1
|
Saeed S, Bonnefond A, Froguel P. Obesity: exploring its connection to brain function through genetic and genomic perspectives. Mol Psychiatry 2025; 30:651-658. [PMID: 39237720 PMCID: PMC11746128 DOI: 10.1038/s41380-024-02737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Obesity represents an escalating global health burden with profound medical and economic impacts. The conventional perspective on obesity revolves around its classification as a "pure" metabolic disorder, marked by an imbalance between calorie consumption and energy expenditure. Present knowledge, however, recognizes the intricate interaction of rare or frequent genetic factors that favor the development of obesity, together with the emergence of neurodevelopmental and mental abnormalities, phenotypes that are modulated by environmental factors such as lifestyle. Thirty years of human genetic research has unveiled >20 genes, causing severe early-onset monogenic obesity and ~1000 loci associated with common polygenic obesity, most of those expressed in the brain, depicting obesity as a neurological and mental condition. Therefore, obesity's association with brain function should be better recognized. In this context, this review seeks to broaden the current perspective by elucidating the genetic determinants that contribute to both obesity and neurodevelopmental and mental dysfunctions. We conduct a detailed examination of recent genetic findings, correlating them with clinical and behavioral phenotypes associated with obesity. This includes how polygenic obesity, influenced by a myriad of genetic variants, impacts brain regions associated with addiction and reward, differentiating it from monogenic forms. The continuum between non-syndromic and syndromic monogenic obesity, with evidence from neurodevelopmental and cognitive assessments, is also addressed. Current therapeutic approaches that target these genetic mechanisms, yielding improved clinical outcomes and cognitive advantages, are discussed. To sum up, this review corroborates the genetic underpinnings of obesity, affirming its classification as a neurological disorder that may have broader implications for neurodevelopmental and mental conditions. It highlights the promising intersection of genetics, genomics, and neurobiology as a foundation for developing tailored medical approaches to treat obesity and its related neurological aspects.
Collapse
Affiliation(s)
- Sadia Saeed
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Amélie Bonnefond
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Philippe Froguel
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille, France.
- University of Lille, Lille University Hospital, Lille, France.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
2
|
Renard E, Thevenard-Berger A, Meyre D. Medical semiology of patients with monogenic obesity: A systematic review. Obes Rev 2024; 25:e13797. [PMID: 38956946 DOI: 10.1111/obr.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/20/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Patients with monogenic obesity display numerous medical features on top of hyperphagic obesity, but no study to date has provided an exhaustive description of their semiology. Two reviewers independently conducted a systematic review of MEDLINE, Embase, and Web of Science Core Collection databases from inception to January 2022 to identify studies that described symptoms of patients carrying pathogenic mutations in at least one of eight monogenic obesity genes (ADCY3, LEP, LEPR, MC3R, MC4R, MRAP2, PCSK1, and POMC). Of 5207 identified references, 269 were deemed eligible after title and abstract screening, full-text reading, and risk of bias and quality assessment. Data extraction included mutation spectrum and mode of inheritance, clinical presentation (e.g., anthropometry, energy intake and eating behaviors, digestive function, puberty and fertility, cognitive features, infectious diseases, morphological characteristics, chronic respiratory disease, and cardiovascular disease), biological characteristics (metabolic profile, endocrinology, hematology), radiological features, and treatments. The review provides an exhaustive description of mandatory, non-mandatory, and unique symptoms in heterozygous and homozygous carriers of mutation in eight monogenic obesity genes. This information is critical to help clinicians to orient genetic testing in subsets of patients with suspected monogenic obesity and provide actionable treatments (e.g., recombinant leptin and MC4R agonist).
