| | - Concepción María Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
14
|
Makhnovskii PA, Bokov RO, Kolpakov FA, Popov DV. Transcriptomic Signatures and Upstream Regulation in Human Skeletal Muscle Adapted to Disuse and Aerobic Exercise. Int J Mol Sci 2021; 22:ijms22031208. [PMID: 33530535 PMCID: PMC7866200 DOI: 10.3390/ijms22031208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 02/08/2023] Open
Abstract
Inactivity is associated with the development of numerous disorders. Regular aerobic exercise is broadly used as a key intervention to prevent and treat these pathological conditions. In our meta-analysis we aimed to identify and compare (i) the transcriptomic signatures related to disuse, regular and acute aerobic exercise in human skeletal muscle and (ii) the biological effects and transcription factors associated with these transcriptomic changes. A standardized workflow with robust cut-off criteria was used to analyze 27 transcriptomic datasets for the vastus lateralis muscle of healthy humans subjected to disuse, regular and acute aerobic exercise. We evaluated the role of transcriptional regulation in the phenotypic changes described in the literature. The responses to chronic interventions (disuse and regular training) partially correspond to the phenotypic effects. Acute exercise induces changes that are mainly related to the regulation of gene expression, including a strong enrichment of several transcription factors (most of which are related to the ATF/CREB/AP-1 superfamily) and a massive increase in the expression levels of genes encoding transcription factors and co-activators. Overall, the adaptation strategies of skeletal muscle to decreased and increased levels of physical activity differ in direction and demonstrate qualitative differences that are closely associated with the activation of different sets of transcription factors.
Collapse
Affiliation(s)
- Pavel A. Makhnovskii
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (P.A.M.); (R.O.B.)
| | - Roman O. Bokov
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (P.A.M.); (R.O.B.)
| | - Fedor A. Kolpakov
- Institute of Computational Technologies of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Daniil V. Popov
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (P.A.M.); (R.O.B.)
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
15
|
Fast walking is a preventive factor against new-onset diabetes mellitus in a large cohort from a Japanese general population. Sci Rep 2021; 11:716. [PMID: 33436978 PMCID: PMC7804125 DOI: 10.1038/s41598-020-80572-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
Based on questionnaires from 197,825 non-diabetic participants in a large Japanese cohort, we determined impact of (1) habit of exercise, (2) habit of active physical activity (PA) and (3) walking pace on new-onset of type 2 diabetes mellitus. Unadjusted and multivariable-adjusted logistic regression models were used to determine the odds ratio of new-onset diabetes mellitus incidence in a 3-year follow-up. There were two major findings. First, habits of exercise and active PA were positively associated with incidence of diabetes mellitus. Second, fast walking, even after adjusting for multiple covariates, was associated with low incidence of diabetes mellitus. In the subgroup analysis, the association was also observed in participants aged ≥ 65 years, in men, and in those with a body mass index ≥ 25. Results suggest that fast walking is a simple and independent preventive factor for new-onset of diabetes mellitus in the health check-up and guidance system in Japan. Future studies may be warranted to verify whether interventions involving walking pace can reduce the onset of diabetes in a nation-wide scale.
