1
|
Yuan L, Zhou L, Li J. Effect of microplastics on the allelopathic effects of native and invasive plants on co-occurring invaders. FRONTIERS IN PLANT SCIENCE 2024; 15:1425815. [PMID: 39529932 PMCID: PMC11551022 DOI: 10.3389/fpls.2024.1425815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Introduction Microplastic pollution has emerged as a significant global change factor, with the potential to alter the biological, physicochemical properties of soil and to subsequently affect plant growth. Despite growing recognition of the impacts of microplastic pollution, the mechanisms by which microplastics modify plant leaf chemistry and influence allelopathic interactions among co-existing plant species remain unclear. Methods We used the native perennial forb Achyranthes bidentata and the invasive annual forb Amaranthus spinosus as focal species. We grew the two species with and without competition with each other. This setup was further combined with a treatment involving the addition of polyethylene (PE). We then testd the effects of aqueous extract on seed germination and seedling growth for five invasive and five native species. Subsequently, metabolomic analysis was conducted on the aqueous extracts, in which significant allelopathic effects were observed on test species. Results and discussion The presence of PE microplastics enhanced the biomass of both Achyranthes and Amaranthus under competitive and non-competitive growth conditions. Furthermore, PE microplastics were found to induce a negative allelopathic effect for the native plant Achyranthes on co-occurring plants, which appeared to be mediated through changes in leaf chemistry. Bisdemethoxycurcumin, ethylparaben, salicin 6'-sulfate and 5-hydroxy-3',4',7-trimethoxyflavone glucoside were proven important compounds for allelopathic enhancement. Overall, these results suggest that microplastic pollution has the capability to influence the co-existence of invasive and native plants by altering their allelopathic potential. This insight into the interactions between microplastics and plant allelopathy provides a novel perspective on how microplastic pollution could modify plant species interactions and ecosystem dynamics. Future studies could aim to answer how microplastics might affect plant root exudates and whether this process would mediate biological invasion.
Collapse
Affiliation(s)
- Ling Yuan
- School of Advanced Study, Taizhou University, Taizhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Li Zhou
- School of Advanced Study, Taizhou University, Taizhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Junmin Li
- School of Advanced Study, Taizhou University, Taizhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| |
Collapse
|
2
|
Liu H, Shi Y, Zou Y, Song Z, Tian H, Yang X, Li X. The effects of lead (Pb) and pest damage on soil enzyme activities, pakchoi and Spodoptera litura performance. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:473-481. [PMID: 39295446 DOI: 10.1017/s0007485324000208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Plant-soil interactions have bottom-up and top-down effects within a plant community. Heavy metal pollution can change plant-soil interactions, directly influence bottom-up effects and indirectly affect herbivores within the community. In turn, herbivores can affect plant-soil interactions through top-down effects. However, the combined effects of heavy metals and herbivores on soil enzymes, plants and herbivores have rarely been reported. Therefore, the effects of lead (Pb), Spodoptera litura and their combined effects on soil enzyme activities, pakchoi nutrition, defence compounds and S. litura fitness were examined here. Results showed that Pb, S. litura and their combined effects significantly affected soil enzymes, pakchoi and S. litura. Specifically, exposure to double stress (Pb and S. litura) decreased soil urease, phosphatase and sucrase activities compared with controls. Furthermore, the soluble protein and sugar contents of pakchoi decreased, and the trypsin inhibitor content and antioxidant enzyme activity increased. Finally, the S. litura development period was extended, and survival, emergence rates and body weight decreased after exposure to double stress. The combined stress of Pb and S. litura significantly decreased soil enzyme activities. Heavy metal accumulation in plants may create a superposition or synergistic effect with heavy metal-mediated plant chemical defence, further suppressing herbivore development. Pb, S. litura and their combined effects inhibited soil enzyme activities, improved pakchoi resistance and reduced S. litura development. The results reveal details of soil-plant-herbivore interactions and provide a reference for crop pest control management in the presence of heavy metal pollution.
