1
|
Vigil JP, Schuler MS. Salt pollution reduces turbidity, dissolved organic matter, and cyanobacteria in experimental vernal pool communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172948. [PMID: 38703853 DOI: 10.1016/j.scitotenv.2024.172948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Anthropogenic activities such as the over-application of road deicers are causing an increase in the concentration of salts in historically fresh waters. Experimental and field investigations demonstrate that freshwater salinization disrupts ecosystem functions and services, causing the death of freshwater organisms and changes to nutrient conditions. Wetland habitats are one system negatively affected by salt pollution, including ephemeral wetlands (vernal pools) that fill with salt-polluted water after snowmelt. In urbanized areas, the degradation of these ecosystems could result in irreversible ecological damage including reduced water quality and a reduction in biodiversity. To investigate the effects of freshwater salinization on vernal pool communities, we exposed soils from vernal pools to water containing no salt (control), or four concentrations of three salts standardized by chloride concentration (50 mg Cl- L-1, 100 mg Cl- L-1, 200 mg Cl- L-1, and 400 mg Cl- L-1; magnesium chloride, calcium chloride, and sodium chloride). The results of this experiment suggest that emerging zooplankton communities in vernal pools are sensitive to low concentrations of salt pollution, and that alternative salts such as magnesium chloride and calcium chloride are more toxic than sodium chloride. We did not find positive or negative changes in the abundance of eukaryotic phytoplankton but did find negative effects of salt on cyanobacteria abundance, possibly due to corresponding reductions in turbidity which might be needed as a fixation site for cyanobacteria to form heterocysts. Finally, we found that salt pollution likely caused flocculation of Dissolved Organic Matter (DOM), resulting in reduced concentrations of DOM which could alter the buffering capacity of freshwater systems, light attenuation, and the populations of planktonic heterotrophs.
Collapse
Affiliation(s)
- Jared P Vigil
- Department of Biology, Montclair State University, Montclair, NJ 07043, United States of America
| | - Matthew S Schuler
- Department of Biology, Montclair State University, Montclair, NJ 07043, United States of America.
| |
Collapse
|
2
|
Quiles P, Barrientos R. Interspecific interactions disrupted by roads. Biol Rev Camb Philos Soc 2024; 99:1121-1139. [PMID: 38303408 DOI: 10.1111/brv.13061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Roads have pervasive impacts on wildlife, including habitat loss and fragmentation, road mortality, habitat pollution and increased human use of habitats surrounding them. However, the effects of roads on interspecific interactions are less understood. Here we provide a synthesis of the existing literature on how species interactions may be disrupted by roads, identify knowledge gaps, and suggest avenues for future research and conservation management. We conducted a systematic search using the Web of Science database for each species interaction (predation, competition, mutualism, parasitism, commensalism and amensalism). These searches yielded 2144 articles, of which 195 were relevant to our topic. Most of these studies focused on predation (50%) or competition (24%), and less frequently on mutualism (17%) or, parasitism (9%). We found no studies on commensalism or amensalism. Studies were biased towards mammals from high-income countries, with most conducted in the USA (34%) or Canada (18%). Our literature review identified several patterns. First, roads disrupt predator-prey relationships, usually with negative impacts on prey populations. Second, new disturbed habitats created in road corridors often benefit more competitive species, such as invasive species, although some native or endangered species can also thrive there. Third, roads degrade mutualistic interactions like seed dispersal and pollination. Fourth, roads can increase parasitism rates, although the intensity of the alteration is species specific. To reduce the negative impacts of roads on interspecific interactions, we suggest the following management actions: (i) verges should be as wide and heterogenous as possible, as this increases microhabitat diversity, thus enhancing ecosystem services like pollination and seed dispersal; (ii) combining different mowing regimes can increase the complexity of the habitat corridor, enabling it to act as a habitat for more species; (iii) the use of de-icing salts should be gradually reduced and replaced with less harmful products or maintenance practices; (iv) wildlife passes should be implemented in groups to reduce animal concentrations inside them; (v) periodic removal of carcasses from the road to reduce the use of this resource by wildlife; and (vi) implementation of traffic-calming schemes could enhance interspecific interactions like pollination and avoid disruption of predator-prey relationships.
