1
|
Sanders D, Hirt MR, Brose U, Evans DM, Gaston KJ, Gauzens B, Ryser R. How artificial light at night may rewire ecological networks: concepts and models. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220368. [PMID: 37899020 PMCID: PMC10613535 DOI: 10.1098/rstb.2022.0368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) is eroding natural light cycles and thereby changing species distributions and activity patterns. Yet little is known about how ecological interaction networks respond to this global change driver. Here, we assess the scientific basis of the current understanding of community-wide ALAN impacts. Based on current knowledge, we conceptualize and review four major pathways by which ALAN may affect ecological interaction networks by (i) impacting primary production, (ii) acting as an environmental filter affecting species survival, (iii) driving the movement and distribution of species, and (iv) changing functional roles and niches by affecting activity patterns. Using an allometric-trophic network model, we then test how a shift in temporal activity patterns for diurnal, nocturnal and crepuscular species impacts food web stability. The results indicate that diel niche shifts can severely impact community persistence by altering the temporal overlap between species, which leads to changes in interaction strengths and rewiring of networks. ALAN can thereby lead to biodiversity loss through the homogenization of temporal niches. This integrative framework aims to advance a predictive understanding of community-level and ecological-network consequences of ALAN and their cascading effects on ecosystem functioning. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Dirk Sanders
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Myriam R. Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Darren M. Evans
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Kevin J. Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| |
Collapse
|
2
|
Parkinson E, Tiegs SD. Spectral composition of light-emitting diodes impacts aquatic and terrestrial invertebrate communities with potential implications for cross-ecosystem subsidies. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220361. [PMID: 37899013 PMCID: PMC10613537 DOI: 10.1098/rstb.2022.0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/19/2023] [Indexed: 10/31/2023] Open
Abstract
Resource exchanges in the form of invertebrate fluxes are a key component of aquatic-terrestrial habitat coupling, but this interface is susceptible to human activities, including the imposition of artificial light at night. To better understand the effects of spectral composition of light-emitting diodes (LEDs)-a technology that is rapidly supplanting other lighting types-on emergent aquatic insects and terrestrial insects, we experimentally added LED fixtures that emit different light spectra to the littoral zone and adjacent riparian habitat of a pond. We installed four replicate LED treatments of different wavelengths (410, 530 and 630 nm), neutral white (4000 k) and a dark control, and sampled invertebrates in both terrestrial and over-water littoral traps. Invertebrate communities differed among light treatments and between habitats, as did total insect biomass and mean individual insect size. Proportional allochthonous biomass was greater in the riparian habitat and among some light treatments, demonstrating an asymmetrical effect of differently coloured LEDs on aquatic-terrestrial resource exchanges. Overall, our findings demonstrate that variation in wavelength from LEDs may impact the flux of resources between systems, as well as the communities of insects that are attracted to particular spectra of LED lighting, with probable implications for consumers. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Elizabeth Parkinson
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| | - Scott D. Tiegs
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|
3
|
Hölker F, Jechow A, Schroer S, Tockner K, Gessner MO. Light pollution of freshwater ecosystems: principles, ecological impacts and remedies. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220360. [PMID: 37899012 PMCID: PMC10613548 DOI: 10.1098/rstb.2022.0360] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/01/2023] [Indexed: 10/31/2023] Open
Abstract
Light pollution caused by artificial light at night (ALAN) is increasingly recognized as a major driver of global environmental change. Since emissions are rapidly growing in an urbanizing world and half of the human population lives close to a freshwater shoreline, rivers and lakes are ever more exposed to light pollution worldwide. However, although light conditions are critical to aquatic species, and freshwaters are biodiversity hotspots and vital to human well-being, only a small fraction of studies conducted on ALAN focus on these ecosystems. The effects of light pollution on freshwaters are broad and concern all levels of biodiversity. Experiments have demonstrated diverse behavioural and physiological responses of species, even at low light levels. Prominent examples are skyglow effects on diel vertical migration of zooplankton and the suppression of melatonin production in fish. However, responses vary widely among taxa, suggesting consequences for species distribution patterns, potential to create novel communities across ecosystem boundaries, and cascading effects on ecosystem functioning. Understanding, predicting and alleviating the ecological impacts of light pollution on freshwaters requires a solid consideration of the physical properties of light propagating in water and a multitude of biological responses. This knowledge is urgently needed to develop innovative lighting concepts, mitigation strategies and specifically targeted measures. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Franz Hölker
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Andreas Jechow
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
| | - Sibylle Schroer
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
| | - Klement Tockner
- Senckenberg Society for Nature Research, 60325 Frankfurt Germany
- Department of BioSciences, Goethe-University, 60438 Frankfurt, Germany
| | - Mark O. Gessner
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
- Department of Ecology, Berlin Institute of Technology, 10587 Berlin, Germany
| |
Collapse
|
4
|
Gerber R, de Necker L, van Vuren JHJ, Ikenaka Y, Nakayama SMM, Ishizuka M, Wepener V, Smit NJ. A stable isotope analysis of the dietary patterns of the aquatic apex predator, the African tigerfish (Hydrocynus vittatus). JOURNAL OF FISH BIOLOGY 2023; 103:1129-1143. [PMID: 37498144 DOI: 10.1111/jfb.15516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Stable isotope analyses, specifically δ13 C and δ15 N, are useful tools increasingly used to understand ecosystem function, food web structures, and consumer diets. Although the iconic tigerfish Hydrocynus vittatus is regarded as an apex predator in southern African freshwater systems, little information is available regarding their feeding behavior and how this may change with growth or differ between ecosystems, with most information stemming from stomach content analyses (SCA). The aim of the present study was to address this lack of information through a baseline study of the diet of large and small tigerfish in various lentic and lotic ecosystems in South Africa using stable isotope methods. Fish and various food web components and food sources were collected from two river and two lake ecosystems in South Africa. The δ13 C and δ15 N values for all samples were determined and multivariate analyses and Bayesian analytical techniques applied to determine the feeding ecology of H. vittatus and how this may differ with size and habitat type. Analyses revealed a substantial difference in the type and abundance of food sources contributing to the diet of H. vittatus between ecosystems, most prominently between the lotic systems, where less dietary specialization was observed, and lentic systems where more specialization was observed. Furthermore, there was a distinct difference in diet between small and large tigerfish, especially in the lotic system, indicating an ontogenetic diet shift as tigerfish grow and further supporting previous SCA studies. This is the first study of its kind on the African continent for H. vittatus and the findings illustrate the value of stable isotope analysis in providing in-depth information into the feeding ecology of consumers and how this may differ between size classes and habitat types.