Collapse
Affiliation(s)
- Huiyang Liu
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Yimeng Shi
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
| | - Yuxuan Zou
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Zaiya Song
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Huai Tian
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Xianjun Yang
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Xiaohong Li
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
| |
Collapse
|
3
|
Watermann LY, Rotert J, Erfmeier A. Coming home: Back-introduced invasive genotypes might pose an underestimated risk in the species´ native range. NEOBIOTA 2022. [DOI: 10.3897/neobiota.78.91394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological invasions are considered a significant challenge both from an ecological and economical perspective. Compared to the native range, environmental conditions in the invasive range often favor more competitive genotypes. Little attention, however, has so far been paid to the possibility that these invasive and competitive genotypes might also be back-introduced into a species’ native range, where they could trigger a problematic increase in abundance or expansion. The frequency with which this occurs in the species´ native range might be an underestimated aspect in nature conservation. We transplanted native and invasive individuals of the biennial model species Jacobaea vulgaris into field sites of naturally occurring populations within the species’ native range. The aim was to test whether back-introduced invasive origins show decreased performance, e.g., because of the reunion with specialized herbivores or plant-soil-feedbacks or whether they have the potential to trigger problematic population dynamics in the species’ native range. We ran an additional greenhouse experiment to specifically address soil-borne effects in the species’ native habitats. We found that invasive individuals generally outperformed the native transplants if compared in the field sites. By contrast, there were no origin-dependent differences in the greenhouse experiment. Our findings clearly indicate that testing for origin effects exclusively under controlled conditions might underestimate the potential of invasive genotypes to trigger invasion processes in habitats of the species’ native range. Although differences in performance mediated by soil-borne effects were not associated with plant origin, field site susceptibility to J. vulgaris colonization varied largely. Identifying the exact factors driving these differences, offers another focal point to minimize the risk of a detrimental increase in the abundance or expansion of this highly invasive species in its home range.
Collapse
|
4
|
Liu X, Bezemer TM. Current and legacy effects of neighborhood communities on plant growth and aboveground herbivory. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Experimental manipulation of biotic and abiotic parameters changes the outcome of insect-plant interactions. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Friman J, Karssemeijer PN, Haller J, de Kreek K, van Loon JJ, Dicke M. Shoot and root insect herbivory change the plant rhizosphere microbiome and affects cabbage-insect interactions through plant-soil feedback. THE NEW PHYTOLOGIST 2021; 232:2475-2490. [PMID: 34537968 PMCID: PMC9291931 DOI: 10.1111/nph.17746] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/09/2021] [Indexed: 05/06/2023]
Abstract
Plant-soil feedback (PSF) may influence plant-insect interactions. Although plant defense differs between shoot and root tissues, few studies have examined root-feeding insect herbivores in a PSF context. We examined here how plant growth and resistance against root-feeding Delia radicum larvae was influenced by PSF. We conditioned soil with cabbage plants that were infested with herbivores that affect D. radicum through plant-mediated effects: leaf-feeding Plutella xylostella caterpillars and Brevicoryne brassicae aphids, root-feeding D. radicum larvae, and/or added rhizobacterium Pseudomonas simiae WCS417r. We analyzed the rhizosphere microbial community, and in a second set of conspecific plants exposed to conditioned soil, we assessed growth, expression of defense-related genes, and D. radicum performance. The rhizosphere microbiome differed mainly between shoot and root herbivory treatments. Addition of Pseudomonas simiae did not influence rhizosphere microbiome composition. Plant shoot biomass, gene expression, and plant resistance against D. radicum larvae was affected by PSF in a treatment-specific manner. Soil conditioning overall reduced plant shoot biomass, Pseudomonas simiae-amended soil causing the largest growth reduction. In conclusion, shoot and root insect herbivores alter the rhizosphere microbiome differently, with consequences for growth and resistance of plants subsequently exposed to conditioned soil.
Collapse
Affiliation(s)
- Julia Friman
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Peter N. Karssemeijer
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Julian Haller
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Kris de Kreek
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Joop J.A. van Loon
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| |
Collapse
|
7
|
Bennett SI, Howard C, Albrecht R, Smith-Ramesh LM, Reynolds H. Simulated Herbivory Weakens Plant-Soil Feedbacks in Competitive Mixtures of Native and Invasive Woodland Plants. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Wang M, Ruan W, Kostenko O, Carvalho S, Hannula SE, Mulder PPJ, Bu F, van der Putten WH, Bezemer TM. Removal of soil biota alters soil feedback effects on plant growth and defense chemistry. THE NEW PHYTOLOGIST 2019; 221:1478-1491. [PMID: 30220096 PMCID: PMC6587519 DOI: 10.1111/nph.15485] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/07/2018] [Indexed: 05/22/2023]
Abstract
We examined how the removal of soil biota affects plant-soil feedback (PSF) and defense chemistry of Jacobaea vulgaris, an outbreak plant species in Europe containing the defense compounds pyrrolizidine alkaloids (PAs). Macrofauna and mesofauna, as well as fungi and bacteria, were removed size selectively from unplanted soil or soil planted with J. vulgaris exposed or not to above- or belowground insect herbivores. Wet-sieved fractions, using 1000-, 20-, 5- and 0.2-μm mesh sizes, were added to sterilized soil and new plants were grown. Sieving treatments were verified by molecular analysis of the inocula. In the feedback phase, plant biomass was lowest in soils with 1000- and 20-μm inocula, and soils conditioned with plants gave more negative feedback than without plants. Remarkably, part of this negative PSF effect remained present in the 0.2-μm inoculum where no bacteria were present. PA concentration and composition of plants with 1000- or 20-μm inocula differed from those with 5- or 0.2-μm inocula, but only if soils had been conditioned by undamaged plants or plants damaged by aboveground herbivores. These effects correlated with leaf hyperspectral reflectance. We conclude that size-selective removal of soil biota altered PSFs, but that these PSFs were also influenced by herbivory during the conditioning phase.