Collapse
Affiliation(s)
- Pablo Quiles
- Road Ecology Lab, Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, C/ José Antonio Novais 12, E-28040, Madrid, Spain
| | - Rafael Barrientos
- Road Ecology Lab, Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, C/ José Antonio Novais 12, E-28040, Madrid, Spain
| |
Collapse
|
3
|
Farnan J, Vanden Heuvel JP, Dorman FL, Warner NR, Burgos WD. Toxicity and chemical composition of commercial road palliatives versus oil and gas produced waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122184. [PMID: 37453689 DOI: 10.1016/j.envpol.2023.122184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Across the United States, road palliatives are applied to roads for maintenance operations that improve road safety. In the winter, solid rock salts and brine solutions are used to reduce the accumulation of snow and ice, while in the summer, dust suppressants are used to minimize fugitive dust emissions. Many of these products are chloride-based salts that have been linked to freshwater salinization, toxicity to aquatic organisms, and damage to infrastructure. To minimize these impacts, organic products have been gaining attention, though their widespread adoption has been limited due to their higher cost. In some states, using produced water from conventionally drilled oil and gas wells (OGPWs) on roads is permitted as a cost-effective alternative to commercial products, despite its typically elevated concentrations of heavy metals, radioactivity, and organic micropollutants. In this study, 17 road palliatives used for winter and summer road maintenance were collected and their chemical composition and potential human toxicity were characterized. Results from this study demonstrated that liquid brine solutions had elevated levels of trace metals (Zn, Cu, Sr, Li) that could pose risks to human and environmental health. The radium activity of liquid calcium chloride products was comparable to the activity of OGPWs and could be a significant source of radium to the environment. The organic fractions of evaluated OGPWs and chloride-based products posed little risk to human health. However, organic-based dust suppressants regulated toxicity pathways related to xenobiotic metabolism, lipid metabolism, endocrine disruption, and oxidative stress, indicating their use could lead to environmental harm and health risks to operators handing these products and residents living near treated roads.
Collapse
Affiliation(s)
- James Farnan
- Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - John P Vanden Heuvel
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA ,16802, USA; INDIGO Biosciences, Inc., 3006 Research Drive, Suite A1, PA, 16801, USA.
| | - Frank L Dorman
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA ,16802, USA.
| | - Nathaniel R Warner
- Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - William D Burgos
- Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
4
|
Dellar M, Boerlijst SP, Holmes D. Improving estimations of life history parameters of small animals in mesocosm experiments: A case study on mosquitoes. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martha Dellar
- Institute of Environmental Sciences University of Leiden Leiden Netherlands
- Deltares Utrecht Netherlands
| | - Sam P. Boerlijst
- Institute of Environmental Sciences University of Leiden Leiden Netherlands
| | - David Holmes
- Mathematical Institute University of Leiden RA Leiden Netherlands
| |
Collapse
|
5
|
Szklarek S, Górecka A, Wojtal-Frankiewicz A. The effects of road salt on freshwater ecosystems and solutions for mitigating chloride pollution - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150289. [PMID: 34536879 DOI: 10.1016/j.scitotenv.2021.150289] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Road salt (mainly NaCl) is commonly used during the winter to ensure road and pavement safety; however, the long-term application of NaCl has negative consequences on soil and the water environment. The aims of the present review were to evaluate the impact of road salt on catchment processes which accelerate the eutrophication of waters, and to identify a possible approach for reducing the impact of winter salt treatments of roads and sidewalks, on water body quality. The objectives were implemented in accordance with the ecohydrological approach, which recommends using hierarchical steps to solve problems. The first step was the monitoring of threats, in which the causes of high chloride (Cl) concentrations in groundwater and surface water were identified. The results indicate that long-term winter application of road salt increases the annual mean concentrations of Cl in rivers and lakes, due to Cl entering groundwater. The second step was a cause-effect analysis of the impact of NaCl on the abiotic processes in soil and water, and on the biotic response to chloride exposure. Chlorides appear to decrease the biodiversity of aquatic animals and plants but favour the growth of phytoplankton, especially cyanobacteria. Moreover, Cl reduces the self-purification processes of water by decreasing nutrient accumulation in macrophytes, decreasing the denitrification rate and reducing organic matter decomposition. The third step was to evaluate possible solutions for reducing the negative impact of NaCl on the environment, and to improve the effectiveness of alternative de-icing agents. An analysis of available literature indicates that a system-based approach integrating engineering knowledge with an understanding of biological and hydrological processes is necessary to indicate solutions for reducing environmental risks from road salt use.
Collapse
Affiliation(s)
- Sebastian Szklarek
- European Regional Centre for Ecohydrology, Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland.
| | - Aleksandra Górecka
- University of Lodz, Doctoral School of Exact and Natural Sciences, 90-237 Lodz, Banacha 12/16, Poland
| | - Adrianna Wojtal-Frankiewicz
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, 90-237 Lodz, Banacha 12/16, Poland
| |
Collapse
|
6
|
Kengne P, Charmantier G, Blondeau‐Bidet E, Costantini C, Ayala D. Tolerance of disease‐vector mosquitoes to brackish water and their osmoregulatory ability. Ecosphere 2019. [DOI: 10.1002/ecs2.2783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Pierre Kengne
- IRD CNRS University of Montpellier MIVEGEC Montpellier France
- CIRMF Franceville Gabon
| | - Guy Charmantier
- CNRS, Ifremer IRD UM Marbec University of Montpellier Montpellier France
| | - Eva Blondeau‐Bidet
- CNRS, Ifremer IRD UM Marbec University of Montpellier Montpellier France
| | | | - Diego Ayala
- IRD CNRS University of Montpellier MIVEGEC Montpellier France
| |
Collapse
|
7
|
Nutile SA, Solan ME. Toxicity testing of "eco-friendly" de-icing formulations using Chironomus dilutus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:408-413. [PMID: 30577009 DOI: 10.1016/j.envpol.2018.12.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/26/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
An influx of chloride ions from road de-icing solutions can result in toxicological effects to organisms in terrestrial and aquatic environments. As such, "eco-friendly" de-icing alternatives are sought to mitigate environmental impacts of de-icing impervious surfaces, while maintaining human safety. While many alternative de-icers are economically impractical for municipal use, the residential commercial market is flooded with de-icing formulations claiming to be "eco-friendly". Given the little regulation and guidance that surrounds eco-labeling, the meaning of "eco-friendly" remains unclear in the context of biological systems. The objective of the current study was to determine the toxicity of three "eco-friendly" de-icing formulations to Chironomus dilutus using 10 d toxicity tests. The toxicity of these three formulations was compared to a traditional formulation composed entirely of chloride salts. Two of the "eco-friendly" de-icers demonstrated LC50s of 6.61 and 6.32 g/L, which were similar in toxicity to the traditional sodium chloride formulation with a LC50 6.29 g/L. The comparable toxicities of these formulations is likely due to the presence of chloride salts in each of the "eco-friendly" de-icers. The third "eco-friendly" formulation, a urea-based de-icer, demonstrated toxicity an order of magnitude higher than that of the traditional formulation with an LC50 of 0.63 g/L. While C. dilutus may not have been the intended endpoint in consideration when marketing these products as "eco-friendly", consideration of how eco-labeling is utilized and the role of environmental scientists in determining the meaning of such claims must be considered to ensure continued and future protection of the environment.