Collapse
|
16
|
Bass JJ, Nakhuda A, Deane CS, Brook MS, Wilkinson DJ, Phillips BE, Philp A, Tarum J, Kadi F, Andersen D, Garcia AM, Smith K, Gallagher IJ, Szewczyk NJ, Cleasby ME, Atherton PJ. Overexpression of the vitamin D receptor (VDR) induces skeletal muscle hypertrophy. Mol Metab 2020; 42:101059. [PMID: 32771696 PMCID: PMC7475200 DOI: 10.1016/j.molmet.2020.101059] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The Vitamin D receptor (VDR) has been positively associated with skeletal muscle mass, function and regeneration. Mechanistic studies have focused on the loss of the receptor, with in vivo whole-body knockout models demonstrating reduced myofibre size and function and impaired muscle development. To understand the mechanistic role upregulation of the VDR elicits in muscle mass/health, we studied the impact of VDR over-expression (OE) in vivo before exploring the importance of VDR expression upon muscle hypertrophy in humans. METHODS Wistar rats underwent in vivo electrotransfer (IVE) to overexpress the VDR in the Tibialis anterior (TA) muscle for 10 days, before comprehensive physiological and metabolic profiling to characterise the influence of VDR-OE on muscle protein synthesis (MPS), anabolic signalling and satellite cell activity. Stable isotope tracer (D2O) techniques were used to assess sub-fraction protein synthesis, alongside RNA-Seq analysis. Finally, human participants underwent 20 wks of resistance exercise training, with body composition and transcriptomic analysis. RESULTS Muscle VDR-OE yielded total protein and RNA accretion, manifesting in increased myofibre area, i.e., hypertrophy. The observed increases in MPS were associated with enhanced anabolic signalling, reflecting translational efficiency (e.g., mammalian target of rapamycin (mTOR-signalling), with no effects upon protein breakdown markers being observed. Additionally, RNA-Seq illustrated marked extracellular matrix (ECM) remodelling, while satellite cell content, markers of proliferation and associated cell-cycled related gene-sets were upregulated. Finally, induction of VDR mRNA correlated with muscle hypertrophy in humans following long-term resistance exercise type training. CONCLUSION VDR-OE stimulates muscle hypertrophy ostensibly via heightened protein synthesis, translational efficiency, ribosomal expansion and upregulation of ECM remodelling-related gene-sets. Furthermore, VDR expression is a robust marker of the hypertrophic response to resistance exercise in humans. The VDR is a viable target of muscle maintenance through testable Vitamin D molecules, as active molecules and analogues.
Collapse
Affiliation(s)
- Joseph J Bass
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Asif Nakhuda
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Colleen S Deane
- Department of Sport and Health Sciences, University of Exeter, EX1 2LU, UK
| | - Matthew S Brook
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Daniel J Wilkinson
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Bethan E Phillips
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing Laboratory, Diabetes and Metabolism Division, Garvan Institute of Medical Research, NSW, 2010, Australia; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, B15 2TT, UK
| | - Janelle Tarum
- School of Health Sciences, Örebro University, 70182, Sweden
| | - Fawzi Kadi
- School of Health Sciences, Örebro University, 70182, Sweden
| | - Ditte Andersen
- Molecular Physiology of Diabetes Laboratory, Dept. of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, UK
| | - Amadeo Muñoz Garcia
- Institute of Metabolism and Systems Research, The University of Birmingham, Birmingham, UK; Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Metabolism in Translational Research, Maastricht University, Maastricht, the Netherlands
| | - Ken Smith
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Iain J Gallagher
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, FK9 4LA, UK
| | - Nathaniel J Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK
| | - Mark E Cleasby
- Molecular Physiology of Diabetes Laboratory, Dept. of Comparative Biomedical Sciences, Royal Veterinary College, NW1 0TU, UK
| | - Philip J Atherton
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, DE22 3DT, UK.