Collapse
Grants
- 127549 Department of Science and Innovation Professional Development Programme
- 22KK0163 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 17KK0009 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 18KK028708 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 17K2003807 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 18H0413208 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 20K20633 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 105979 National Research Foundation of South Africa
- 85505 National Research Foundation of South Africa
- 105122 National Research Foundation of South Africa
- K5-1922 Water Research Commission of South Africa
- K5-2185 Water Research Commission of South Africa
- JPMJSA1501 JST/JICA SATREPS (Science and Technology Research Partnership for Sustainable Development
- JPMJAS2001 aXis (Accelerating Social Implementation for SDGs Achievement
- PJ36210002 JST AJ-CORE
- JSPS CORE to CORE program
- Hokkaido University SOUSEI Tokutei Research
Collapse
Affiliation(s)
- Ruan Gerber
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Lizaan de Necker
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- South African Institute for Aquatic Biodiversity (NRF-SAIAB), Makhanda, South Africa
| | - Johan H J van Vuren
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Yoshinori Ikenaka
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Translational Research Unit, Veterinary Teaching hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- South African Institute for Aquatic Biodiversity (NRF-SAIAB), Makhanda, South Africa
| |
Collapse
|
5
|
Keinath S, Frisch J, Müller J, Mayer F, Struck U, Rödel M. Species- and sex-dependent changes in body size between 1892 and 2017, and recent biochemical signatures in rural and urban populations of two ground beetle species. Ecol Evol 2023; 13:e10329. [PMID: 37484935 PMCID: PMC10361362 DOI: 10.1002/ece3.10329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
Increasing urbanisation and intensified agriculture lead to rapid transitions of ecosystems. Species that persist throughout rapid transitions may respond to environmental changes across space and/or time, for instance by altering morphological and/or biochemical traits. We used natural history museum specimens, covering the Anthropocene epoch, to obtain long-term data combined with recent samples. We tested whether rural and urban populations of two ground beetle species, Harpalus affinis and H. rufipes, exhibit spatio-temporal intraspecific differences in body size. On a spatial scale, we tested signatures of nitrogen and carbon stable isotopes enrichments in different tissues and body components in recent populations of both species from urban and agricultural habitats. For body size examinations, we used beetles, collected from the early 20th century until 2017 in the Berlin-Brandenburg region, Germany, where urbanisation and agriculture have intensified throughout the last century. For stable isotope examinations, we used recent beetles from urban and agricultural habitats. Our results revealed no spatio-temporal changes in body size in both species' females. Body size of H. rufipes males decreased in the city but remained constant in rural areas over time. We discuss our findings with respect to habitat quality, urban heat and interspecific differences in activity pattern. Although nitrogen isotope ratios were mostly higher in specimens from agricultural habitats, some urban beetles reached equal enrichments. Carbon signatures of both species did not differ between habitats, detecting no differences in energy sources. Our results indicate that increasing urbanisation and intensified agriculture are influencing species' morphology and/or biochemistry. However, changes may be species- and sex-specific.
Collapse
Affiliation(s)
- Silvia Keinath
- Museum für Naturkunde, Berlin – Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research – BBIBBerlinGermany
| | - Johannes Frisch
- Museum für Naturkunde, Berlin – Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Johannes Müller
- Museum für Naturkunde, Berlin – Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research – BBIBBerlinGermany
| | - Frieder Mayer
- Museum für Naturkunde, Berlin – Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research – BBIBBerlinGermany
| | - Ulrich Struck
- Museum für Naturkunde, Berlin – Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Department of Earth ScienceFreie Universität BerlinBerlinGermany
| | - Mark‐Oliver Rödel
- Museum für Naturkunde, Berlin – Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research – BBIBBerlinGermany
| |
Collapse
|
6
|
Kehoe R, Sanders D, van Veen FJ. Towards a mechanistic understanding of the effects of artificial light at night on insect populations and communities. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100950. [PMID: 35868610 DOI: 10.1016/j.cois.2022.100950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Artificial light at night (ALAN) is markedly changing the night-time environment with many studies showing single-species responses. Exposure to ALAN can lead to population declines that should have consequences for the functioning and stability of ecological communities. Here, we summarise current knowledge on how insect communities are affected by ALAN. Based on reported effects of ALAN on the interactions between species, and what has been demonstrated for similar effects in other contexts, we argue that direct effects of ALAN on a few species can potentially propagate through the network of species interactions to have widespread effects in ecological communities. This can lead to a shift in community structure and simplified communities. We discuss the diversity of ALAN as a pressure and highlight major gaps in the research field. In particular, we conclude that landscape level impacts on populations and communities are understudied.
Collapse
Affiliation(s)
- Rachel Kehoe
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Dirk Sanders
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Frank Jf van Veen
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom.
| |
Collapse
|
7
|
Shidemantle G, Blackwood J, Horn K, Velasquez I, Ronan E, Reinke B, Hua J. The morphological effects of artificial light at night on amphibian predators and prey are masked at the community level. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119604. [PMID: 35691446 DOI: 10.1016/j.envpol.2022.119604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Artificial light at night (ALAN) is a pervasive pollutant that influences wildlife at both the individual and community level. In this study, we tested the individual-level effects of ALAN on three species of tadpole prey and their newt predators by measuring prey pigmentation and predator and prey mass. Then we evaluated whether the individual-level effects of ALAN on pigmentation and mass had cascading community-level effects by assessing the outcome of predator-prey interactions. We found that spring peepers exposed to ALAN were significantly darker than those reared under control conditions. Additionally, wood frogs reared in ALAN conditions were significantly smaller than those reared in control conditions. In contrast, Eastern newts collected earlier in the spring that were exposed to ALAN were significantly larger than controls while those collected later in the spring were not affected by ALAN, suggesting phenological differences in the effect of ALAN. To understand how changes in pigmentation and size due to ALAN influence predation rates, we ran predation assays in both ALAN-polluted and ALAN-free outdoor environments. After the predation assay, the size disparity in wood frogs reared in ALAN was eliminated such that there was no longer a treatment difference in wood frog size, likely due to size-selective predation. This demonstrates the beneficial nature of predators' selective pressure on prey populations. Lastly, despite individual-level effects of ALAN on pigmentation and mass, we did not detect cascading community-level effects on predation rates. Overall, this study highlights important species-level distinctions in the effects of ALAN. It also emphasizes the need to incorporate ecological complexity to understand the net impact of ALAN.
