1
|
Riihimäki U, de Koning M, Kaila L, Saastamoinen M. Effects of fungicide and herbicide on a non-target butterfly performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179214. [PMID: 40154082 DOI: 10.1016/j.scitotenv.2025.179214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/18/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Agricultural intensification is one of the key drivers of biodiversity loss. Intensified agriculture is often associated with increased use of pesticides and the use of pesticides could negatively impact also non-target species living in the vicinity of agricultural lands. We exposed larvae of the Glanville fritillary butterfly (Melitaea cinxia) to a short-term exposure of a herbicide, a fungicide, or a mix of the two via their larval host plant (Plantago lanceolata). Survival and performance of the larvae was recorded and potential carry-over effects on adult butterfly fitness traits were assessed under semi-natural conditions in an outdoor enclosure. Our results showed significantly higher mortality of 60 % in the larvae exposed to the fungicide and 22 % mortality in the fungicide-herbicide mix treatment, with both treatments also impacting adult morphology. Adult female butterflies exposed to the mix of fungicide and herbicide treatment during their development also had lower lifetime reproductive success than the other treatment groups, suggesting that the combined chemical load had stronger carry-over effects into adulthood. Our results demonstrate clear negative impacts of a commonly used fungicide on a non-target butterfly species. The combined effect of two pesticides, while less lethal to larvae directly, seem to have a more profound carry-over impact on fitness of adult female butterflies. The mechanisms underlying the effects of a fungicide alone and in interaction with the herbicide, as well as the relatively minor impacts of herbicide alone on the specialist insect warrant further investigation in the role of pesticides in natural populations.
Collapse
Affiliation(s)
- Ulla Riihimäki
- Research Centre for Ecological Change, Organismal and Evolutionary Research Programme, FI-00014, University of Helsinki, Finland.
| | - Mathijs de Koning
- Applied Biology, HAS green academy, 5223, DE, 's-Hertogenbosch, the Netherlands
| | - Lotta Kaila
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Marjo Saastamoinen
- Research Centre for Ecological Change, Organismal and Evolutionary Research Programme, FI-00014, University of Helsinki, Finland
| |
Collapse
|
2
|
Böttger D, Singh RP, Friedrich E, Brehm G. The moth fauna is more diverse in the understorey than in the canopy in a European forest. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025; 115:1-11. [PMID: 39773774 DOI: 10.1017/s0007485324000816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The canopy of forests as the 'last biotic frontier' has often been neglected in insect biodiversity studies because it is harder to access compared to the understorey, even in relatively well-known temperate ecosystems. We investigated the diversity, abundance, and body size patterns of macromoths (Lepidoptera) in the canopy and understorey in a central European deciduous forest. We collected moths at two sites during 19 trapping nights and three lunar phases between July and September 2021 using a weak ultraviolet light emitting diode (LED) lamp (LepiLED mini). Overall, we captured 4368 individuals (165 species) from 11 families. Based on a number of metrics, richness and diversity was significantly lower in the canopy than in the understorey. Non-metric multidimensional scaling ordinations show that communities largely overlap, but the proportion of species that only occur in the understorey was higher. While Noctuidae and Erebidae species were abundant in both strata, Geometridae species were most frequently observed in the understorey. We identified 16 indicator species for the understorey but only three for the canopy. Forewing length of moths in the canopy was on average 1.7 mm longer than of those in the understorey. Overall, the understorey is far more important for moths than the canopy in a temperate forest. The canopy is dominated by fewer and larger species and probably has a higher proportion of dispersers.