| |
Collapse
|
17
|
Ruggiero AD, Davis A, Sherrill C, Westwood B, Hawkins GA, Palmer ND, Chou JW, Reeves T, Cox LA, Kavanagh K. Skeletal muscle extracellular matrix remodeling with worsening glycemic control in nonhuman primates. Am J Physiol Regul Integr Comp Physiol 2020; 320:R226-R235. [PMID: 33206559 DOI: 10.1152/ajpregu.00240.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes (T2D) development may be mediated by skeletal muscle (SkM) function, which is responsible for >80% of circulating glucose uptake. The goals of this study were to assess changes in global- and location-level gene expression, remodeling proteins, fibrosis, and vascularity of SkM with worsening glycemic control, through RNA sequencing, immunoblotting, and immunostaining. We evaluated SkM samples from health-diverse African green monkeys (Cholorcebus aethiops sabaeus) to investigate these relationships. We assessed SkM remodeling at the molecular level by evaluating unbiased transcriptomics in age-, sex-, weight-, and waist circumference-matched metabolically healthy, prediabetic (PreT2D) and T2D monkeys (n = 13). Our analysis applied novel location-specific gene differences and shows that extracellular facing and cell membrane-associated genes and proteins are highly upregulated in metabolic disease. We verified transcript patterns using immunohistochemical staining and protein analyses of matrix metalloproteinase 16 (MMP16), tissue inhibitor of metalloproteinase 2 (TIMP2), and VEGF. Extracellular matrix (ECM) functions to support intercellular communications, including the coupling of capillaries to muscle cells, which was worsened with increasing blood glucose. Multiple regression modeling from age- and health-diverse monkeys (n = 33) revealed that capillary density was negatively predicted by only fasting blood glucose. The loss of vascularity in SkM co-occurred with reduced expression of hypoxia-sensing genes, which is indicative of a disconnect between altered ECM and reduced endothelial cells, and known perfusion deficiencies present in PreT2D and T2D. This report supports that rising blood glucose values incite ECM remodeling and reduce SkM capillarization, and that targeting ECM would be a rational approach to improve health with metabolic disease.
Collapse
Affiliation(s)
- Alistaire D Ruggiero
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Ashley Davis
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Chrissy Sherrill
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Brian Westwood
- Department of Hypertension, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Gregory A Hawkins
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina.,Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Nicholette D Palmer
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina.,Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Jeff W Chou
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Tony Reeves
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Laura A Cox
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.,Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Kylie Kavanagh
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.,College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
18
|
Implications of Skeletal Muscle Extracellular Matrix Remodeling in Metabolic Disorders: Diabetes Perspective. Int J Mol Sci 2020; 21:ijms21113845. [PMID: 32481704 PMCID: PMC7312063 DOI: 10.3390/ijms21113845] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM) provides a scaffold for cells, controlling biological processes and providing structural as well as mechanical support to surrounding cells. Disruption of ECM homeostasis results in several pathological conditions. Skeletal muscle ECM is a complex network comprising collagens, proteoglycans, glycoproteins, and elastin. Recent therapeutic approaches targeting ECM remodeling have been extensively deliberated. Various ECM components are typically found to be augmented in the skeletal muscle of obese and/or diabetic humans. Skeletal muscle ECM remodeling is thought to be a feature of the pathogenic milieu allied with metabolic dysregulation, obesity, and eventual diabetes. This narrative review explores the current understanding of key components of skeletal muscle ECM and their specific roles in the regulation of metabolic diseases. Additionally, we discuss muscle-specific integrins and their role in the regulation of insulin sensitivity. A better understanding of the importance of skeletal muscle ECM remodeling, integrin signaling, and other factors that regulate insulin activity may help in the development of novel therapeutics for managing diabetes and other metabolic disorders.