Collapse
Affiliation(s)
- Minggang Wang
- College of Life SciencesNankai UniversityTianjin300071China
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)PO Box 506700 ABWageningenthe Netherlands
- Department of Plant Protection BiologySwedish University of Agricultural SciencesPO Box 102SE‐23053AlnarpSweden
| | - Weibin Ruan
- College of Life SciencesNankai UniversityTianjin300071China
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)PO Box 506700 ABWageningenthe Netherlands
| | - Olga Kostenko
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)PO Box 506700 ABWageningenthe Netherlands
| | - Sabrina Carvalho
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)PO Box 506700 ABWageningenthe Netherlands
| | - S. Emilia Hannula
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)PO Box 506700 ABWageningenthe Netherlands
| | - Patrick P. J. Mulder
- RIKILT – Wageningen University & ResearchPO Box 2306700 AEWageningenthe Netherlands
| | - Fengjiao Bu
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningenthe Netherlands
| | - Wim H. van der Putten
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)PO Box 506700 ABWageningenthe Netherlands
- Laboratory of NematologyWageningen University & ResearchPO Box 81236700 ESWageningenthe Netherlands
| | - T. Martijn Bezemer
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)PO Box 506700 ABWageningenthe Netherlands
- Institute of BiologySection Plant Ecology and PhytochemistryLeiden UniversityPO Box 95052300 RALeidenthe Netherlands
| |
Collapse
|
9
|
Zhu F, Heinen R, van der Sluijs M, Raaijmakers C, Biere A, Bezemer TM. Species-specific plant-soil feedbacks alter herbivore-induced gene expression and defense chemistry in Plantago lanceolata. Oecologia 2018; 188:801-811. [PMID: 30109421 PMCID: PMC6208702 DOI: 10.1007/s00442-018-4245-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/18/2018] [Indexed: 12/24/2022]
Abstract
Plants actively interact with antagonists and beneficial organisms occurring in the above- and belowground domains of terrestrial ecosystems. In the past decade, studies have focused on the role of plant-soil feedbacks (PSF) in a broad range of ecological processes. However, PSF and its legacy effects on plant defense traits, such as induction of defense-related genes and production of defensive secondary metabolites, have not received much attention. Here, we study soil legacy effects created by twelve common grassland plant species on the induction of four defense-related genes, involved in jasmonic acid signaling, related to chewing herbivore defense (LOX2, PPO7), and in salicylic acid signaling, related to pathogen defense (PR1 and PR2) in Plantago lanceolata in response to aboveground herbivory by Mamestra brassicae. We also assessed soil legacy and herbivory effects on the production of terpenoid defense compounds (the iridoid glycosides aucubin and catalpol) in P. lanceolata. Our results show that both soil legacy and herbivory influence phenotypes of P. lanceolata in terms of induction of Pl PPO7 and Pl LOX2, whereas the expression of Pl PR1 and Pl PR2-1 is not affected by soil legacies, nor by herbivory. We also find species-specific soil legacy effects on the production of aucubin. Moreover, P. lanceolata accumulates more catalpol when they are grown in soils conditioned by grass species. Our study highlights that PSF can influence aboveground plant-insect interactions through the impacts on plant defense traits and suggests that aboveground plant defense responses can be determined, at least partly, by plant-specific legacy effects induced by belowground organisms.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands.
| | - Robin Heinen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands.
- Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, P.O. Box 9505, 2300RA, Leiden, The Netherlands.
| | - Martijn van der Sluijs
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands
| | - Ciska Raaijmakers
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands
| | - Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands
| | - T Martijn Bezemer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands
- Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, P.O. Box 9505, 2300RA, Leiden, The Netherlands
| |
Collapse
|
10
|
Xue W, Berendse F, Bezemer TM. Spatial heterogeneity in plant–soil feedbacks alters competitive interactions between two grassland plant species. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Wei Xue
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Frank Berendse
- Nature Conservation and Plant Ecology GroupWageningen University Wageningen The Netherlands
| | - T. Martijn Bezemer
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Institute of BiologySection Plant Ecology and PhytochemistryLeiden University Leiden The Netherlands
| |
Collapse
|
11
|
Kang ZW, Liu FH, Tan XL, Zhang ZF, Zhu JY, Tian HG, Liu TX. Infection of Powdery Mildew Reduces the Fitness of Grain Aphids ( Sitobion avenae) Through Restricted Nutrition and Induced Defense Response in Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:778. [PMID: 29967627 PMCID: PMC6015903 DOI: 10.3389/fpls.2018.00778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/22/2018] [Indexed: 05/10/2023]
Abstract
In natural ecological systems, plants are often simultaneously attacked by both insects and pathogens, which can affect each other's performance and the interactions can be extended to higher trophic levels, such as parasitoids. The English grain aphid (Sitobion avenae) and powdery mildew (Blumeria graminis f. sp. tritici) are two common antagonists that pose a serious threat to wheat production. Numerous studies have investigated the effect of a single factor (insect or pathogen) on wheat production. However, investigation on the interactions among insect pests, pathogens, and parasitoids within the wheat crop system are rare. Furthermore, the influence of the fungicide, propiconazole, has been found to imitate the natural ecosystem. Therefore, this study investigated the effects of B. graminis on the biological performance of grain aphids and the orientation behavior of its endoparasitic wasp Aphidius gifuensis in the wheat system. Our findings indicated that B. graminis infection suppressed the feeding behavior, adult and nymph weight, and fecundity and prolonged the developmental time of S. avenae. We found that wheat host plants had decreased proportions of essential amino acids and higher content of sucrose following aggravated B. graminis infection. The contents of Pro and Gln increased in the wheat plant tissues after B. graminis infection. In addition, B. graminis infection elicited immune responses in wheat: increase in the expression of defense genes, content of total phenolic compounds, and activity of three related antioxidant enzymes. Moreover, co-infection of B. graminis and S. avenae increased the attraction to A. gifuensis compare to that after infestation with aphids alone. In conclusion, our results indicated that B. graminis infection adversely affected the performance of S. avenae in wheat through restricted nutrition and induced defense response. Furthermore, the preference of parasitoids in such an interactive environment might provide an important basis for pest management control.
Collapse
Affiliation(s)
- Zhi-Wei Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Fang-Hua Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Ling Tan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhan-Feng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Jing-Yun Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Hong-Gang Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
- *Correspondence: Tong-Xian Liu,
| |
Collapse
|
12
|
Distribution breadth and species turnover of night-flying beetles and moths on different mainland and island mountains. Ecol Res 2017. [DOI: 10.1007/s11284-017-1555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Affiliation(s)
- E. R. Jasper Wubs
- Dept of Terrestrial Ecology; Netherlands Inst. of Ecology (NIOO-KNAW); PO Box 50 NL-6700 AB Wageningen the Netherlands
- Laboratory of Nematology, Wageningen Univ. and Research Centre; Wageningen the Netherlands
| | - T. Martijn Bezemer
- Dept of Terrestrial Ecology; Netherlands Inst. of Ecology (NIOO-KNAW); PO Box 50 NL-6700 AB Wageningen the Netherlands
- Inst. of Biology, Leiden Univ.; Leiden the Netherlands
| |
Collapse
|
14
|
van Gils S, Tamburini G, Marini L, Biere A, van Agtmaal M, Tyc O, Kos M, Kleijn D, van der Putten WH. Soil pathogen-aphid interactions under differences in soil organic matter and mineral fertilizer. PLoS One 2017; 12:e0179695. [PMID: 28817594 PMCID: PMC5560682 DOI: 10.1371/journal.pone.0179695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 06/03/2017] [Indexed: 11/18/2022] Open
Abstract
There is increasing evidence showing that microbes can influence plant-insect interactions. In addition, various studies have shown that aboveground pathogens can alter the interactions between plants and insects. However, little is known about the role of soil-borne pathogens in plant-insect interactions. It is also not known how environmental conditions, that steer the performance of soil-borne pathogens, might influence these microbe-plant-insect interactions. Here, we studied effects of the soil-borne pathogen Rhizoctonia solani on aphids (Sitobion avenae) using wheat (Triticum aestivum) as a host. In a greenhouse experiment, we tested how different levels of soil organic matter (SOM) and fertilizer addition influence the interactions between plants and aphids. To examine the influence of the existing soil microbiome on the pathogen effects, we used both unsterilized field soil and sterilized field soil. In unsterilized soil with low SOM content, R. solani addition had a negative effect on aphid biomass, whereas it enhanced aphid biomass in soil with high SOM content. In sterilized soil, however, aphid biomass was enhanced by R. solani addition and by high SOM content. Plant biomass was enhanced by fertilizer addition, but only when SOM content was low, or in the absence of R. solani. We conclude that belowground pathogens influence aphid performance and that the effect of soil pathogens on aphids can be more positive in the absence of a soil microbiome. This implies that experiments studying the effect of pathogens under sterile conditions might not represent realistic interactions. Moreover, pathogen-plant-aphid interactions can be more positive for aphids under high SOM conditions. We recommend that soil conditions should be taken into account in the study of microbe-plant-insect interactions.