Collapse
Affiliation(s)
| | - Jurnee Blackwood
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| | - Kelsey Horn
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| | - Isabela Velasquez
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| | - Emily Ronan
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| | - Beth Reinke
- Northeastern Illinois University, 5500 N St Louis Ave, Chicago, IL, 60625, USA
| | - Jessica Hua
- Binghamton University, 4400 Vestal Pkway East, Binghamton, NY, 13902, USA
| |
Collapse
|
8
|
Mayer-Pinto M, Jones TM, Swearer SE, Robert KA, Bolton D, Aulsebrook AE, Dafforn KA, Dickerson AL, Dimovski AM, Hubbard N, McLay LK, Pendoley K, Poore AG, Thums M, Willmott NJ, Yokochi K, Fobert EK. Light pollution: a landscape-scale issue requiring cross-realm consideration. UCL OPEN ENVIRONMENT 2022; 4:e036. [PMID: 37228454 PMCID: PMC10171420 DOI: 10.14324/111.444/ucloe.000036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/23/2022] [Indexed: 05/27/2023]
Abstract
Terrestrial, marine and freshwater realms are inherently linked through ecological, biogeochemical and/or physical processes. An understanding of these connections is critical to optimise management strategies and ensure the ongoing resilience of ecosystems. Artificial light at night (ALAN) is a global stressor that can profoundly affect a wide range of organisms and habitats and impact multiple realms. Despite this, current management practices for light pollution rarely consider connectivity between realms. Here we discuss the ways in which ALAN can have cross-realm impacts and provide case studies for each example discussed. We identified three main ways in which ALAN can affect two or more realms: 1) impacts on species that have life cycles and/or stages in two or more realms, such as diadromous fish that cross realms during ontogenetic migrations and many terrestrial insects that have juvenile phases of the life cycle in aquatic realms; 2) impacts on species interactions that occur across realm boundaries, and 3) impacts on transition zones or ecosystems such as mangroves and estuaries. We then propose a framework for cross-realm management of light pollution and discuss current challenges and potential solutions to increase the uptake of a cross-realm approach for ALAN management. We argue that the strengthening and formalisation of professional networks that involve academics, lighting practitioners, environmental managers and regulators that work in multiple realms is essential to provide an integrated approach to light pollution. Networks that have a strong multi-realm and multi-disciplinary focus are important as they enable a holistic understanding of issues related to ALAN.
Collapse
Affiliation(s)
- Mariana Mayer-Pinto
- Centre for Marine Science and Innovation, Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Theresa M. Jones
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen E. Swearer
- National Centre for Coasts and Climate (NCCC), School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kylie A. Robert
- Research Centre for Future Landscapes, School of Agriculture, Biomedicine and Environment, La Trobe University, VIC 3086, Australia
| | - Damon Bolton
- Centre for Marine Science and Innovation, Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anne E. Aulsebrook
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen 82319, Germany
| | - Katherine A. Dafforn
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Ashton L. Dickerson
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alicia M. Dimovski
- Research Centre for Future Landscapes, School of Agriculture, Biomedicine and Environment, La Trobe University, VIC 3086, Australia
| | - Niki Hubbard
- Centre for Marine Science and Innovation, Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lucy K. McLay
- Agriculture Victoria Research, Bundoora, VIC 3083, Australia
| | - Kellie Pendoley
- Pendoley Environmental Pty Ltd, 12A Pitt Way, Booragoon, WA 6154, Australia
| | - Alistair G.B. Poore
- Centre for Marine Science and Innovation, Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michele Thums
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Crawley, WA 6009, Australia
| | - Nikolas J. Willmott
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kaori Yokochi
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Emily K. Fobert
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
9
|
A Systematic Review for Establishing Relevant Environmental Parameters for Urban Lighting: Translating Research into Practice. SUSTAINABILITY 2022. [DOI: 10.3390/su14031107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The application of lighting technologies developed in the 20th century has increased the brightness and changed the spectral composition of nocturnal night-time habitats and night skies across urban, peri-urban, rural, and pristine landscapes, and subsequently, researchers have observed the disturbance of biological rhythms of flora and fauna. To reduce these impacts, it is essential to translate relevant knowledge about the potential adverse effects of artificial light at night (ALAN) from research into applicable urban lighting practice. Therefore, the aim of this paper is to identify and report, via a systematic review, the effects of exposure to different physical properties of artificial light sources on various organism groups, including plants, arthropods, insects, spiders, fish, amphibians, reptiles, birds, and non-human mammals (including bats, rodents, and primates). PRISMA 2020 guidelines were used to identify a total of 1417 studies from Web of Science and PubMed. In 216 studies, diverse behavioral and physiological responses were observed across taxa when organisms were exposed to ALAN. The studies showed that the responses were dependent on high illuminance levels, duration of light exposure, and unnatural color spectra at night and also highlighted where research gaps remain in the domains of ALAN research and urban lighting practice. To avoid misinterpretation, and to define a common language, key terminologies and definitions connected to natural and artificial light have been provided. Furthermore, the adverse impacts of ALAN urgently need to be better researched, understood, and managed for the development of future lighting guidelines and standards to optimize sustainable design applications that preserve night-time environment(s) and their inhabiting flora and fauna.
Collapse
|
10
|
Schroer S, Austen K, Moczek N, Kalinkat G, Jechow A, Heller S, Reinhard J, Dehn S, Wuthenow CI, Post-Stapelfeldt M, van Grunsven RHA, Pérez Vega C, Schumacher H, Kaanaa L, Saathoff B, Völker S, Hölker F. Towards Insect-Friendly Road Lighting-A Transdisciplinary Multi-Stakeholder Approach Involving Citizen Scientists. INSECTS 2021; 12:insects12121117. [PMID: 34940205 PMCID: PMC8706979 DOI: 10.3390/insects12121117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022]
Abstract
Simple Summary Road lighting is a service provided at night, mainly to ensure the secure and safe passage of humans. However, lighting at night can have adverse effects on insects or ecosystems, which are not yet considered in planning. Here, we introduce a comprehensive approach for the design and implementation of a novel insect-friendly road luminaire. The lighting design provides an optimized radiation geometry that avoids emissions at the trajectory height of insects, reduces the attraction of insects and the fragmentation of their habitats, and at the same time provides adequate night-time illumination in residential areas. The effects of the new design on insect behavior and night sky brightness will be evaluated two years before and two years after the change of the road luminaires and additionally in a direct comparison, as some luminaires of the old design will remain as controls. Citizen scientists are involved in the identification of insects and the measurement of night sky brightness. A broad public engagement program also highlights discussions about the competing interests of different stakeholders in lighting design, explicitly including the effects of illumination on insect fauna and biodiversity. Abstract (1) The project “Tatort Streetlight” implements an insect-friendly road light design in a four year before–after, control–impact (BACI) approach involving citizen scientists. It will broaden the stakeholder interests from solely anthropogenic perspectives to include the welfare of insects and ecosystems. Motivated by the detrimental impacts of road lighting systems on insects, the project aims to find solutions to reduce the insect attraction and habitat fragmentation resulting from roadway illumination. (2) The citizen science approach invites stakeholders to take part and join forces for the development of a sustainable and environmentally friendly road lighting solution. Here, we describe the project strategy, stakeholder participation and motivation, and how the effects of the alternative road luminaire and lighting design can be evaluated. (3) The study compares the changes in (a) insect behavior, (b) night sky brightness, and (c) stakeholder participation and awareness. For this purpose, different experimental areas and stakeholders in four communities in Germany are identified. (4) The project transfers knowledge of adverse effects of improperly managed road illumination and interacts with various stakeholders to develop a new road lighting system that will consider the well-being of street users, local residents, and insects.