Collapse
|
19
|
Qaisar R, Karim A, Elmoselhi AB. Muscle unloading: A comparison between spaceflight and ground-based models. Acta Physiol (Oxf) 2020; 228:e13431. [PMID: 31840423 DOI: 10.1111/apha.13431] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
Prolonged unloading of skeletal muscle, a common outcome of events such as spaceflight, bed rest and hindlimb unloading, can result in extensive metabolic, structural and functional changes in muscle fibres. With advancement in investigations of cellular and molecular mechanisms, understanding of disuse muscle atrophy has significantly increased. However, substantial gaps exist in our understanding of the processes dictating muscle plasticity during unloading, which prevent us from developing effective interventions to combat muscle loss. This review aims to update the status of knowledge and underlying mechanisms leading to cellular and molecular changes in skeletal muscle during unloading. We have also discussed advances in the understanding of contractile dysfunction during spaceflights and in ground-based models of muscle unloading. Additionally, we have elaborated on potential therapeutic interventions that show promising results in boosting muscle mass and strength during mechanical unloading. Finally, we have identified key gaps in our knowledge as well as possible research direction for the future.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
| | - Asima Karim
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
| | - Adel B. Elmoselhi
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
- Department of Physiology Michigan State University East Lansing MI USA
| |
Collapse
|
20
|
Collao N, Farup J, De Lisio M. Role of Metabolic Stress and Exercise in Regulating Fibro/Adipogenic Progenitors. Front Cell Dev Biol 2020; 8:9. [PMID: 32047748 PMCID: PMC6997132 DOI: 10.3389/fcell.2020.00009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity is a major public health concern and is associated with decreased muscle quality (i.e., strength, metabolism). Muscle from obese adults is characterized by increases in fatty, fibrotic tissue that decreases the force producing capacity of muscle and impairs glucose disposal. Fibro/adipogenic progenitors (FAPs) are muscle resident, multipotent stromal cells that are responsible for muscle fibro/fatty tissue accumulation. Additionally, they are indirectly involved in muscle adaptation through their promotion of myogenic (muscle-forming) satellite cell proliferation and differentiation. In conditions similar to obesity that are characterized by chronic muscle degeneration, FAP dysfunction has been shown to be responsible for increased fibro/fatty tissue accumulation in skeletal muscle, and impaired satellite cell function. The role of metabolic stress in regulating FAP differentiation and paracrine function in skeletal muscle is just beginning to be unraveled. Thus, the present review aims to summarize the recent literature on the role of metabolic stress in regulating FAP differentiation and paracrine function in skeletal muscle, and the mechanisms responsible for these effects. Furthermore, we will review the role of physical activity in reversing or ameliorating the detrimental effects of obesity on FAP function.
Collapse
Affiliation(s)
- Nicolas Collao
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Michael De Lisio
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
21
|
Abstract
This review summarizes information on interrelations between diabetes development and collagen metabolism and structure. The growing global problem of diabetes requires the search for new strategies of its complications correction. Among them collagen structure violations and/or its impaired metabolism most often lead to profound disability. Even after several decades of intense studies, pathophysiological mechanisms underlying collagen changes in diabetes mellitus are still not well clear. The main complication is that not only diabetes cause changes in collagen metabolism and structure. Collagens via some mechanisms also may regulate glucose homeostasis, both directly and indirectly. The author also presented the results of own studies on bone and skin type I collagen amino acid composition changes with diabetes. Deepening our understanding of collagen metabolism and diabetes interrelations allows us to optimize approaches to overcome the collagen-mediated consequences of this disease. Recently, it has been clearly demonstrated that use of only antidiabetic agents cannot fully correct such violations. Preparations on the base of flavonoids, collagens and amino acids could be considered as perspective directions in this area of drug development.
Collapse
Affiliation(s)
- Larysa Borysivna Bondarenko
- Toxicology Department, SI “Institute of Pharmacology & Toxicology National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
| |
Collapse
|
22
|
Hasib A, Hennayake CK, Bracy DP, Bugler-Lamb AR, Lantier L, Khan F, Ashford MLJ, McCrimmon RJ, Wasserman DH, Kang L. CD44 contributes to hyaluronan-mediated insulin resistance in skeletal muscle of high-fat-fed C57BL/6 mice. Am J Physiol Endocrinol Metab 2019; 317:E973-E983. [PMID: 31550181 PMCID: PMC6957377 DOI: 10.1152/ajpendo.00215.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Extracellular matrix hyaluronan is increased in skeletal muscle of high-fat-fed insulin-resistant mice, and reduction of hyaluronan by PEGPH20 hyaluronidase ameliorates diet-induced insulin resistance (IR). CD44, the main hyaluronan receptor, is positively correlated with type 2 diabetes. This study determines the role of CD44 in skeletal muscle IR. Global CD44-deficient (cd44-/-) mice and wild-type littermates (cd44+/+) were fed a chow diet or 60% high-fat diet for 16 wk. High-fat-fed cd44-/- mice were also treated with PEGPH20 to evaluate its CD44-dependent action. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp (ICv). High-fat feeding increased muscle CD44 protein expression. In the absence of differences in body weight and composition, despite lower clamp insulin during ICv, the cd44-/- mice had sustained glucose infusion rate (GIR) regardless of diet. High-fat diet-induced muscle IR as evidenced by decreased muscle glucose uptake (Rg) was exhibited in cd44+/+ mice but absent in cd44-/- mice. Moreover, gastrocnemius Rg remained unchanged between genotypes on chow diet but was increased in high-fat-fed cd44-/- compared with cd44+/+ when normalized to clamp insulin concentrations. Ameliorated muscle IR in high-fat-fed cd44-/- mice was associated with increased vascularization. In contrast to previously observed increases in wild-type mice, PEGPH20 treatment in high-fat-fed cd44-/- mice did not change GIR or muscle Rg during ICv, suggesting a CD44-dependent action. In conclusion, genetic CD44 deletion improves muscle IR, and the beneficial effects of PEGPH20 are CD44-dependent. These results suggest a critical role of CD44 in promoting hyaluronan-mediated muscle IR, therefore representing a potential therapeutic target for diabetes.