Collapse
Affiliation(s)
- Dennis Böttger
- Jena Institute of Systematic Zoology and Evolutionary Biology and Phyletic Museum, Friedrich Schiller University, Jena, Germany
| | - Rachit Pratap Singh
- Department of Forest Nature Conservation, University of Göttingen, Göttingen, Germany
| | - Egbert Friedrich
- Jena Institute of Systematic Zoology and Evolutionary Biology and Phyletic Museum, Friedrich Schiller University, Jena, Germany
| | - Gunnar Brehm
- Jena Institute of Systematic Zoology and Evolutionary Biology and Phyletic Museum, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
3
|
Jones R, Wilson R, Maclean I, Bourn N. Habitat management interventions for a specialist mid- successional grassland butterfly, the Lulworth Skipper. JOURNAL OF INSECT CONSERVATION 2024; 29:2. [PMID: 40028006 PMCID: PMC11870902 DOI: 10.1007/s10841-024-00638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/23/2024] [Indexed: 03/05/2025]
Abstract
Evidence-based management is needed to reverse declines in insect abundance. The Lulworth Skipper Thymelicus acteon is a range-restricted and declining species in the UK and northern Europe associated with mid-successional grassland, which presents management challenges because interventions are necessary to prevent long-term habitat deterioration but can result in short-term reductions in quality. In addition, site management should be compatible for the focal species and for wider plant and insect diversity. We conducted factorial experimental management trials to understand effects of cutting and rotovation on the height and structure of vegetation containing the larval host plant Tor-grass Brachypodium rupestre. We monitored vegetation height, B. rupestre cover and plant diversity, and T. acteon larval presence over four years. Rotovation and cutting differed in their effects on habitat structure and larval occupancy relative to controls. Vegetation height and host plant cover, the most important components of habitat quality for T. acteon, were faster to recover to suitable levels on cut plots. However, larval occupancy increased more quickly on rotovated plots, where plant species diversity was also higher. Results suggest that due to initial negative impacts of interventions on T. acteon occupancy, low frequency or low-intensity management, such as managing sections of a site every three years, is advisable. Our results show that rotovation or cutting the sward can be suitable for mid-successional grassland species such as Lulworth Skipper on sites where grazing might be problematic. Rotational grazing or rotovation can maintain suitable conditions for habitat specialist insects requiring a range of different grassland conditions, serving wider conservation goals. Supplementary Information The online version contains supplementary material available at 10.1007/s10841-024-00638-4.
Collapse
Affiliation(s)
- Rachel Jones
- Environment & Sustainability Institute, University of Exeter, Penryn Campus, Cornwall, TR10 9FE UK
- Butterfly Conservation, Manor Yard, East Lulworth, Dorset, BH20 5QP UK
| | - Robert Wilson
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, 28006 Spain
| | - Ilya Maclean
- Environment & Sustainability Institute, University of Exeter, Penryn Campus, Cornwall, TR10 9FE UK
| | - Nigel Bourn
- Butterfly Conservation, Manor Yard, East Lulworth, Dorset, BH20 5QP UK
| |
Collapse
|
4
|
DiLeo MF, Nair A, Kardos M, Husby A, Saastamoinen M. Demography and environment modulate the effects of genetic diversity on extinction risk in a butterfly metapopulation. Proc Natl Acad Sci U S A 2024; 121:e2309455121. [PMID: 39116125 PMCID: PMC11331070 DOI: 10.1073/pnas.2309455121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Linking genetic diversity to extinction is a common goal in genomic studies. Recently, a debate has arisen regarding the importance of genetic variation in conservation as some studies have failed to find associations between genome-wide genetic diversity and extinction risk. However, only rarely are genetic diversity and fitness measured together in the wild, and typically demographic history and environment are ignored. It is therefore difficult to infer whether a lack of an association is real or obscured by confounding factors. To address these shortcomings, we analyzed genetic data from 7,501 individuals with extinction data from 279 meadows and mortality of 1,742 larval nests in a butterfly metapopulation. We found a strong negative association between genetic diversity and extinction when considering only heterozygosity in models. However, this association disappeared when accounting for ecological covariates, suggesting a confounding between demography and genetics and a more complex role for heterozygosity in extinction risk. Modeling interactions between heterozygosity and demographic variables revealed that associations between extinction and heterozygosity were context-dependent. For example, extinction declined with increasing heterozygosity in large, but not currently small populations, although negative associations between heterozygosity, extinction, and mortality were detected in small populations with a recent history of decline. We conclude that low genetic diversity is an important predictor of extinction, predicting >25% increase in extinction beyond ecological factors in certain contexts. These results highlight that inferences about the importance of genetic diversity for population viability should not rely on genomic data alone but require investments in obtaining demographic and environmental data from natural populations.