Collapse
Affiliation(s)
- Sibylle Schroer
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany; (K.A.); (G.K.); (A.J.); (S.H.); (J.R.); (C.P.V.); (F.H.)
- Correspondence: ; Tel.: +49-306-4181-717
| | - Kat Austen
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany; (K.A.); (G.K.); (A.J.); (S.H.); (J.R.); (C.P.V.); (F.H.)
| | - Nicola Moczek
- PSY: PLAN Institute for Architectural and Environmental Psychology, 10245 Berlin, Germany;
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Gregor Kalinkat
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany; (K.A.); (G.K.); (A.J.); (S.H.); (J.R.); (C.P.V.); (F.H.)
| | - Andreas Jechow
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany; (K.A.); (G.K.); (A.J.); (S.H.); (J.R.); (C.P.V.); (F.H.)
| | - Stefan Heller
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany; (K.A.); (G.K.); (A.J.); (S.H.); (J.R.); (C.P.V.); (F.H.)
| | - Johanna Reinhard
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany; (K.A.); (G.K.); (A.J.); (S.H.); (J.R.); (C.P.V.); (F.H.)
| | - Sophia Dehn
- NABU RV Westhavelland e.V., Milower Land, 14715 Brandenburg, Germany;
| | - Charis I. Wuthenow
- Umweltzentrum Fulda-Zentrum für Nachhaltigkeit, Gartenkultur und Tierpädagogik e.V., 36041 Fulda, Germany;
| | | | | | - Catherine Pérez Vega
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany; (K.A.); (G.K.); (A.J.); (S.H.); (J.R.); (C.P.V.); (F.H.)
- Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heike Schumacher
- Chair of Lighting Technology TU Berlin, 10587 Berlin, Germany; (H.S.); (L.K.); (B.S.); (S.V.)
| | - Leena Kaanaa
- Chair of Lighting Technology TU Berlin, 10587 Berlin, Germany; (H.S.); (L.K.); (B.S.); (S.V.)
| | - Birte Saathoff
- Chair of Lighting Technology TU Berlin, 10587 Berlin, Germany; (H.S.); (L.K.); (B.S.); (S.V.)
| | - Stephan Völker
- Chair of Lighting Technology TU Berlin, 10587 Berlin, Germany; (H.S.); (L.K.); (B.S.); (S.V.)
| | - Franz Hölker
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany; (K.A.); (G.K.); (A.J.); (S.H.); (J.R.); (C.P.V.); (F.H.)
| |
Collapse
|
11
|
Hölker F, Bolliger J, Davies TW, Giavi S, Jechow A, Kalinkat G, Longcore T, Spoelstra K, Tidau S, Visser ME, Knop E. 11 Pressing Research Questions on How Light Pollution Affects Biodiversity. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.767177] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Artificial light at night (ALAN) is closely associated with modern societies and is rapidly increasing worldwide. A dynamically growing body of literature shows that ALAN poses a serious threat to all levels of biodiversity—from genes to ecosystems. Many “unknowns” remain to be addressed however, before we fully understand the impact of ALAN on biodiversity and can design effective mitigation measures. Here, we distilled the findings of a workshop on the effects of ALAN on biodiversity at the first World Biodiversity Forum in Davos attended by several major research groups in the field from across the globe. We argue that 11 pressing research questions have to be answered to find ways to reduce the impact of ALAN on biodiversity. The questions address fundamental knowledge gaps, ranging from basic challenges on how to standardize light measurements, through the multi-level impacts on biodiversity, to opportunities and challenges for more sustainable use.
Collapse
|
12
|
Hey MH, Epstein HE, Haynes KJ. Artificial Light at Night Impacts the Litter Layer Invertebrate Community With No Cascading Effects on Litter Breakdown. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.748983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Artificial light at night (ALAN) can impact the trophic structure of assemblages of ground-dwelling invertebrates, and changes in such assemblages can affect decomposition in terrestrial systems due to the various functional roles of these invertebrates, including microbial grazing, comminution of litter, and predation of other invertebrates, that can directly or indirectly affect plant-litter breakdown. Despite this, we are unaware of any studies that have evaluated the effects of ALAN on the breakdown of plant litter in a terrestrial ecosystem. We sought to answer whether ALAN affects litter breakdown via its effects on a community of ground-dwelling arthropods using two field experiments. In one experiment, we manipulated the presence of ALAN and the size classes of soil invertebrates that could enter mesh bags containing plant litter (litterbags). We found that the rate of plant-litter breakdown increased with the mesh size of litterbags but was unaffected by presence of ALAN. In a second field experiment carried out to examine the effects of ALAN on the trophic structure of litter-layer invertebrate communities, while controlling for potential effects of ALAN on vegetation, we again found that ALAN did not affect litter breakdown despite the fact that ALAN increased the abundances of secondary and tertiary consumers. Our finding that larger assemblages of ground-dwelling secondary and tertiary consumer invertebrates under ALAN did not slow litter breakdown through increased top-down control of detritivores suggests ALAN may disrupt predator-prey interactions in litter-layer communities.
Collapse
|
13
|
Grubisic M, van Grunsven RH. Artificial light at night disrupts species interactions and changes insect communities. CURRENT OPINION IN INSECT SCIENCE 2021; 47:136-141. [PMID: 34256168 DOI: 10.1016/j.cois.2021.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Artificial light at night (ALAN) is globally increasing, posing a threat to biodiversity. The impact of nocturnal illumination on individual insects has been relatively well documented. Recent studies show that ALAN also impacts species interactions, including intra-specific communication, trophic interactions and plant-pollinator interactions, with cascading effects in the ecosystem and impacts on ecosystem functioning that extend beyond nocturnal communities and illuminated areas. Reduced population sizes and changes in community composition because of exposure to ALAN have been reported but the understanding of the impacts of ALAN on insect communities is currently limited to few groups and ecosystems. The theoretical framework on how ALAN impacts insect communities and populations is poorly developed, limiting our understanding and the formulation of relevant hypotheses.