Collapse
Affiliation(s)
- Annie Hasib
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| | - Chandani K Hennayake
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| | - Deanna P Bracy
- Department of Molecular Physiology and Biophysics and Mouse Metabolic Phenotyping Centre, Vanderbilt University, Nashville, Tennessee
| | - Aimée R Bugler-Lamb
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics and Mouse Metabolic Phenotyping Centre, Vanderbilt University, Nashville, Tennessee
| | - Faisel Khan
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| | - Michael L J Ashford
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| | - Rory J McCrimmon
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics and Mouse Metabolic Phenotyping Centre, Vanderbilt University, Nashville, Tennessee
| | - Li Kang
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| |
Collapse
|
23
|
Ghanemi A, Melouane A, Yoshioka M, St-Amand J. Secreted protein acidic and rich in cysteine and bioenergetics: Extracellular matrix, adipocytes remodeling and skeletal muscle metabolism. Int J Biochem Cell Biol 2019; 117:105627. [PMID: 31589923 DOI: 10.1016/j.biocel.2019.105627] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022]
Abstract
The extracellular matrix (ECM) remodeling plays important roles in both adipocytes shape/expansion remodeling and the skeletal muscle (SM) metabolism. Secreted protein acidic and rich in cysteine (SPARC) is expressed in divers tissues including adipose tissue (AT) and SM where it impacts a variety of remodeling as well as metabolic functions. SPARC, also known as osteonectin or BM-40, is a glycoprotein associated with the ECM. Numerous researches attempted to elucidate the implications of SPARC in these two key metabolic tissues under different conditions. Whereas SPARC deficiency tends to shape the remodeling of the adipocytes and the fat distribution, this deficiency decreases SM metabolic properties. On the other hand, SPARC seems to be an enhancer of the metabolism and a mediator of the exercise-induced adaptation in the SM and as well as an adipogenesis inhibitor. Some findings about the SPARC effects on AT and SM seem "contradictory" in terms of tissue development and energy profile therefore highlighting the mechanistic role of SPARC in both is a priority. Yet, within this review, we expose selected researches and compare the results. We conclude with explanations to "reconcile" the different observations, hypothesize the feedback and regulatory character of SPARC and put its roles within the energetic and structural maps of both adipocytes and myocytes in homeostasis and in situations such as obesity or exercise. These properties explain the modifications and the remodeling seen in AT and SM undergoing adaptive changes (obesity, exercise, etc.) and represent a starting point for precise therapeutic targeting of SPARC-related pathways is conditions such as obesity, sarcopenia and diabetes.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Québec G1V 0A6, Canada
| | - Aicha Melouane
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Québec G1V 0A6, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada
| | - Jonny St-Amand
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|
24
|
Multi-Staged Regulation of Lipid Signaling Mediators during Myogenesis by COX-1/2 Pathways. Int J Mol Sci 2019; 20:ijms20184326. [PMID: 31487817 PMCID: PMC6769623 DOI: 10.3390/ijms20184326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023] Open
Abstract
