1
|
Putnová I, Putnová BM, Hurník P, Štembírek J, Buchtová M, Kolísková P. Primary cilia-associated signalling in squamous cell carcinoma of head and neck region. Front Oncol 2024; 14:1413255. [PMID: 39234399 PMCID: PMC11372790 DOI: 10.3389/fonc.2024.1413255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Squamous cell carcinoma (SCC) of the head and neck originates from the mucosal lining of the upper aerodigestive tract, including the lip, tongue, nasopharynx, oropharynx, larynx and hypopharynx. In this review, we summarise what is currently known about the potential function of primary cilia in the pathogenesis of this disease. As primary cilia represent a key cellular structure for signal transduction and are related to cell proliferation, an understanding of their role in carcinogenesis is necessary for the design of new treatment approaches. Here, we introduce cilia-related signalling in head and neck squamous cell carcinoma (HNSCC) and its possible association with HNSCC tumorigenesis. From this point of view, PDGF, EGF, Wnt and Hh signalling are discussed as all these pathways were found to be dysregulated in HNSCC. Moreover, we review the clinical potential of small molecules affecting primary cilia signalling to target squamous cell carcinoma of the head and neck area.
Collapse
Affiliation(s)
- Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Barbora Moldovan Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Pavel Hurník
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Kolísková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
2
|
Liu K, Chen H, Li Y, Wang B, Li Q, Zhang L, Liu X, Wang C, Ertas YN, Shi H. Autophagy flux in bladder cancer: Cell death crosstalk, drug and nanotherapeutics. Cancer Lett 2024; 591:216867. [PMID: 38593919 DOI: 10.1016/j.canlet.2024.216867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Autophagy, a self-digestion mechanism, has emerged as a promising target in the realm of cancer therapy, particularly in bladder cancer (BCa), a urological malignancy characterized by dysregulated biological processes contributing to its progression. This highly conserved catabolic mechanism exhibits aberrant activation in pathological events, prominently featured in human cancers. The nuanced role of autophagy in cancer has been unveiled as a double-edged sword, capable of functioning as both a pro-survival and pro-death mechanism in a context-dependent manner. In BCa, dysregulation of autophagy intertwines with cell death mechanisms, wherein pro-survival autophagy impedes apoptosis and ferroptosis, while pro-death autophagy diminishes tumor cell survival. The impact of autophagy on BCa progression is multifaceted, influencing metastasis rates and engaging with the epithelial-mesenchymal transition (EMT) mechanism. Pharmacological modulation of autophagy emerges as a viable strategy to impede BCa progression and augment cell death. Notably, the introduction of nanoparticles for targeted autophagy regulation holds promise as an innovative approach in BCa suppression. This review underscores the intricate interplay of autophagy with cell death pathways and its therapeutic implications in the nuanced landscape of bladder cancer.
Collapse
Affiliation(s)
- Kuan Liu
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China
| | - Huijing Chen
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China
| | - Yanhong Li
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China
| | - Bei Wang
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China
| | - Qian Li
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China
| | - Lu Zhang
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China
| | - Xiaohui Liu
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China.
| | - Ce Wang
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Turkey; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey.
| | - Hongyun Shi
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, PR China.
| |
Collapse
|
3
|
Yuan Q, Mao M, Xia X, Yang W. Clinical and prognostic significance analysis of glycolysis-related genes in HNSCC. J Gene Med 2024; 26:e3670. [PMID: 38337164 DOI: 10.1002/jgm.3670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/10/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) represents one of the most malignant cancers worldwide, with poor survival. Experimental evidence implies that glycolysis/hypoxia is associated with HNSCC. In this study, we aimed to construct a novel glycolysis-/hypoxia-related gene (GHRG) signature for survival prediction of HNSCC. METHODS A multistage screening strategy was used to establish the GHRG prognostic model by univariate/least absolute shrinkage and selection operator (LASSO)/step multivariate Cox regressions from The Cancer Genome Atlas cohort. A nomogram was constructed to quantify the survival probability. Correlations between risk score and immune infiltration and chemotherapy sensitivity were explored. RESULTS We established a 12-GHRG mRNA signature to predict the prognosis in HNSCC patients. Patients in the high-risk score group had a much worse prognosis. The predictive power of the model was validated by external HNSCC cohorts, and the model was identified as an independent factor for survival prediction. Immune infiltration analysis showed that the high-risk score group had an immunosuppressive microenvironment. Finally, the model was effective in predicting chemotherapeutic sensitivity. CONCLUSIONS Our study demonstrated that the GHRG model is a robust prognostic tool for survival prediction of HNSCC. Findings of this work provide novel insights for immune infiltration and chemotherapy of HNSCC, and may be applied clinically to guide therapeutic strategies.