Collapse
Affiliation(s)
- Stijn van Gils
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | | | | | - Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Maaike van Agtmaal
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Life Sciences (Silwood Park), Imperial College London, London, United Kingdom
| | - Olaf Tyc
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Martine Kos
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - David Kleijn
- Plant Ecology and Nature Conservation Group, Wageningen University and Research, Wageningen, The Netherlands
- Animal Ecology Team, Alterra – Wageningen University and Research, Wageningen, The Netherlands
- Resource Ecology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Wim H. van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
15
|
Grüning MM, Simon J, Rennenberg H, l-M-Arnold A. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests. FRONTIERS IN PLANT SCIENCE 2017; 8:954. [PMID: 28638396 PMCID: PMC5461291 DOI: 10.3389/fpls.2017.00954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/22/2017] [Indexed: 03/27/2024]
Abstract
Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15N net uptake capacity of fine roots) as well as N pools in fine roots and needles in a Scots pine (Pinus sylvestris L.) forest over an entire vegetation period. Plots were either infested by the nun moth (Lymantria monacha L.) or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.
Collapse
Affiliation(s)
- Maren M. Grüning
- Department of Soil Science of Temperate Ecosystems, Georg-August Universität GöttingenGöttingen, Germany
| | - Judy Simon
- Ecology, Department of Biology, University of KonstanzKonstanz, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, University of FreiburgFreiburg, Germany
- King Saud UniversityRiyadh, Saudi Arabia
| | - Anne l-M-Arnold
- Department of Soil Science of Temperate Ecosystems, Georg-August Universität GöttingenGöttingen, Germany
| |
Collapse
|
16
|
Soil microbial communities alter leaf chemistry and influence allelopathic potential among coexisting plant species. Oecologia 2017; 183:1155-1165. [PMID: 28191585 DOI: 10.1007/s00442-017-3833-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
While both plant-soil feedbacks and allelochemical interactions are key drivers of plant community dynamics, the potential for these two drivers to interact with each other remains largely unexplored. If soil microbes influence allelochemical production, this would represent a novel dimension of heterogeneity in plant-soil feedbacks. To explore the linkage between soil microbial communities and plant chemistry, we experimentally generated soil microbial communities and evaluated their impact on leaf chemical composition and allelopathic potential. Four native perennial old-field species (two each of Aster and Solidago) were grown in pairwise combination with each species' soil microbial community as well as a sterilized inoculum. We demonstrated unequivocally that variation in soil microbial communities altered leaf chemical fingerprints for all focal plant species and also changed their allelopathic potential. Soil microbes reduced allelopathic potential in bioassays by increasing germination 25-54% relative to sterile control soils in all four species. Plants grown with their own microbial communities had the lowest allelopathic potential, suggesting that allelochemical production may be lessened when growing with microbes from conspecifics. The allelopathic potential of plants grown in congener and confamilial soils was indistinguishable from each other, indicating an equivalent response to all non-conspecific microbial communities within these closely related genera. Our results clearly demonstrated that soil microbial communities cause changes in leaf tissue chemistry that altered their allelopathic properties. These findings represent a new mechanism of plant-soil feedbacks that may structure perennial plant communities over very small spatial scales that must be explored in much more detail.
Collapse
|