Cyclooxygenases (COXs), including COX-1 and -2, are enzymes essential for lipid mediator (LMs) syntheses from arachidonic acid (AA), such as prostaglandins (PGs). Furthermore, COXs could interplay with other enzymes such as lipoxygenases (LOXs) and cytochrome P450s (CYPs) to regulate the signaling of LMs. In this study, to comprehensively analyze the function of COX-1 and -2 in regulating the signaling of bioactive LMs in skeletal muscle, mouse primary myoblasts and C2C12 cells were transfected with specific COX-1 and -2 siRNAs, followed by targeted lipidomic analysis and customized quantitative PCR gene array analysis. Knocking down COXs, particularly COX-1, significantly reduced the release of PGs from muscle cells, especially PGE2 and PGF2α, as well as oleoylethanolamide (OEA) and arachidonoylethanolamine (AEA). Moreover, COXs could interplay with LOXs to regulate the signaling of hydroxyeicosatetraenoic acids (HETEs). The changes in LMs are associated with the expression of genes, such as Itrp1 (calcium signaling) and Myh7 (myogenic differentiation), in skeletal muscle. In conclusion, both COX-1 and -2 contribute to LMs production during myogenesis in vitro, and COXs could interact with LOXs during this process. These interactions and the fine-tuning of the levels of these LMs are most likely important for skeletal muscle myogenesis, and potentially, muscle repair and regeneration.
Collapse
|
25
|
Cox B, Tsamou M, Vrijens K, Neven KY, Winckelmans E, de Kok TM, Plusquin M, Nawrot TS. A Co-expression Analysis of the Placental Transcriptome in Association With Maternal Pre-pregnancy BMI and Newborn Birth Weight. Front Genet 2019; 10:354. [PMID: 31110514 PMCID: PMC6501552 DOI: 10.3389/fgene.2019.00354] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
Maternal body mass index (BMI) before pregnancy is known to affect both fetal growth and later-life health of the newborn, yet the implicated molecular mechanisms remain largely unknown. As the master regulator of the fetal environment, the placenta is a valuable resource for the investigation of processes involved in the developmental programming of metabolic health. We conducted a genome-wide placental transcriptome study aiming at the identification of functional pathways representing the molecular link between maternal BMI and fetal growth. We used RNA microarray (Agilent 8 × 60 K), medical records, and questionnaire data from 183 mother-newborn pairs from the ENVIRONAGE birth cohort study (Flanders, Belgium). Using a weighted gene co-expression network analysis, we identified 17 correlated gene modules. Three of these modules were associated with both maternal pre-pregnancy BMI and newborn birth weight. A gene cluster enriched for genes involved in immune response and myeloid cell differentiation was positively associated with maternal BMI and negatively with low birth weight. Two other gene modules, upregulated in association with maternal BMI as well as birth weight, were involved in processes related to organ and tissue development, with blood vessel morphogenesis and extracellular matrix structure as top Gene Ontology terms. In line with this, erythrocyte-, angiogenesis-, and extracellular matrix-related genes were among the identified hub genes. The association between maternal BMI and newborn weight was significantly mediated by gene expression for 5 of the hub genes (FZD4, COL15A1, GPR124, COL6A1, and COL1A1). As some of the identified hub genes have been linked to obesity in adults, our observation in placental tissue suggests that biological processes may be affected from prenatal life onwards, thereby identifying new molecular processes linking maternal BMI and fetal metabolic programming.