Collapse
Affiliation(s)
- Michelle F. DiLeo
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki00014, Finland
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources, Peterborough, ONK9L 1Z8, Canada
| | - Abhilash Nair
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki00014, Finland
| | - Marty Kardos
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA98112
| | - Arild Husby
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala75236, Sweden
| | - Marjo Saastamoinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki00014, Finland
| |
Collapse
|
5
|
Zeng ZA, Wolkovich EM. Weak evidence of provenance effects in spring phenology across Europe and North America. THE NEW PHYTOLOGIST 2024. [PMID: 38494441 DOI: 10.1111/nph.19674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
Forecasting the biological impacts of climate change requires understanding how species respond to warmer temperatures through interannual flexible variation vs through adaptation to local conditions. Yet, we often lack this information entirely or find conflicting evidence across studies, which is the case for spring phenology. We synthesized common garden studies across Europe and North America that reported spring event dates for a mix of angiosperm and gymnosperm tree species in the northern hemisphere, capturing data from 384 North American and 101 European provenances (i.e. populations) with observations from 1962 to 2019, alongside autumn event data when provided. Across continents, we found no evidence of provenance effects in spring phenology, but strong clines with latitude and mean annual temperature in autumn. These effects, however, appeared to diverge by continent and species type (gymnosperm vs angiosperm), with particularly pronounced clines in North America in autumn events. Our results suggest flexible, likely plastic responses, in spring phenology with warming, and potential limits - at least in the short term - due to provenance effects for autumn phenology. They also highlight that, after over 250 yr of common garden studies on tree phenology, we still lack a holistic predictive model of clines across species and phenological events.
Collapse
Affiliation(s)
- Ziyun Alina Zeng
- Forest Resources Management, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Elizabeth M Wolkovich
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
6
|
Milles A, Banitz T, Bielcik M, Frank K, Gallagher CA, Jeltsch F, Jepsen JU, Oro D, Radchuk V, Grimm V. Local buffer mechanisms for population persistence. Trends Ecol Evol 2023; 38:1051-1059. [PMID: 37558537 DOI: 10.1016/j.tree.2023.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023]
Abstract
Assessing and predicting the persistence of populations is essential for the conservation and control of species. Here, we argue that local mechanisms require a better conceptual synthesis to facilitate a more holistic consideration along with regional mechanisms known from metapopulation theory. We summarise the evidence for local buffer mechanisms along with their capacities and emphasise the need to include multiple buffer mechanisms in studies of population persistence. We propose an accessible framework for local buffer mechanisms that distinguishes between damping (reducing fluctuations in population size) and repelling (reducing population declines) mechanisms. We highlight opportunities for empirical and modelling studies to investigate the interactions and capacities of buffer mechanisms to facilitate better ecological understanding in times of ecological upheaval.
Collapse
Affiliation(s)
- Alexander Milles
- Department of Plant Ecology and Nature Conservation, University of Potsdam, Am Muhlenberg 3, 14476, Potsdam-Golm, Germany; Department of Ecological Modelling, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Nationalparkamt Hunsrück-Hochwald, Research, Biotope- and Wildlife Management, Brückener Straße 24, 55765 Birkenfeld, Germany.
| | - Thomas Banitz
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Milos Bielcik
- Freie Universität Berlin, Institute of Biology, Altensteinstr. 6, 14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Karin Frank
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; University of Osnabrück, Institute for Environmental Systems Research, Barbarastr. 12, 49076 Osnabrück, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany
| | - Cara A Gallagher
- Department of Plant Ecology and Nature Conservation, University of Potsdam, Am Muhlenberg 3, 14476, Potsdam-Golm, Germany
| | - Florian Jeltsch
- Department of Plant Ecology and Nature Conservation, University of Potsdam, Am Muhlenberg 3, 14476, Potsdam-Golm, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Jane Uhd Jepsen
- Department of Arctic Ecology, Norwegian Institute for Nature Research, Fram Centre, Hjalmar Johansens gt.14, 9007 Tromsø, Norway
| | - Daniel Oro
- Centre d'Estudis Avançats de Blanes (CEAB - CSIC), Acces Cala Sant Francesc 14, 17300 Blanes, Girona, Spain.