Collapse
Affiliation(s)
- Maja Grubisic
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301/310, 12587 Berlin, Germany.
| | - Roy Ha van Grunsven
- Dutch Butterfly Conservation, Mennonietenweg 10, 6702 AD Wageningen, The Netherlands
| |
Collapse
|
14
|
Straka TM, von der Lippe M, Voigt CC, Gandy M, Kowarik I, Buchholz S. Light pollution impairs urban nocturnal pollinators but less so in areas with high tree cover. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146244. [PMID: 33714820 DOI: 10.1016/j.scitotenv.2021.146244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The increase in artificial light at night (ALAN) is widely considered as a major driver for the worldwide decline of nocturnal pollinators such as moths. However, the relationship between light and trees as 'islands of shade' within urban areas has not yet been fully understood. Here, we studied (1) the effects of three landscape variables, i.e. sources of ALAN (mercury vapour/LED street lamps; overall light pollution), impervious surfaces (e.g. roads, parking lots and buildings), and tree cover on species richness and abundance of two major macro-moth families (Noctuidae and Geometridae) and (2) the potential mitigating effect of trees on macro-moths attracted to ALAN. We undertook a landscape-scale study on 22 open green areas along an urban-rural gradient within Berlin, Germany, using light traps to collect moths. Macro-moths were identified to species level and GLMMs applied with the three landscape variables at different scales (100 m, 500 m and 1000 m). We found a significant negative effect of mercury vapour street lamps on macro-moth species richness, while impervious surfaces showed significant negative effects on abundance (total and Geometridae). We further found significant positive effects of tree cover density on species richness and abundance (total and Geometridae). Effects of tree cover, however, were mostly driven by one site. LED lamps showed no predictive effects. A negative effect of ALAN (MV lamps and overall light) on macro-moths was most prominent in areas with low tree coverage, indicating a mitigating effect of trees on ALAN. We conclude that mercury vapour street lamps should be replaced by ecologically more neutral ALAN, and that in lit and open areas trees could be planted to mitigate the negative effect of ALAN on nocturnal pollinators. In addition, sources of ALAN should be carefully managed, using movement detection technology and other means to ensure that light is only produced when necessary.
Collapse
Affiliation(s)
- Tanja M Straka
- Technische Universität Berlin, Institute of Ecology, Ecosystem Science and Plant Ecology, 12165 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany.
| | - Moritz von der Lippe
- Technische Universität Berlin, Institute of Ecology, Ecosystem Science and Plant Ecology, 12165 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany.
| | - Christian C Voigt
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany; Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.
| | - Matthew Gandy
- University of Cambridge, Department of Geography, Downing Place, Cambridge CB2 3EN, UK.
| | - Ingo Kowarik
- Technische Universität Berlin, Institute of Ecology, Ecosystem Science and Plant Ecology, 12165 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany.
| | - Sascha Buchholz
- Technische Universität Berlin, Institute of Ecology, Ecosystem Science and Plant Ecology, 12165 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany.
| |
Collapse
|
15
|
Manríquez PH, Jara ME, González CP, Seguel M, Quijón PA, Widdicombe S, Pulgar JM, Quintanilla-Ahumada D, Anguita C, Duarte C. Effects of artificial light at night and predator cues on foraging and predator avoidance in the keystone inshore mollusc Concholepas concholepas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116895. [PMID: 33784562 DOI: 10.1016/j.envpol.2021.116895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The growth of Artificial Light At Night (ALAN) is potentially having widespread effects on terrestrial and coastal habitats. In this study we addressed both the individual effects of ALAN, as well as its combined effect with predation risk on the behaviour of Concholepas concholepas, a fishery resource and a keystone species in the southeastern Pacific coast. We measured the influence of ALAN and predation risk on this mollusc's feeding rate, use of refuge for light and crawling out of water behaviour. These behavioural responses were studied using light intensities that mimicked levels that had been recorded in coastal habitat exposed to ALAN. Cues were from two species known to prey on C. concholepas during its early ontogeny: the crab Acanthocyclus hassleri and the seastar Heliaster helianthus. The feeding rates of C. concholepas were 3-4 times higher in darkness and in the absence of predator cues. In contrast, ALAN-exposed C. concholepas showed lower feeding activity and were more likely to be in a refuge than those exposed to control conditions. In the presence of olfactory predator cues, and regardless of light treatment, C. concholepas tended to crawl-out of the waterline. We provide evidence to support the hypothesis that exposure to either ALAN or predation risk can alter the feeding behaviour of C. concholepas. However, predator cue recognition in C. concholepas was not affected by ALAN in situations where ALAN and predator cues were both present: C. concholepas continued to forage when predation risk was low, i.e., in darkness and away from predator cues. Whilst this response means that ALAN may not lead to increased predation mortality in C. concholepas, it will reduce feeding activity in this naturally nocturnal species in the absence of dark refugia. Such results may have implications for the long-term health, productivity and sustainability of this keystone species.
Collapse
Affiliation(s)
- Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de La Ontogenia Temprana (LECOT), Coquimbo, Chile.
| | - María Elisa Jara
- Laboratorio de Ecología y Conducta de La Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Claudio P González
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de La Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Mylene Seguel
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de La Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Pedro A Quijón
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Stephen Widdicombe
- Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK
| | - José M Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Diego Quintanilla-Ahumada
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristobal Anguita
- Laboratorio de Ecología de Vida Silvestre, Facultad de Ciencias Forestales y Conservación de La Naturaleza, Universidad de Chile, Av. Santa Rosa, 11315, La Pintana, Santiago, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de La Vida, Universidad Andrés Bello, Chile
| |
Collapse
|
16
|
Kühne JL, van Grunsven RHA, Jechow A, Hölker F. Impact of different wavelengths of artificial light at night on phototaxis in aquatic insects. Integr Comp Biol 2021; 61:1182-1190. [PMID: 34180520 DOI: 10.1093/icb/icab149] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The use of artificial light at night (ALAN) is increasing exponentially worldwide and there is growing evidence that ALAN contributes to the decline of insect populations. One of the most conspicuous ecological effects is the strong attraction of ALAN to flying insects. In several studies, light sources with strong short wavelength emissions have been shown to attract the highest numbers of flying insects. Furthermore, flying stages of aquatic insects are reported to be more vulnerable to ALAN than flying stages of terrestrial insects. This is concerning because freshwater habitats are likely affected by ALAN that originates from human activity centers, which are typically close to sources of freshwater. However, the effects of ALAN on aquatic insects, that spend their larval phase (amphibiotic insects) or their whole life cycle (fully aquatic insects) in freshwaters, are entirely understudied. Here, we investigated phototaxis of aquatic insects to ALAN at different wavelengths and intensities. We used floating light traps and compared four, near monochromatic, lights (blue, green, red and yellow) at two different photopic light intensities in a ditch system, which was not exposed to ALAN previously. Similar to flying stages of (aquatic and terrestrial) insects we found a strong positive phototaxis of aquatic life stages. However, in contrast to the flying stages there is no clear preference for short-wavelength light. Overall, responsivity to wavelengths in the center of the visible range (green, yellow; 500-600nm) was significant for all orders of aquatic insects studied and the nymphs of Ephemeroptera didn't respond to blue light at all. This is likely an adaption to how light is attenuated in freshwater systems, where not only the water itself but also a variety of optical constituents act as a color filter, often like in in our case filtering out short-wavelength light. Therefore, insects living in freshwater bodies often live in longer wavelength-dominated environments and might therefore be especially sensitive to green/yellow light. In conclusion, the different spectral sensitivities of both aquatic and flying insects should be taken into account when planning lighting near fresh water.