Collapse
Affiliation(s)
- Bianca Cox
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Maria Tsamou
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Karen Vrijens
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Kristof Y Neven
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Ellen Winckelmans
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Theo M de Kok
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Michelle Plusquin
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S Nawrot
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium.,Department of Public Health, Environment and Health Unit, Leuven University (KU Leuven), Leuven, Belgium
| |
Collapse
|
26
|
James G, Klyne DM, Millecamps M, Stone LS, Hodges PW. ISSLS Prize in Basic science 2019: Physical activity attenuates fibrotic alterations to the multifidus muscle associated with intervertebral disc degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 28:893-904. [PMID: 30737621 DOI: 10.1007/s00586-019-05902-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Chronic low back pain causes structural remodelling and inflammation in the multifidus muscle. Collagen expression is increased in the multifidus of humans with lumbar disc degeneration. However, the extent and mechanisms underlying the increased fibrotic activity in the multifidus are unknown. Physical activity reduces local inflammation that precedes multifidus fibrosis during intervertebral disc degeneration (IDD), but its effect on amelioration of fibrosis is unknown. This study aimed to assess the development of fibrosis and its underlying genetic network during IDD and the impact of physical activity. METHODS Wild-type and SPARC-null mice were either sedentary or housed with a running wheel, to allow voluntary physical activity. At 12 months of age, IDD was assessed with MRI, and multifidus muscle samples were harvested from L2 to L6. In SPARC-null mice, the L1/2 and L3/4 discs had low and high levels of IDD, respectively. Thus, multifidus samples from L2 and L4 were allocated to low- and high-IDD groups compared to assess the effects of IDD and physical activity on connective tissue and fibrotic genes. RESULTS High IDD was associated with greater connective tissue thickness and dysregulation of collagen-III, fibronectin, CTGF, substance P, TIMP1 and TIMP2 in the multifidus muscle. Physical activity attenuated the IDD-dependent increased connective tissue thickness and reduced the expression of collagen-I, fibronectin, CTGF, substance P, MMP2 and TIMP2 in SPARC-null animals and wild-type mice. Collagen-III and TIMP1 were only reduced in wild-type animals. CONCLUSIONS These data reveal the fibrotic networks that promote fibrosis in the multifidus muscle during chronic IDD. Furthermore, physical activity is shown to reduce fibrosis and regulate the fibrotic gene network. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- G James
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - D M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - M Millecamps
- Alan Edwards Centre for Research on Pain, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - L S Stone
- Alan Edwards Centre for Research on Pain, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - P W Hodges
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
27
|
Lu SF, Tang YX, Zhang T, Fu SP, Hong H, Cheng Y, Xu HX, Jing XY, Yu ML, Zhu BM. Electroacupuncture Reduces Body Weight by Regulating Fat Browning-Related Proteins of Adipose Tissue in HFD-Induced Obese Mice. Front Psychiatry 2019; 10:353. [PMID: 31244685 PMCID: PMC6580183 DOI: 10.3389/fpsyt.2019.00353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023] Open
Abstract
Objective: This study investigated the influence of electroacupuncture (EA) and its potential underlying mechanisms on adipose tissue in obese mice. Methods: Three-week-old male C56BL/6 mice were randomly divided to feed or not to feed high-fat diet (HFD), named HFD group and chow diet (CD) group, respectively. After 12 weeks, CD and HFD mice were randomly divided into two groups, respectively, to receive or not receive EA for 4 weeks. Body weight (BW) was monitored. Intraperitoneal glucose tolerance test and metabolic chamber recordings were performed. Blood samples and adipose tissue were collected for the analysis of leptin, triglyceride levels, and fat browning-related proteins. Results: EA significantly reduced food intake, BW, and white adipose tissue (WAT)/BW ratio; decreased the adipocyte size and serum concentrations of triglyceride (TG) and cholesterol; and increased oxygen consumption in HFD mice. Compared with the CD mice, the HFD mice had elevated fasting serum glucose level and impaired glucose tolerance; however, these parameters were decreased by EA treatment. Meanwhile, EA promoted the protein and mRNA expressions of UCP1, PRDM16, and PGC-1α in adipose tissue, and activated sympathetic nerves via p-TH, A2AR, and β3AR in white adipose tissue. Conclusions: EA reduced food intake, BW, TG, and cholesterol, and improved glucose tolerance in HFD mice. This ameliorative effect of EA on obesity-related symptoms associated with its promoted adipose tissue plasticity via activating sympathetic nerves.