Collapse
Affiliation(s)
- Emeline Renard
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
- Department of Pediatrics, University Hospital of Nancy, Nancy, France
| | | | - David Meyre
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, Nancy, France
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| |
Collapse
|
3
|
Dosda S, Renard E, Meyre D. Sequencing methods, functional characterization, prevalence, and penetrance of rare coding mutations in panels of monogenic obesity genes from the leptin-melanocortin pathway: A systematic review. Obes Rev 2024; 25:e13754. [PMID: 38779716 DOI: 10.1111/obr.13754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 05/25/2024]
Abstract
The recent development of next-generation sequencing (NGS) technologies has led to an increase of mutation screening reports of monogenic obesity genes in diverse experimental designs. However, no study to date has summarized their findings. Two reviewers independently conducted a systematic review of MEDLINE, Embase, and Web of Science Core Collection databases from inception to September 2022 to identify monogenic non-syndromic obesity gene screening studies. Of 1051 identified references, 31 were eligible after title and abstract screening and 28 after full-text reading and risk of bias and quality assessment. Most studies (82%) used NGS methods. The number of genes screened varied from 2 to 12 genes from the leptin-melanocortin pathway. While all the included studies used in silico tools to assess the functional status of mutations, only 2 performed in vitro tests. The prevalence of carriers of pathogenic/likely pathogenic monogenic mutations is 13.24% on average (heterozygous: 12.31%; homozygous/heterozygous composite: 0.93%). As no study reported the penetrance of pathogenic mutations on obesity, we estimated that homozygous carriers exhibited a complete penetrance (100%) and heterozygous carriers a variable penetrance (3-100%). The review provides an exhaustive description of sequencing methods, functional characterization, prevalence, and penetrance of rare coding mutations in monogenic non-syndromic obesity genes.
Collapse
Affiliation(s)
- Sonia Dosda
- INSERM UMR 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
- Specialized Obesity Center and Endocrinology, Diabetology, Department of Nutrition, Brabois Hospital, CHRU of Nancy, Nancy, France
- Department of Pediatrics, University Hospital of Nancy, Nancy, France
| | - Emeline Renard
- INSERM UMR 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
- Department of Pediatrics, University Hospital of Nancy, Nancy, France
| | - David Meyre
- INSERM UMR 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, Nancy, France
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Monserrat Hernández M, Jiménez-Rodríguez D. Relationship of Genetic Polymorphisms and Microbial Composition with Binge Eating Disorder: A Systematic Review. Healthcare (Basel) 2024; 12:1441. [PMID: 39057584 PMCID: PMC11276772 DOI: 10.3390/healthcare12141441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Humans are the result of an evolutionary process, and because of this, many biological processes are interconnected with each other. The intestine-brain axis consists of an intricately connected neuronal-neuroendocrine circuit that regulates the sensation of hunger and satiety. Genetic variations and the consumption of unnatural diets (ultra-processed foods, high contents of sugars, etc.) can override this circuit and cause addiction to certain foods and/or the inability to feel satiety in certain situations. The patients who come to consultations (mainly psychology or nutrition) in an attempt to resolve this problem sometimes fail, which leads to them looking for new strategies based on biological predisposition. This investigation aims to evaluate the genetic studies regarding the microbiota carried out in the last 12 years in humans to try to determine which genes and microbes that have been recently studied are related to patients diagnosed with binge eating disorder or compulsive eating (presenting obesity or not). The protocol followed the PRISMA statement, and the following databases were searched from 2012 until the present day: PubMed, PsycINFO, SCOPUS, and Web of Science. Twenty-four international articles were analyzed, including cross-sectional or exploratory studies; five of them referred to the microbial composition, and in nineteen, the existence of genetic polymorphisms present in binge eating disorder or in compulsive eating could be observed: DRD2, OPRM1, COMT, MC4R, BNDF, FTO, SLC6A3, GHRL, CARTPT, MCHR2, and LRP11. Even though there is still much to investigate on the subject, it must be highlighted that, in the last 4 years, a two-fold increase has been observed in potential markers and in studies related to the matter, also highlighting the importance of different analyses in relation to psychosocial factors and their interaction with the genetic and microbial factors, for which research on the matter must be continued.