Collapse
Affiliation(s)
- Judith L Kühne
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Roy H A van Grunsven
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Dutch Butterfly Conservation, Wageningen, The Netherlands
| | - Andreas Jechow
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Franz Hölker
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
17
|
A meta-analysis of biological impacts of artificial light at night. Nat Ecol Evol 2020; 5:74-81. [DOI: 10.1038/s41559-020-01322-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 08/28/2020] [Indexed: 01/11/2023]
|
18
|
Parkinson E, Lawson J, Tiegs SD. Artificial light at night at the terrestrial-aquatic interface: Effects on predators and fluxes of insect prey. PLoS One 2020; 15:e0240138. [PMID: 33031444 PMCID: PMC7544032 DOI: 10.1371/journal.pone.0240138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/21/2020] [Indexed: 11/30/2022] Open
Abstract
The outcomes of species interactions–such as those between predators and prey–increasingly depend on environmental conditions that are modified by human activities. Light is among the most fundamental environmental parameters, and humans have dramatically altered natural light regimes across much of the globe through the addition of artificial light at night (ALAN). The consequences for species interactions, communities and ecosystems are just beginning to be understood. Here we present findings from a replicated field experiment that simulated over-the-water lighting in the littoral zone of a small lake. We evaluated responses by emergent aquatic insects and terrestrial invertebrate communities, and riparian predators (tetragnathid spiders). On average ALAN plots had 51% more spiders than control plots that were not illuminated. Mean individual spider body mass was greater in ALAN plots relative to controls, an effect that was strongly sex-dependent; mean male body mass was 34% greater in ALAN plots while female body mass was 176% greater. The average number of prey items captured in spider webs was 139% greater on ALAN mesocosms, an effect attributed to emergent aquatic insects. Non-metric multidimensional scaling and a multiple response permutation procedure revealed significantly different invertebrate communities captured in pan traps positioned in ALAN plots and controls. Control plots had taxonomic-diversity values (as H’) that were 58% greater than ALAN plots, and communities that were 83% more-even. We attribute these differences to the aquatic family Caenidae which was the dominant family across both light treatments, but was 818% more abundant in ALAN plots. Our findings show that when ALAN is located in close proximity to freshwater it can concentrate fluxes of emergent aquatic insects, and that terrestrial predators in the littoral zone can compound this effect and intercept resource flows, preventing them from entering the terrestrial realm.
Collapse
Affiliation(s)
- Elizabeth Parkinson
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Justine Lawson
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Scott D. Tiegs
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
- * E-mail:
| |
Collapse
|
19
|
Zhao Q, Ding S, Liu Q, Wang S, Jing Y, Lu M. Vegetation influences soil properties along riparian zones of the Beijiang River in Southern China. PeerJ 2020. [DOI: 10.7717/peerj.9699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Riparian soils and vegetation are important factors influencing the biodiversity and biogeochemical processes of river ecosystems. Riparian soils and vegetation form the foundation for multiple ecosystem services provided by river ecosystems. However, it remains poorly understood how riparian soils and vegetation interact with one another to maintain these services. In this study, we sampled four common types of riparian vegetation associated with the Beijiang River in South China. These included forestland, bamboo forest, mixed forest, and grassland ecosystems. Specifically, we analyzed the spatial distribution of riparian soils and their response to environmental factors (i.e., coverage and height of trees, shrubs and grass, distance to river, and altitude). Our results indicate that soil properties in riparian zones were affected significantly by vegetation type. In particular, clay content, soil organic carbon, and nitrate nitrogen content were significantly correlated with vegetation type. In contrast, changes in soil total nitrogen, total phosphorus, and available phosphorus content were not associated with vegetation type. Moreover, soil physical and chemical properties interacted with one an other, as well as with vegetation characteristics. This was indicated by the significant correlation observed between soil organic carbon, total nitrogen, total phosphorus, and soil texture, with structural characteristics of the four vegetation types. We also found that height and cover of trees and shrubs were significantly correlated with soil chemical properties. However, the effects of topographic variables such as altitude and distance to river were not significant. Results from this study can thus provide a basis for the ecological restoration and land management of degraded iparian zones.
Collapse
Affiliation(s)
- Qinghe Zhao
- College of Environment and Planning, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, China
| | - Shengyan Ding
- College of Environment and Planning, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, China
| | - Qian Liu
- College of Environment and Planning, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, China
| | - Shuoqian Wang
- College of Environment and Planning, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, China
| | - Yaru Jing
- College of Environment and Planning, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, China
| | - Mengwen Lu
- College of Environment and Planning, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, China
| |
Collapse
|
20
|
Giavi S, Blösch S, Schuster G, Knop E. Artificial light at night can modify ecosystem functioning beyond the lit area. Sci Rep 2020; 10:11870. [PMID: 32681056 PMCID: PMC7368033 DOI: 10.1038/s41598-020-68667-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Artificial light at night (ALAN) is a relatively new and rapidly increasing global change driver. While evidence on adverse effects of ALAN for biodiversity and ecosystem functioning is increasing, little is known on the spatial extent of its effects. We therefore tested whether ALAN can affect ecosystem functioning in areas adjacent to directly illuminated areas. We exposed two phytometer species to three different treatments of ALAN (sites directly illuminated, sites adjacent to directly illuminated sites, control sites without illumination), and we measured its effect on the reproductive output of both plant species. Furthermore, in one of the two plant species, we quantified pre-dispersal seed predation and the resulting relative reproductive output. Finally, under controlled condition in the laboratory, we assessed flower visitation and oviposition of the main seed predator in relation to light intensity. There was a trend for reduced reproductive output of one of the two plant species on directly illuminated sites, but not of the other. Compared to dark control sites, seed predation was significantly increased on dark sites adjacent to illuminated sites, which resulted in a significantly reduced relative reproductive output. Finally, in the laboratory, the main seed predator flew away from the light source to interact with its host plant in the darkest area available, which might explain the results found in the field. We conclude that ALAN can also affect ecosystem functioning in areas not directly illuminated, thereby having ecological consequences at a much larger scale than previously thought.
Collapse
Affiliation(s)
- Simone Giavi
- Institute of Ecology and Evolution, University of Bern, Baltzerstr. 6, 3012, Bern, Switzerland.,Agroscope, Agroecology and Environment, Reckenholzstrasse 191, 8046, Zürich, Switzerland
| | - Sina Blösch
- Institute of Ecology and Evolution, University of Bern, Baltzerstr. 6, 3012, Bern, Switzerland.,Bernese School of Agricultural, Forest and Food Sciences HAFL, Länggasse 85, 3052, Zollikofen, Switzerland
| | - Guido Schuster
- Department of Electrical Engineering, University of Applied Sciences of Eastern Switzerland, Oberseestrasse 10, 8640, Rapperswil, Switzerland
| | - Eva Knop
- Agroscope, Agroecology and Environment, Reckenholzstrasse 191, 8046, Zürich, Switzerland. .,Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstr. 190, 8057, Zürich, Switzerland.