Collapse
Affiliation(s)
- Samuel A Nutile
- Department of Biology, School of Science, Pennsylvania State University, The Behrend College, Erie, PA, 16563, USA.
| | - Megan E Solan
- Department of Biology, School of Science, Pennsylvania State University, The Behrend College, Erie, PA, 16563, USA
| |
Collapse
|
8
|
Schuler MS, Cañedo-Argüelles M, Hintz WD, Dyack B, Birk S, Relyea RA. Regulations are needed to protect freshwater ecosystems from salinization. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2018.0019. [PMID: 30509918 DOI: 10.1098/rstb.2018.0019] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 12/17/2022] Open
Abstract
Anthropogenic activities such as mining, agriculture and industrial wastes have increased the rate of salinization of freshwater ecosystems around the world. Despite the known and probable consequences of freshwater salinization, few consequential regulatory standards and management procedures exist. Current regulations are generally inadequate because they are regionally inconsistent, lack legal consequences and have few ion-specific standards. The lack of ion-specific standards is problematic, because each anthropogenic source of freshwater salinization is associated with a distinct set of ions that can present unique social and economic costs. Additionally, the environmental and toxicological consequences of freshwater salinization are often dependent on the occurrence, concentration and ratios of specific ions. Therefore, to protect fresh waters from continued salinization, discrete, ion-specific management and regulatory strategies should be considered for each source of freshwater salinization, using data from standardized, ion-specific monitoring practices. To develop comprehensive monitoring, regulatory, and management guidelines, we recommend the use of co-adaptive, multi-stakeholder approaches that balance environmental, social, and economic costs and benefits associated with freshwater salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- Matthew S Schuler
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Miguel Cañedo-Argüelles
- Grup de Recerca Freshwater Ecology and Management (FEM), Departament de Biologia Evolutiva, Ecologia i Ciencies Ambientals, Facultat de Biologia, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - William D Hintz
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Brenda Dyack
- Institute for Applied Ecology, University of Canberra, Canberra 2601, Australia
| | - Sebastian Birk
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany.,Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Rick A Relyea
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
9
|
Lind L, Schuler MS, Hintz WD, Stoler AB, Jones DK, Mattes BM, Relyea RA. Salty fertile lakes: how salinization and eutrophication alter the structure of freshwater communities. Ecosphere 2018. [DOI: 10.1002/ecs2.2383] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Lovisa Lind
- Department of Biological Sciences; Darrin Fresh Water Institute; Rensselaer Polytechnic Institute; Troy New York 12180 USA
- Department of Ecology and Environmental Science; Umeå University; 90187 Umeå Sweden
| | - Matthew S. Schuler
- Department of Biological Sciences; Darrin Fresh Water Institute; Rensselaer Polytechnic Institute; Troy New York 12180 USA
| | - William D. Hintz
- Department of Biological Sciences; Darrin Fresh Water Institute; Rensselaer Polytechnic Institute; Troy New York 12180 USA
| | - Aaron B. Stoler
- Department of Biological Sciences; Darrin Fresh Water Institute; Rensselaer Polytechnic Institute; Troy New York 12180 USA
- Department of Natural Sciences and Mathematics; Stockton University; Galloway New Jersey 08205 USA
| | - Devin K. Jones
- Department of Biological Sciences; Darrin Fresh Water Institute; Rensselaer Polytechnic Institute; Troy New York 12180 USA
- Department of Integrative Biology; University of South Florida; Tampa Florida 33620 USA
| | - Brian M. Mattes
- Department of Biological Sciences; Darrin Fresh Water Institute; Rensselaer Polytechnic Institute; Troy New York 12180 USA
| | - Rick A. Relyea
- Department of Biological Sciences; Darrin Fresh Water Institute; Rensselaer Polytechnic Institute; Troy New York 12180 USA
| |
Collapse
|