| | - Viktoriia Radchuk
- Ecological Dynamics Department, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Volker Grimm
- Department of Plant Ecology and Nature Conservation, University of Potsdam, Am Muhlenberg 3, 14476, Potsdam-Golm, Germany; Department of Ecological Modelling, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Musgrove J, Gilbert F. Negative density-dependence buffers against mismatch-induced population decline in the Sinai baton blue butterfly. Oecologia 2023; 203:1-11. [PMID: 37733112 DOI: 10.1007/s00442-023-05449-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Phenological mismatches caused by climate change pose a major threat to global biodiversity, yet relatively few studies have reported population declines resulting from mismatch. It has been hypothesised that density effects may underlie this lack of observed responses by buffering against mismatch-induced population decline. We developed an individual-based model of the critically endangered Sinai baton blue butterfly (Pseudophilotes sinaicus) and its hostplant Sinai thyme (Thymus decussatus), parameterised using real field data, to test this hypothesis. Our model showed that the baton blue experiences demographic consequences under only 5 days of phenological mismatch, but that this threshold was increased to 14 days with the inclusion of density-dependent juvenile mortality. The inclusion of density effects also led to the replication of population cycles observed in nature, supporting the ability of our model to accurately represent the baton blue's ecology. These results add to a growing body of literature suggesting that density effects may underlie the observed lack of demographic responses to mismatch in wild populations. However, these buffers may be short-lived in extreme mismatch scenarios, providing a false sense of security against a looming threat of population collapse.
Collapse
Affiliation(s)
- Jamie Musgrove
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, QC, H3A 1B1, Canada.
| | - Francis Gilbert
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, England
| |
Collapse
|
8
|
Halali S, Saastamoinen M. Exploring links between climatic predictability and the evolution of within- and transgenerational plasticity. Ecol Evol 2022; 12:e9662. [PMID: 36619708 PMCID: PMC9798148 DOI: 10.1002/ece3.9662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/20/2022] [Accepted: 11/19/2022] [Indexed: 12/30/2022] Open
Abstract
In variable environments, phenotypic plasticity can increase fitness by providing tight environment-phenotype matching. However, adaptive plasticity is expected to evolve only when the future selective environment can be predicted based on the prevailing conditions. That is, the juvenile environment should be predictive of the adult environment (within-generation plasticity) or the parental environment should be predictive of the offspring environment (transgenerational plasticity). Moreover, the environmental predictability can also shape transient responses such as stress response in an adaptive direction. Here, we test links between environmental predictability and the evolution of adaptive plasticity by combining time series analyses and a common garden experiment using temperature as a stressor in a temperate butterfly (Melitaea cinxia). Time series analyses revealed that across season fluctuations in temperature over 48 years are overall predictable. However, within the growing season, temperature fluctuations showed high heterogeneity across years with low autocorrelations and the timing of temperature peaks were asynchronous. Most life-history traits showed strong within-generation plasticity for temperature and traits such as body size and growth rate broke the temperature-size rule. Evidence for transgenerational plasticity, however, was weak and detected for only two traits each in an adaptive and non-adaptive direction. We suggest that the low predictability of temperature fluctuations within the growing season likely disfavors the evolution of adaptive transgenerational plasticity but instead favors strong within-generation plasticity.
Collapse
Affiliation(s)
- Sridhar Halali
- Research Centre for Ecological Change, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Marjo Saastamoinen
- Research Centre for Ecological Change, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
9
|
Keaveny EC, Dillon ME. Phat Queens Emerge Fashionably Late: Body Size and Condition Predict Timing of Spring Emergence for Queen Bumble Bees. INSECTS 2022; 13:870. [PMID: 36292818 PMCID: PMC9604070 DOI: 10.3390/insects13100870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
For insects, the timing of many life history events (phenology) depends on temperature cues. Body size is a critical mediator of insect responses to temperature, so may also influence phenology. The determinants of spring emergence of bumble bee queens are not well understood, but body size is likely important for several reasons. In fall, queens accumulate energy stores to fuel overwinter survival. Accumulation of fat stores prior to and depletion of fat stores during overwintering are likely size-dependent: larger queens can accumulate more lipids and have lower mass-specific metabolic rates. Therefore, larger queens and queens in relatively better condition may have delayed depletion of energy stores, allowing for later spring emergence. To test whether timing of spring emergence is associated with body size and condition, we captured 295 Bombus huntii queens in Laramie, WY, during the 2020 and 2021 growing seasons, weighed them, and measured intertegular width (a size metric unaffected by variation in feeding and hydration state). Early emerging queens were smaller than later emerging queens across years. Mass relative to intertegular width increased as the season progressed suggesting, as predicted, that body condition influences the timing of spring emergence for these crucial pollinators.