| |
Collapse
|
21
|
de Necker L, Manfrin A, Ikenaka Y, Ishizuka M, Brendonck L, van Vuren JHJ, Sures B, Wepener V, Smit NJ. Using stable δ13C and δ15N isotopes to assess foodweb structures in an African subtropical temporary pool. AFRICAN ZOOLOGY 2020. [DOI: 10.1080/15627020.2020.1731331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- L de Necker
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - A Manfrin
- Environmental Campus Birkenfeld, University of Applied Sciences Tier, Standort Umwelt-Campus Birkenfeld, Germany
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Y Ikenaka
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - M Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - L Brendonck
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Animal Ecology, Global Change and Sustainable Development, Department of Biology, University of Leuven, Leuven, Belgium
| | - JHJ van Vuren
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - B Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - V Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - NJ Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
22
|
Working with Inadequate Tools: Legislative Shortcomings in Protection against Ecological Effects of Artificial Light at Night. SUSTAINABILITY 2020. [DOI: 10.3390/su12062551] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fundamental change in nocturnal landscapes due to the increasing use of artificial light at night (ALAN) is recognized as being detrimental to the environment and raises important regulatory questions as to whether and how it should be regulated based on the manifold risks to the environment. Here, we present the results of an analysis of the current legal obligations on ALAN in context with a systematic review of adverse effects. The legal analysis includes the relevant aspects of European and German environmental law, specifically nature conservation and immission control. The review represents the results of 303 studies indicating significant disturbances of organisms and landscapes. We discuss the conditions for prohibitions by environmental laws and whether protection gaps persist and, hence, whether specific legislation for light pollution is necessary. While protection is predominantly provided for species with special protection status that reveal avoidance behavior of artificially lit landscapes and associated habitat loss, adverse effects on species and landscapes without special protection status are often unaddressed by existing regulations. Legislative shortcomings are caused by difficulties in proving adverse effect on the population level, detecting lighting malpractice, and applying the law to ALAN-related situations. Measures to reduce ALAN-induced environmental impacts are highlighted. We discuss whether an obligation to implement such measures is favorable for environmental protection and how regulations can be implemented.
Collapse
|
23
|
Straka T, Greif S, Schultz S, Goerlitz H, Voigt C. The effect of cave illumination on bats. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2019.e00808] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Khan ZA, Yumnamcha T, Mondal G, Devi SD, Rajiv C, Labala RK, Sanjita Devi H, Chattoraj A. Artificial Light at Night (ALAN): A Potential Anthropogenic Component for the COVID-19 and HCoVs Outbreak. Front Endocrinol (Lausanne) 2020; 11:622. [PMID: 33013700 PMCID: PMC7511708 DOI: 10.3389/fendo.2020.00622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022] Open
Abstract
The origin of the coronavirus disease 2019 (COVID-19) pandemic is zoonotic. The circadian day-night is the rhythmic clue to organisms for their synchronized body functions. The "development for mankind" escalated the use of artificial light at night (ALAN). In this article, we tried to focus on the possible influence of this anthropogenic factor in human coronavirus (HCoV) outbreak. The relationship between the occurrences of coronavirus and the ascending curve of the night-light has also been delivered. The ALAN influences the physiology and behavior of bat, a known nocturnal natural reservoir of many Coronaviridae. The "threatened" and "endangered" status of the majority of bat species is mainly because of the destruction of their proper habit and habitat predominantly through artificial illumination. The stress exerted by ALAN leads to the impaired body functions, especially endocrine, immune, genomic integration, and overall rhythm features of different physiological variables and behaviors in nocturnal animals. Night-light disturbs "virus-host" synchronization and may lead to mutation in the genomic part of the virus and excessive virus shedding. We also proposed some future strategies to mitigate the repercussions of ALAN and for the protection of the living system in the earth as well.
Collapse
Affiliation(s)
- Zeeshan Ahmad Khan
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Thangal Yumnamcha
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Gopinath Mondal
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Sijagurumayum Dharmajyoti Devi
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Chongtham Rajiv
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Rajendra Kumar Labala
- Distributed Information Sub-centre, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
- Biological Rhythm Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
| | - Haobijam Sanjita Devi
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Asamanja Chattoraj
- Biological Rhythm Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
- *Correspondence: Asamanja Chattoraj ;
| |
Collapse
|
25
|
Maggi E, Bongiorni L, Fontanini D, Capocchi A, Dal Bello M, Giacomelli A, Benedetti‐Cecchi L. Artificial light at night erases positive interactions across trophic levels. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13485] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Elena Maggi
- Dip. di Biologia, CoNISMa Università di Pisa Pisa Italy
| | | | | | | | - Martina Dal Bello
- Physics of Living Systems Group Department of Physics Massachusetts Institute of Technology Cambridge MA USA
| | | | | |
Collapse
|
26
|
Mcmunn MS, Yang LH, Ansalmo A, Bucknam K, Claret M, Clay C, Cox K, Dungey DR, Jones A, Kim AY, Kubacki R, Le R, Martinez D, Reynolds B, Schroder J, Wood E. Artificial Light Increases Local Predator Abundance, Predation Rates, and Herbivory. ENVIRONMENTAL ENTOMOLOGY 2019; 48:1331-1339. [PMID: 31789364 DOI: 10.1093/ee/nvz103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Indexed: 06/10/2023]
Abstract
Human activity is rapidly increasing the radiance and geographic extent of artificial light at night (ALAN) leading to alterations in the development, behavior, and physiological state of many organisms. A limited number of community-scale studies investigating the effects of ALAN have allowed for spatial aggregation through positive phototaxis, the commonly observed phenomenon of arthropod movement toward light. We performed an open field study (without restricted arthropod access) to determine the effects of ALAN on local arthropod community composition, plant traits, and local herbivory and predation rates. We found strong positive phototaxis in 10 orders of arthropods, with increased (159% higher) overall arthropod abundance under ALAN compared to unlit controls. The arthropod community under ALAN was more diverse and contained a higher proportion of predaceous arthropods (15% vs 8%). Predation of immobilized flies occurred 3.6 times faster under ALAN; this effect was not observed during the day. Contrary to expectations, we also observed a 6% increase in herbivory under ALAN. Our results highlight the importance of open experimental field studies in determining community-level effects of ALAN.