Collapse
Affiliation(s)
| | - Diana Jiménez-Rodríguez
- Department of Nursing, Physiotherapy and Medicine, University of Almería, 04120 Almería, Spain;
| |
Collapse
|
5
|
Barakat S, McLean SA, Bryant E, Le A, Marks P, Touyz S, Maguire S. Risk factors for eating disorders: findings from a rapid review. J Eat Disord 2023; 11:8. [PMID: 36650572 PMCID: PMC9847054 DOI: 10.1186/s40337-022-00717-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/04/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Risk factors represent a range of complex variables associated with the onset, development, and course of eating disorders. Understanding these risk factors is vital for the refinement of aetiological models, which may inform the development of targeted, evidence-based prevention, early intervention, and treatment programs. This Rapid Review aimed to identify and summarise research studies conducted within the last 12 years, focusing on risk factors associated with eating disorders. METHODS The current review forms part of a series of Rapid Reviews to be published in a special issue in the Journal of Eating Disorders, funded by the Australian Government to inform the development of the National Eating Disorder Research and Translation Strategy 2021-2031. Three databases were searched for studies published between 2009 and 2021, published in English, and comprising high-level evidence studies (meta-analyses, systematic reviews, moderately sized randomised controlled studies, moderately sized controlled-cohort studies, or population studies). Data pertaining to risk factors for eating disorders were synthesised and outlined in the current paper. RESULTS A total of 284 studies were included. The findings were divided into nine main categories: (1) genetics, (2) gastrointestinal microbiota and autoimmune reactions, (3) childhood and early adolescent exposures, (4) personality traits and comorbid mental health conditions, (5) gender, (6) socio-economic status, (7) ethnic minority, (8) body image and social influence, and (9) elite sports. A substantial amount of research exists supporting the role of inherited genetic risk in the development of eating disorders, with biological risk factors, such as the role of gut microbiota in dysregulation of appetite, an area of emerging evidence. Abuse, trauma and childhood obesity are strongly linked to eating disorders, however less conclusive evidence exists regarding developmental factors such as role of in-utero exposure to hormones. Comorbidities between eating disorders and mental health disorders, including personality and mood disorders, have been found to increase the severity of eating disorder symptomatology. Higher education attainment, body image-related factors, and use of appearance-focused social media are also associated with increased risk of eating disorder symptoms. CONCLUSION Eating disorders are associated with multiple risk factors. An extensive amount of research has been conducted in the field; however, further studies are required to assess the causal nature of the risk factors identified in the current review. This will assist in understanding the sequelae of eating disorder development and in turn allow for enhancement of existing interventions and ultimately improved outcomes for individuals.
Collapse
Affiliation(s)
- Sarah Barakat
- InsideOut Institute for Eating Disorders, University of Sydney, Sydney Local Health District, Sydney, Australia.
- Faculty of Medicine and Health, Charles Perkins Centre (D17), InsideOut Institute, University of Sydney, Level 2, Sydney, NSW, 2006, Australia.
| | - Siân A McLean
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Emma Bryant
- InsideOut Institute for Eating Disorders, University of Sydney, Sydney Local Health District, Sydney, Australia
| | - Anvi Le
- Healthcare Management Advisors, Melbourne, Australia
| | - Peta Marks
- InsideOut Institute for Eating Disorders, University of Sydney, Sydney Local Health District, Sydney, Australia
| | - Stephen Touyz
- InsideOut Institute for Eating Disorders, University of Sydney, Sydney Local Health District, Sydney, Australia
| | - Sarah Maguire
- InsideOut Institute for Eating Disorders, University of Sydney, Sydney Local Health District, Sydney, Australia
| |
Collapse
|
6
|
Giel KE, Bulik CM, Fernandez-Aranda F, Hay P, Keski-Rahkonen A, Schag K, Schmidt U, Zipfel S. Binge eating disorder. Nat Rev Dis Primers 2022; 8:16. [PMID: 35301358 PMCID: PMC9793802 DOI: 10.1038/s41572-022-00344-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Abstract
Binge eating disorder (BED) is characterized by regular binge eating episodes during which individuals ingest comparably large amounts of food and experience loss of control over their eating behaviour. The worldwide prevalence of BED for the years 2018-2020 is estimated to be 0.6-1.8% in adult women and 0.3-0.7% in adult men. BED is commonly associated with obesity and with somatic and mental health comorbidities. People with BED experience considerable burden and impairments in quality of life, and, at the same time, BED often goes undetected and untreated. The aetiology of BED is complex, including genetic and environmental factors as well as neuroendocrinological and neurobiological contributions. Neurobiological findings highlight impairments in reward processing, inhibitory control and emotion regulation in people with BED, and these neurobiological domains are targets for emerging treatment approaches. Psychotherapy is the first-line treatment for BED. Recognition and research on BED has increased since its inclusion into DSM-5; however, continuing efforts are needed to understand underlying mechanisms of BED and to improve prevention and treatment outcomes for this disorder. These efforts should also include screening, identification and implementation of evidence-based interventions in routine clinical practice settings such as primary care and mental health outpatient clinics.