Collapse
Affiliation(s)
- Ellen C. Keaveny
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
- Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| | - Michael E. Dillon
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
- Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
10
|
Yang LH, Swan K, Bastin E, Aguilar J, Cenzer M, Codd A, Gonzalez N, Hayes T, Higgins A, Lor X, Macharaga C, McMunn M, Oto K, Winarto N, Wong D, Yang T, Afridi N, Aguilar S, Allison A, Ambrose‐Winters A, Amescua E, Apse M, Avoce N, Bastin K, Bolander E, Burroughs J, Cabrera C, Candy M, Cavett A, Cavett M, Chang L, Claret M, Coleman D, Concha J, Danzer P, DaRosa J, Dufresne A, Duisenberg C, Earl A, Eckey E, English M, Espejo A, Faith E, Fang A, Gamez A, Garcini J, Garcini J, Gilbert‐Igelsrud G, Goedde‐Matthews K, Grahn S, Guerra P, Guerra V, Hagedorn M, Hall K, Hall G, Hammond J, Hargadon C, Henley V, Hinesley S, Jacobs C, Johnson C, Johnson T, Johnson Z, Juchau E, Kaplan C, Katznelson A, Keeley R, Kubik T, Lam T, Lansing C, Lara A, Le V, Lee B, Lee K, Lemmo M, Lucio S, Luo A, Malakzay S, Mangney L, Martin J, Matern W, McConnell B, McHale M, McIsaac G, McLennan C, Milbrodt S, Mohammed M, Mooney‐McCarthy M, Morgan L, Mullin C, Needles S, Nunes K, O'Keeffe F, O'Keeffe O, Osgood G, Padilla J, Padilla S, Palacio I, Panelli V, Paulson K, et alYang LH, Swan K, Bastin E, Aguilar J, Cenzer M, Codd A, Gonzalez N, Hayes T, Higgins A, Lor X, Macharaga C, McMunn M, Oto K, Winarto N, Wong D, Yang T, Afridi N, Aguilar S, Allison A, Ambrose‐Winters A, Amescua E, Apse M, Avoce N, Bastin K, Bolander E, Burroughs J, Cabrera C, Candy M, Cavett A, Cavett M, Chang L, Claret M, Coleman D, Concha J, Danzer P, DaRosa J, Dufresne A, Duisenberg C, Earl A, Eckey E, English M, Espejo A, Faith E, Fang A, Gamez A, Garcini J, Garcini J, Gilbert‐Igelsrud G, Goedde‐Matthews K, Grahn S, Guerra P, Guerra V, Hagedorn M, Hall K, Hall G, Hammond J, Hargadon C, Henley V, Hinesley S, Jacobs C, Johnson C, Johnson T, Johnson Z, Juchau E, Kaplan C, Katznelson A, Keeley R, Kubik T, Lam T, Lansing C, Lara A, Le V, Lee B, Lee K, Lemmo M, Lucio S, Luo A, Malakzay S, Mangney L, Martin J, Matern W, McConnell B, McHale M, McIsaac G, McLennan C, Milbrodt S, Mohammed M, Mooney‐McCarthy M, Morgan L, Mullin C, Needles S, Nunes K, O'Keeffe F, O'Keeffe O, Osgood G, Padilla J, Padilla S, Palacio I, Panelli V, Paulson K, Pearson J, Perez T, Phrakonekham B, Pitsillides I, Preisler A, Preisler N, Ramirez H, Ransom S, Renaud C, Rocha T, Saris H, Schemrich R, Schoenig L, Sears S, Sharma A, Siu J, Spangler M, Standefer S, Strickland K, Stritzel M, Talbert E, Taylor S, Thomsen E, Toups K, Tran K, Tran H, Tuqiri M, Valdes S, VanVorhis G, Vue S, Wallace S, Whipple J, Yang P, Ye M, Yo D, Zeng Y. Different factors limit early- and late-season windows of opportunity for monarch development. Ecol Evol 2022; 12:e9039. [PMID: 35845370 PMCID: PMC9273743 DOI: 10.1002/ece3.9039] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 11/12/2022] Open
Abstract
Seasonal windows of opportunity are intervals within a year that provide improved prospects for growth, survival, or reproduction. However, few studies have sufficient temporal resolution to examine how multiple factors combine to constrain the seasonal timing and extent of developmental opportunities. Here, we document seasonal changes in milkweed (Asclepias fascicularis)-monarch (Danaus plexippus) interactions with high resolution throughout the last three breeding seasons prior to a precipitous single-year decline in the western monarch population. Our results show early- and late-season windows of opportunity for monarch recruitment that were constrained by different combinations of factors. Early-season windows of opportunity were characterized by high egg densities and low survival on a select subset of host plants, consistent with