Collapse
Affiliation(s)
- Marshall S Mcmunn
- Department of Entomology and Nematology, University of California, Davis, Davis, CA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA
| | - Louie H Yang
- Department of Entomology and Nematology, University of California, Davis, Davis, CA
| | - Amy Ansalmo
- Department of Evolution and Ecology, University of California, Davis, Davis, CA
| | - Keatyn Bucknam
- Department of Evolution and Ecology, University of California, Davis, Davis, CA
| | - Miles Claret
- Department of Evolution and Ecology, University of California, Davis, Davis, CA
| | - Cameron Clay
- Department of Evolution and Ecology, University of California, Davis, Davis, CA
| | - Kyle Cox
- Department of Evolution and Ecology, University of California, Davis, Davis, CA
| | - Darian R Dungey
- Department of Evolution and Ecology, University of California, Davis, Davis, CA
| | - Asia Jones
- Department of Evolution and Ecology, University of California, Davis, Davis, CA
| | - Ashley Y Kim
- Department of Evolution and Ecology, University of California, Davis, Davis, CA
| | - Robert Kubacki
- Department of Evolution and Ecology, University of California, Davis, Davis, CA
| | - Rachel Le
- Department of Evolution and Ecology, University of California, Davis, Davis, CA
| | - Deniss Martinez
- Department of Plant Sciences, University of California, Davis, Davis, CA
- Department of Native American Studies, University of California, Davis, Davis, CA
| | - Brian Reynolds
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA
| | - John Schroder
- Department of Evolution and Ecology, University of California, Davis, Davis, CA
| | - Emily Wood
- Department of Evolution and Ecology, University of California, Davis, Davis, CA
| |
Collapse
|
27
|
Artificial Light at Night Influences Clock-Gene Expression, Activity, and Fecundity in the Mosquito Culex pipiens f. molestus. SUSTAINABILITY 2019. [DOI: 10.3390/su11226220] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Light is an important environmental cue, and exposure to artificial light at night (ALAN) may disrupt organismal physiology and behavior. We investigated whether ALAN led to changes in clock-gene expression, diel activity patterns, and fecundity in laboratory populations of the mosquito Culex pipiens f. molestus (Diptera, Culicidae), a species that occurs in urban areas and is thus regularly exposed to ALAN. Populations were kept under 16hours (h):8h light:dark cycles or were subjected to an additional 3.5 h of light (100–300 lx) in the evenings. ALAN induced significant changes in expression in all genes studied, either alone (period) or as an interaction with time (timeless, cryptochrome2, Clock, cycle). Changes were sex-specific: period was down-regulated in both sexes, cycle was up-regulated in females, and Clock was down-regulated in males. ALAN-exposed mosquitoes were less active during the extra-light phase, but exposed females were more active later in the night. ALAN-exposed females also produced smaller and fewer eggs. Our findings indicate a sex-specific impact of ALAN on the physiology and behavior of Culex pipiens f. molestus and that changes in clock-gene expression, activity, and fecundity may be linked.
Collapse
|
28
|
Straka TM, Wolf M, Gras P, Buchholz S, Voigt CC. Tree Cover Mediates the Effect of Artificial Light on Urban Bats. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00091] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
29
|
Sullivan SMP, Hossler K, Meyer LA. Artificial lighting at night alters aquatic-riparian invertebrate food webs. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01821. [PMID: 30566269 DOI: 10.1002/eap.1821] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/27/2018] [Indexed: 06/09/2023]
Abstract
Artificial lighting at night (ALAN) is a global phenomenon that can be detrimental to organisms at individual and population levels, yet potential consequences for communities and ecosystem functions are less resolved. Riparian systems may be particularly vulnerable to ALAN. We investigated the impacts of ALAN on invertebrate community composition and food web characteristics for linked aquatic-terrestrial ecosystems. We focused on food chain length (FCL), a central property of ecological communities that can influence their structure, function, and stability; and the contribution of aquatically derived energy (i.e., nutritional subsidies originating from stream periphyton). We collected terrestrial arthropods and emergent aquatic insects from a suite of stream and wetland sites in Columbus, Ohio, USA. Stable isotopes of carbon (13 C) and nitrogen (15 N) were used to infer FCL and contribution of aquatically derived energy. We found that moderate-to-high levels of ALAN altered invertebrate community composition, favoring primarily predators and detritivores. Impacts of ALAN, however, were very taxon specific as illustrated, for example, by the negative impact of ALAN on the abundance of orb-web spiders belonging to the families Tetragnathidae and Araneidae: key invertebrate riparian predators. Most notably, we observed decreases in both invertebrate FCL and reliance on aquatically derived energy under ALAN (although aquatic energetic contributions appeared to increase again at higher levels of ALAN), in addition to shifts in the timing of reciprocal nutritional subsidies. Our study demonstrates that ALAN can alter the flows of energy between aquatic and terrestrial systems, thereby representing an environmental perturbation that can cross ecosystem boundaries. Given projections for global increases in ALAN, both in terms of coverage and intensity, these results have broad implications for stream ecosystem structure and function.
Collapse
Affiliation(s)
- S Mažeika P Sullivan
- Schiermeier Olentangy River Wetland Research Park, School of Environment & Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, Ohio, 43210, USA
| | - Katie Hossler
- Schiermeier Olentangy River Wetland Research Park, School of Environment & Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, Ohio, 43210, USA
| | - Lars A Meyer
- Schiermeier Olentangy River Wetland Research Park, School of Environment & Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, Ohio, 43210, USA
| |
Collapse
|
30
|
Voigt CC, Rehnig K, Lindecke O, Pētersons G. Migratory bats are attracted by red light but not by warm-white light: Implications for the protection of nocturnal migrants. Ecol Evol 2018; 8:9353-9361. [PMID: 30377506 PMCID: PMC6194273 DOI: 10.1002/ece3.4400] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/28/2018] [Accepted: 06/17/2018] [Indexed: 11/14/2022] Open
Abstract
The replacement of conventional lighting with energy-saving light emitting diodes (LED) is a worldwide trend, yet its consequences for animals and ecosystems are poorly understood. Strictly nocturnal animals such as bats are particularly sensitive to artificial light at night (ALAN). Past studies have shown that bats, in general, respond to ALAN according to the emitted light color and that migratory bats, in particular, exhibit phototaxis in response to green light. As red and white light is frequently used in outdoor lighting, we asked how migratory bats respond to these wavelength spectra. At a major migration corridor, we recorded the presence of migrating bats based on ultrasonic recorders during 10-min light-on/light-off intervals to red or warm-white LED, interspersed with dark controls. When the red LED was switched on, we observed an increase in flight activity for Pipistrellus pygmaeus and a trend for a higher activity for Pipistrellus nathusii. As the higher flight activity of bats was not associated with increased feeding, we rule out the possibility that bats foraged at the red LED light. Instead, bats may have flown toward the red LED light source. When exposed to warm-white LED, general flight activity at the light source did not increase, yet we observed an increased foraging activity directly at the light source compared to the dark control. Our findings highlight a response of migratory bats toward LED light that was dependent on light color. The most parsimonious explanation for the response to red LED is phototaxis and for the response to warm-white LED foraging. Our findings call for caution in the application of red aviation lighting, particularly at wind turbines, as this light color might attract bats, leading eventually to an increased collision risk of migratory bats at wind turbines.
Collapse
Affiliation(s)
- Christian C. Voigt
- Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Institute of BiologyFreie Universität BerlinBerlinGermany
| | - Katharina Rehnig
- Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Faculty of Life ScienceUniversity of ViennaViennaAustria
| | - Oliver Lindecke
- Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Institute of BiologyFreie Universität BerlinBerlinGermany
| | - Gunārs Pētersons
- Faculty of Veterinary MedicineLatvia University of Life Sciences and TechnologiesJelgavaLatvia
| |
Collapse
|