Collapse
Affiliation(s)
- Katrin E Giel
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
- Center of Excellence for Eating Disorders (KOMET), Tübingen, Germany.
| | - Cynthia M Bulik
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fernando Fernandez-Aranda
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Phillipa Hay
- Translational Health Research Institute, Western Sydney University, Sydney, NSW, Australia
- Camden and Campbelltown Hospitals, SWSLHD, Campbelltown, NSW, Australia
| | | | - Kathrin Schag
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
- Center of Excellence for Eating Disorders (KOMET), Tübingen, Germany
| | - Ulrike Schmidt
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
- Center of Excellence for Eating Disorders (KOMET), Tübingen, Germany
| |
Collapse
|
7
|
Santos JL, Cortés VA. Eating behaviour in contrasting adiposity phenotypes: Monogenic obesity and congenital generalized lipodystrophy. Obes Rev 2021; 22:e13114. [PMID: 33030294 DOI: 10.1111/obr.13114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Most known types of nonsyndromic monogenic obesity are caused by rare mutations in genes of the leptin-melanocortin pathway controlling appetite and adiposity. In contrast, congenital generalized lipodystrophy represents the most extreme form of leanness in humans caused by recessive mutations in four genes involved in phospholipid/triglyceride synthesis and lipid droplet/caveolae structure. In this disease, the inability to store triglyceride in adipocytes results in hypoleptinemia and ectopic hepatic and muscle fat accumulation leading to fatty liver, hypertriglyceridemia and severe insulin resistance. As a result of hypoleptinemia, patients with lipodystrophy show alterations in eating behaviour characterized by constant increased energy intake. As it occurs in obesity caused by genetic leptin deficiency, exogenous leptin rapidly reduces hunger scores in patients with congenital generalized lipodystrophy, with additional beneficial effects on glucose homeostasis and metabolic profile normalization. The melanocortin-4 receptor agonist setmelanotide has been used in the treatment of monogenic obesities. There is only one report on the effect of setmelanotide in a patient with partial lipodystrophy resulting in mild reductions in hunger scores, with no improvements in metabolic status. The assessment of contrasting phenotypes of obesity/leanness represents an adequate strategy to understand the pathophysiology and altered eating behaviour associated with adipose tissue excessive accumulation/paucity.
Collapse
Affiliation(s)
- José L Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Víctor A Cortés
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Rare genetic forms of obesity: From gene to therapy. Physiol Behav 2020; 227:113134. [DOI: 10.1016/j.physbeh.2020.113134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 01/05/2023]
|
9
|
Ryan-Moore E, Mavrommatis Y, Waldron M. Systematic Review and Meta-Analysis of Candidate Gene Association Studies With Fracture Risk in Physically Active Participants. Front Genet 2020; 11:551. [PMID: 32612634 PMCID: PMC7308497 DOI: 10.3389/fgene.2020.00551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Fractures are common in physically active populations and genetic differences may mediate injury risk. Objective: To meta-analyse the pooled results of candidate gene association studies with non-osteoporotic fracture risk in physically active humans. Methods: Systematic searching of databases returned 11 eligible studies published in English. Pooled odds ratios (ORs) with 95% confidence intervals (CI) were produced using allele contrast, recessive and homozygote contrast meta-analysis models to evaluate associations of risk alleles in the COL1A1 (rs1800012), COL2A1 (rs412777), CTR (rs1801197), ESR1 (rs2234693 and rs9340799) LRP5 (rs3736228), VDR (rs10735810, rs7975232, rs1544410, and rs731236) genes with fracture incidence. Results: Eligible study quality was generally low (7/11) and no significant overall effect was found for any genetic variant with any comparison model (p > 0.05). A trivial reduction in fracture risk was found for female participants with the COL1A1 Sp1 (rs1800012) T allele (OR = 0.48, 95% CI = 0.25–0.91, p = 0.03, d = –0.18). Conclusions: No overall effect was found from the pooled results of included genetic variants on fracture risk in physically active participants. The COL1A1 Sp1 rs1800012 T allele may reduce fracture risk in physically active females but further high-quality research with sex-specific analysis is required. Trial Registration: (PROSPERO; CRD42018115008).
Collapse
Affiliation(s)
- Edward Ryan-Moore
- Faculty of Sport, Health and Applied Sciences, St Mary's University, London, United Kingdom.,Fulham Football Club, Sports Science and Medicine, London, United Kingdom
| | - Yiannis Mavrommatis
- Faculty of Sport, Health and Applied Sciences, St Mary's University, London, United Kingdom.,Nell Health Ltd., Genetics & Nutrition, London, United Kingdom
| | - Mark Waldron
- Research Centre in Applied Sports, Technology, Exercise and Medicine, Swansea University, Swansea, United Kingdom.,School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
10
|
Huang XM, Yang WC, Liu Y, Tang DR, Wu T, Sun FY. Mutations in MC4R facilitate the angiogenic activity in patients with orbital venous malformation. Exp Biol Med (Maywood) 2020; 245:956-963. [PMID: 32363922 DOI: 10.1177/1535370220919056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IMPACT STATEMENT The detailed molecular mechanism of orbital venous malformation (OVM) is still not clear. Using whole exome sequencing, 4 types of melanocortin 4 receptor (MC4R) mutation were detected in 7 of 27 patients with OVM, and all types of MC4R mutations resulted in the upregulation of MC4R expression. In vitro study indicated that MC4R has impacts on the proliferation, cell cycle, migration, and tube formation of the endothelial cells. Moreover, MC4R mutations altered the downstream signaling, including cAMP concentration and the expression levels of several PI3K/AKT/mTOR downstream genes, including p21, cyclin B1, ITGA10, and ITGA11. MC4R mutations may lead to the pathogenesis of OVM through modulating the downstream signaling to alter the angiogenic activity of endothelial cells.