Collapse
Affiliation(s)
- Sheng-Feng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue-Xia Tang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.,Huai'an Hospital of Traditional Chinese Medicine, Huaian, China
| | - Tao Zhang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu-Ping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Hong
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Cheng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hou-Xi Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing-Yue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei-Ling Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Multifaceted Interweaving Between Extracellular Matrix, Insulin Resistance, and Skeletal Muscle. Cells 2018; 7:cells7100148. [PMID: 30249008 PMCID: PMC6211053 DOI: 10.3390/cells7100148] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
The skeletal muscle provides movement and support to the skeleton, controls body temperature, and regulates the glucose level within the body. This is the core tissue of insulin-mediated glucose uptake via glucose transporter type 4 (GLUT4). The extracellular matrix (ECM) provides integrity and biochemical signals and plays an important role in myogenesis. In addition, it undergoes remodeling upon injury and/or repair, which is also related to insulin resistance (IR), a major cause of type 2 diabetes (T2DM). Altered signaling of integrin and ECM remodeling in diet-induced obesity is associated with IR. This review highlights the interweaving relationship between the ECM, IR, and skeletal muscle. In addition, the importance of the ECM in muscle integrity as well as cellular functions is explored. IR and skeletal muscle ECM remodeling has been discussed in clinical and nonclinical aspects. Furthermore, this review considers the role of ECM glycation and its effects on skeletal muscle homeostasis, concentrating on advanced glycation end products (AGEs) as an important risk factor for the development of IR. Understanding this complex interplay between the ECM, muscle, and IR may improve knowledge and help develop new ideas for novel therapeutics for several IR-associated myopathies and diabetes.
Collapse
|
29
|
Sretenovic J, Ajdzanovic V, Zivkovic V, Srejovic I, Corbic M, Milosevic V, Jakovljevic V, Milosavljevic Z. Nandrolone decanoate and physical activity affect quadriceps in peripubertal rats. Acta Histochem 2018; 120:429-437. [PMID: 29759662 DOI: 10.1016/j.acthis.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
Anabolic androgenic steroids (AASs) are synthetic analogs of testosterone often used by athletes to increase the skeletal muscle mass. Our goal was to examine the effects of physical activity and physical activity combined with supraphysiological doses of nandrolone on functional morphology of the quadriceps muscle. The study included 32 peripubertal Wistar rats, divided into 4 groups: control (T-N-), nandrolone (T-N+), physical activity (T+N-) and physical activity plus nandrolone (T+N+) groups. The T+N- and T+N+ group swam for 4 weeks, 1 h/day, 5 days/week. The T-N+ and T+N+ groups received nandolone decanoate (20 mg/kg b.w.) once per week, subcutaneously. Subsequently, the rats were sacrificed and muscle specimens were prepared for the processing. Tissue sections were histochemically and immunohistochemically stained, while the image analysis was used for quantification. Longitudinal diameter of quadriceps muscle cells was increased for 21% in T-N+, for 57% in T+N- and for 64% in T+N+ group while cross section muscle cell area was increased in T-N+ for 19%, in T+N- for 47% and in T+N+ group for 59%, compared to the control. Collagen fibers covered area was increased in T-N+ group for 36%, in T+N- for 109% and in T+N+ group for 159%, compared to the control. Erythrocyte depots were decreased in T-N+ group and increased in T+N- and T+N+ group, in comparison with T-N-. VEGF depots were increased in all treated groups. Chronic administration of supraphysiological doses of AASs alone or in combination with physical activity induces hypertrophy and significant changes in the quadriceps muscle tissue structure.
Collapse
Affiliation(s)
- Jasmina Sretenovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Ajdzanovic
- Department of Cytology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milena Corbic
- Clinic of Neurology, KRH Klinikum Agnes Karll Laatzen, Hannover, Germany
| | - Verica Milosevic
- Department of Cytology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia.
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, Moscow, Russia
| | - Zoran Milosavljevic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|