Collapse
Affiliation(s)
- Qiuyun Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mengqian Mao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoqiang Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wanchun Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Li Q, Chen W, Li Q, Mao J, Chen X. A novel neutrophil extracellular trap signature to predict prognosis and immunotherapy response in head and neck squamous cell carcinoma. Front Immunol 2022; 13:1019967. [PMID: 36225931 PMCID: PMC9549764 DOI: 10.3389/fimmu.2022.1019967] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignant cancers, and patients with HNSCC possess early metastases and poor prognosis. Systematic therapies (including chemotherapy, targeted therapy, and immunotherapy) are generally applied in the advanced/late stages of HNSCC, but primary and acquired resistance eventually occurs. At present, reliable biomarkers to predict the prognosis of HNSCC have not been completely identified. Recent studies have shown that neutrophil extracellular traps (NETs) are implicated in cancer progression, metastasis and cancer immune response, and NET-related gene signatures are associated with the prognosis of patients with several human cancers. To explore whether NET-related genes play crucial roles in HNSCC, we have performed systematic analysis and reported several findings in the current study. Firstly, we identified seven novel NET-related genes and developed a NET-score signature, which was highly associated with the clinicopathological and immune traits of the HNSCC patients. Then, we, for the first time, found that NIFK was significantly upregulated in HNSCC patient samples, and its levels were significantly linked to tumor malignancy and immune status. Moreover, functional experiments confirmed that NIFK was required for HNSCC cell proliferation and metastasis. Altogether, this study has identified a novel NET-score signature based on seven novel NET-related genes to predict the prognosis of HNSCC and NIFK has also explored a new method for personalized chemo-/immuno-therapy of HNSCC.
Collapse
Affiliation(s)
- Qilin Li
- Department of Stomatology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Weimin Chen
- Department of Stomatology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qiuhui Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- *Correspondence: Xin Chen, ; Qiuhui Li, ; Jing Mao,
| | - Jing Mao
- Department of Stomatology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Xin Chen, ; Qiuhui Li, ; Jing Mao,
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xin Chen, ; Qiuhui Li, ; Jing Mao,
| |
Collapse
|
5
|
Li QL, Mao J, Meng XY. Comprehensive Characterization of Immune Landscape Based on Tumor Microenvironment for Oral Squamous Cell Carcinoma Prognosis. Vaccines (Basel) 2022; 10:vaccines10091521. [PMID: 36146599 PMCID: PMC9505673 DOI: 10.3390/vaccines10091521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: This study aims to identify an immune-related signature to predict clinical outcomes of oral squamous cell carcinoma (OSCC) patients. Methods: Gene transcriptome data of both tumor and normal tissues from OSCC and the corresponding clinical information were downloaded from The Cancer Genome Atlas (TCGA). Tumor Immune Estimation Resource algorithm (ESTIMATE) was used to calculate the immune/stromal-related scores. The immune/stromal scores and associated clinical characteristics of OSCC patients were evaluated. Univariate Cox proportional hazards regression analyses, least absolute shrinkage, and selection operator (LASSO) and receiver operating characteristic (ROC) curve analyses were performed to assess the prognostic prediction capacity. Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) function annotation were used to analysis the functions of TME-related genes. Results: Eleven predictor genes were identified in the immune-related signature and overall survival (OS) in the high-risk group was significantly shorter than in the low-risk group. An ROC analysis showed the TME-related signature could predict the total OS of OSCC patients. Moreover, GSEA and GO function annotation proved that immunity and immune-related pathways were mainly enriched in the high-risk group. Conclusions: We identified an immune-related signature that was closely correlated with the prognosis and immune response of OSCC patients. This signature may have important implications for improving the clinical survival rate of OSCC patients and provide a potential strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Qi-Lin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430030, China
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430030, China
| | - Xin-Yao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| |
Collapse
|
6
|