Collapse
Affiliation(s)
- Xiao-Ming Huang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin 300384, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China.,Orbital Disease Institute, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Wan-Chen Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin 300384, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Yang Liu
- Orbital Disease Institute, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Dong-Run Tang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin 300384, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Tong Wu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin 300384, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Feng-Yuan Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin 300384, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
11
|
Ehtesham S, Qasim A, Meyre D. Loss-of-function mutations in the melanocortin-3 receptor gene confer risk for human obesity: A systematic review and meta-analysis. Obes Rev 2019; 20:1085-1092. [PMID: 31090190 DOI: 10.1111/obr.12864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
The association between rare coding loss-of-function (LOF) mutations in the melanocortin receptor 3 (MC3R) gene and human obesity is controversial. To fill this gap of knowledge, we performed a systematic review and meta-analysis of genetic association studies in all ages and ethnicities. Two reviewers independently performed risk of bias assessment and extracted data. We searched Medline, Embase, Web of Science Core Collection, BIOSIS Preview, CINAHL, ProQuest Dissertations & Theses, and reference lists of relevant studies. All case-control, cross-sectional, prospective, and retrospective studies that evaluated prevalence of rare (less than 1% frequency) coding partial/complete LOF mutations in MC3R among individuals with obesity and normal weight were included. Our systematic search identified 1925 references relevant to the present review. Six studies were deemed eligible. Meta-analysis of 2969 individuals with obesity and 2572 with normal weight showed a positive association between rare heterozygous coding partial/complete LOF mutations in MC3R and obesity in children and adults of European, North African, and Asian ancestries (odds ratio = 3.07; 95% CI, 1.48-7.00; P = 4.2 × 10-3 ). Our data demonstrates that rare partial/complete LOF mutations in the coding region of MC3R confer three-time increased risk of obesity in humans, and implies that rare genetic variants with intermediate effects contribute to the missing heritability of obesity.
Collapse
Affiliation(s)
- Sahar Ehtesham
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Anila Qasim
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Nicoletti CF, Delfino HBP, Ferreira FC, Pinhel MADS, Nonino CB. Role of eating disorders-related polymorphisms in obesity pathophysiology. Rev Endocr Metab Disord 2019; 20:115-125. [PMID: 30924001 DOI: 10.1007/s11154-019-09489-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human biological system provides innumerable neuroendocrine inputs for food intake control, with effects on appetite's modulation and the satiety signs. Its regulation is very complex, engaging several molecular interactions with many tissues, hormones, and neural circuits. Thus, signaling molecules that control food intake are critical for normal energy homeostasis and a deregulation of these pathways can lead to eating disorders and obesity. In line of this, genetic factors have a significantly influence of the regulation of neural circuits controlling the appetite and satiety pathways, as well as the regulation of brain reward systems. Single Nucleotide Polymorphisms (SNPs) in genes related to hypothalamic appetite and satiety mechanisms, further in multiple neurotransmitter systems may contribute to the development of major Eating Disorders (EDs) related to obesity, among them Binge Eating Disorder (BED) and Bulimia Nervosa (BN), which are discussed in this review.
Collapse
Affiliation(s)
- Carolina Ferreira Nicoletti
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Flávia Campos Ferreira
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcela Augusta de Souza Pinhel
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Laboratory of Studies in Biochemistry and Molecular Biology, Department of Molecular Biology, São José do Rio Preto Medical School, São Paulo, Brazil
| | - Carla Barbosa Nonino
- Department of Health Sciences, Ribeirão Preto Medical School - FMRP/USP - Laboratory of Nutrigenomic Studies, University of São Paulo, Av Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP, CEP: 14049-900, Brazil.
| |
Collapse
|