Peña-Flores JA, Bermúdez M, Ramos-Payán R, Villegas-Mercado CE, Soto-Barreras U, Muela-Campos D, Álvarez-Ramírez A, Pérez-Aguirre B, Larrinua-Pacheco AD, López-Camarillo C, López-Gutiérrez JA, Garnica-Palazuelos J, Estrada-Macías ME, Cota-Quintero JL, Barraza-Gómez AA. Emerging role of lncRNAs in drug resistance mechanisms in head and neck squamous cell carcinoma. Front Oncol 2022; 12:965628. [PMID: 35978835 PMCID: PMC9376329 DOI: 10.3389/fonc.2022.965628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) originates in the squamous cell lining the mucosal surfaces of the head and neck region, including the oral cavity, nasopharynx, tonsils, oropharynx, larynx, and hypopharynx. The heterogeneity, anatomical, and functional characteristics of the patient make the HNSCC a complex and difficult-to-treat disease, leading to a poor survival rate and a decreased quality of life due to the loss of important physiologic functions and aggressive surgical injury. Alteration of driver-oncogenic and tumor-suppressing lncRNAs has recently been recently in HNSCC to obtain possible biomarkers for diagnostic, prognostic, and therapeutic approaches. This review provides current knowledge about the implication of lncRNAs in drug resistance mechanisms in HNSCC. Chemotherapy resistance is a major therapeutic challenge in HNSCC in which lncRNAs are implicated. Lately, it has been shown that lncRNAs involved in autophagy induced by chemotherapy and epithelial-mesenchymal transition (EMT) can act as mechanisms of resistance to anticancer drugs. Conversely, lncRNAs involved in mesenchymal-epithelial transition (MET) are related to chemosensitivity and inhibition of invasiveness of drug-resistant cells. In this regard, long non-coding RNAs (lncRNAs) play a pivotal role in both processes and are important for cancer detection, progression, diagnosis, therapy response, and prognostic values. As the involvement of more lncRNAs is elucidated in chemoresistance mechanisms, an improvement in diagnostic and prognostic tools could promote an advance in targeted and specific therapies in precision oncology.
Collapse
Affiliation(s)
- José A. Peña-Flores
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Mercedes Bermúdez
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | - Uriel Soto-Barreras
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | | | | | | | | | | | - Jorge A. López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | | | - Juan L. Cota-Quintero
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Odontology , Autonomous University of Sinaloa, Culiacán, Mexico
| | | |
Collapse
|
7
|
Chen F, Gong X, Xia M, Yu F, Wu J, Yu C, Li J. The Aging-Related Prognostic Signature Reveals the Landscape of the Tumor Immune Microenvironment in Head and Neck Squamous Cell Carcinoma. Front Oncol 2022; 12:857994. [PMID: 35619896 PMCID: PMC9127417 DOI: 10.3389/fonc.2022.857994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background Numerous studies have shown that the aging microenvironment played a huge impact on tumor progression. However, the clinical prognostic value of aging-related risk signatures and their effects on the tumor immune microenvironment (TIME) in head and neck squamous cell carcinoma (HNSCC) remains largely unclear. This study aimed to identify novel prognostic signatures based on aging-related genes (AGs) and reveal the landscape of the TIME in HNSCC. Methods Differentially expressed AGs were identified using the gene set enrichment analysis (GSEA). The prognostic risk model of AGs was established by univariate and multivariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses. The independent prognostic value of the risk model and the correlations of the prognostic signature with immune score, tumor immune cell infiltration, and immune checkpoints were systematically analyzed. Results A prognostic risk model of four AGs (BAK1, DKK1, CDKN2A, and MIF) was constructed and validated in the training and testing datasets. Kaplan–Meier curves and time-dependent receiver operating characteristic (ROC) curve analysis confirmed that the four-AG risk signature possessed an accurate predictive value for the prognosis of patients with HNSCC. Correlation analysis revealed that the risk score was negatively associated with immune score and immune cell infiltration level while positively correlated with immune checkpoint blockade (ICB) response score. Patients of the high-risk subtype contained higher infiltration levels of resting natural killer (NK) cells, M0 macrophages, M2 macrophages, and resting mast cells while having lower infiltration levels of memory B cells, CD8+ T cells, follicular helper T cells, regulatory T cells (Tregs), and activated mast cells than did those of the low-risk subtype. The expressions of CTLA4, PDCD1, and TIGIT were downregulated while the PDCD1LG2 expression was upregulated in the high-risk subtype compared to those in the low-risk subtype. Furthermore, the four selected AGs in the risk model were demonstrated to possess important functions in immune cell infiltration and ICB response of HNSCC. Conclusions The aging-related risk signature is a reliable prognostic model for predicting the survival of HNSCC patients and provides potential targets for improving outcomes of immunotherapy.
Collapse
Affiliation(s)
- Fang Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Gong
- Department of Otolaryngology, Head and Neck Surgery, Wushan County People's Hospital of Chongqing, Chongqing, China
| | - Meng Xia
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Feng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Jian Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chaosheng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junzheng Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Rahman MA, Ahmed KR, Rahman MDH, Park MN, Kim B. Potential Therapeutic Action of Autophagy in Gastric Cancer Managements: Novel Treatment Strategies and Pharmacological Interventions. Front Pharmacol 2022; 12:813703. [PMID: 35153766 PMCID: PMC8834883 DOI: 10.3389/fphar.2021.813703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC), second most leading cause of cancer-associated mortality globally, is the cancer of gastrointestinal tract in which malignant cells form in lining of the stomach, resulting in indigestion, pain, and stomach discomfort. Autophagy is an intracellular system in which misfolded, aggregated, and damaged proteins, as well as organelles, are degraded by the lysosomal pathway, and avoiding abnormal accumulation of huge quantities of harmful cellular constituents. However, the exact molecular mechanism of autophagy-mediated GC management has not been clearly elucidated. Here, we emphasized the role of autophagy in the modulation and development of GC transformation in addition to underlying the molecular mechanisms of autophagy-mediated regulation of GC. Accumulating evidences have revealed that targeting autophagy by small molecule activators or inhibitors has become one of the greatest auspicious approaches for GC managements. Particularly, it has been verified that phytochemicals play an important role in treatment as well as prevention of GC. However, use of combination therapies of autophagy modulators in order to overcome the drug resistance through GC treatment will provide novel opportunities to develop promising GC therapeutic approaches. In addition, investigations of the pathophysiological mechanism of GC with potential challenges are urgently needed, as well as limitations of the modulation of autophagy-mediated therapeutic strategies. Therefore, in this review, we would like to deliver an existing standard molecular treatment strategy focusing on the relationship between chemotherapeutic drugs and autophagy, which will help to improve the current treatments of GC patients.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Department of Biotechnology and Genetic Engineering, Global Biotechnology and Biomedical Research Network (GBBRN), Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Kazi Rejvee Ahmed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - MD. Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Global Biotechnology and Biomedical Research Network (GBBRN), Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- ABEx Bio-Research Center, East Azampur, Bangladesh
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
9
|
Jiang Y, Li Y, Ge H, Wu Y, Zhang Y, Guo S, Zhang P, Cheng J, Wang Y. Identification of an autophagy-related prognostic signature in head and neck squamous cell carcinoma. J Oral Pathol Med 2021; 50:1040-1049. [PMID: 34358365 DOI: 10.1111/jop.13231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Autophagy-related genes (ARGs) have been significantly implicated in tumorigenesis and served as promising prognostic biomarkers for human cancer. Hence, this study was aimed to develop an ARGs-based prognostic signature for Head and neck squamous cell carcinoma (HNSCC). METHODS Prognostic ARG candidates were identified by univariate and multivariate Cox regression analysis in the training dataset (TCGA-HNSC) and incorporated into a 3-ARGs (EGFR, FADD, and PARK2) prognostic signature which was further verified in two independent validation cohorts (GSE41613 and GSE42743). Kaplan-Meier plots, Cox regression analyses, and receiver operating characteristics curves (ROC) were employed to evaluate the prognostic prediction of 3-ARGs signature. Differential expression of these 3 ARG between cancer and normal counterparts as well as their associations with autophagy markers were assessed in 60 pairs of freshly collected HNSCC and adjacent non-tumor samples and datasets from Human Protein Atlas, respectively. RESULTS Patients with high-risk score had significantly inferior overall survival. Multivariate regression analyses revealed that 3-ARGs signature could be an independent prognostic factor after adjusting various clinicopathological parameters. ROC analyses revealed high predictive accuracy and sensitivity of the 3-ARGs signature. Increased mRNA and protein expression of EGFR, FADD, and PARK2 were found in HNSCC samples, and their expression significantly correlated with the abundances of ATG5, Beclin1, and LC3. CONCLUSION Our results reveal that 3-ARGs signature is a powerful prognostic biomarker for HNSCC, which could be integrated into the current prognostic regime to realize individualized outcome prediction. EGFR, FADD, and PARK2 likely contributed to autophagy during HNSCC tumorigenesis.
Collapse
Affiliation(s)
- Yue Jiang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China
| | - Yuanyuan Li
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China
| | - Han Ge
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China
| | - Yaping Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuchao Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Songsong Guo
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yanling Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China
| |
Collapse
|