the hypothesis that early-spring migrant female monarchs select earlier-emerging plants to balance a seasonal trade-off between increasing host plant quantity and decreasing host plant quality. Late-season windows of opportunity were coincident with the initiation of host plant senescence, and caterpillar success was negatively correlated with heatwave exposure, consistent with the hypothesis that late-season windows were constrained by plant defense traits and thermal stress. Throughout this study, climatic and microclimatic variations played a foundational role in the timing and success of monarch developmental windows by affecting bottom-up, top-down, and abiotic limitations. More exposed microclimates were associated with higher developmental success during cooler conditions, and more shaded microclimates were associated with higher developmental success during warmer conditions, suggesting that habitat heterogeneity could buffer the effects of climatic variation. Together, these findings show an important dimension of seasonal change in milkweed-monarch interactions and illustrate how different biotic and abiotic factors can limit the developmental success of monarchs across the breeding season. These results also suggest the potential for seasonal sequences of favorable or unfavorable conditions across the breeding range to strongly affect monarch population dynamics.
Collapse
|
11
|
Not Too Warm, Not Too Cold: Thermal Treatments to Slightly Warmer or Colder Conditions from Mother’s Origin Can Enhance Performance of Montane Butterfly Larvae. BIOLOGY 2022; 11:biology11060915. [PMID: 35741436 PMCID: PMC9219776 DOI: 10.3390/biology11060915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary Extreme weather events and climate change can alter organismal development and, in turn, affect species survival, community composition, and ecosystem processes and services. We examined the performance of butterfly larvae of five montane Erebia species from the Swiss Alps under three thermal scenarios: at, above, or below those at the elevation where their mother originated. We found evidence of better larval performance in temperature treatments associated with low and middle elevations and a decreased performance at temperature treatments associated with higher elevations. In contrast, larvae performed poorly in thermal treatments that differed strongly from maternal conditions. The inclusion of additional life history stages in future studies could further advance the understanding of factors affecting thermal tolerance in cold-adapted Erebia butterflies. Abstract Climate change alters organismal performance via shifts in temperature. However, we know little about the relative fitness impacts of climate variability and how cold-adapted ectotherms mediate these effects. Here, we advance the field of climate change biology by directly testing for species performance, considering the effects of different thermal environments at the first developmental stage of larvae. We conducted our experiments in climatic chambers (2019–2020) using five cold-adapted butterflies of the genus Erebia (Erebia aethiops, Erebia cassioides, Erebia manto, Erebia tyndarus, Erebia nivalis). Larvae were reared indoors and were treated with higher and lower temperatures than those of their mothers’ origins. Overall, we found evidence of better performance at warmer temperatures and a decreased performance at lower temperatures, and larvae were able to tolerate small temperature changes from mother’s origin. Warmer conditions, however, were unfavorable for E. nivalis, indicative of its limited elevational range and its poor ability to mediate a variety of thermal conditions. Further, larvae generally performed poorly where there was a large difference in thermal regimen from that of their maternal origin. Future efforts should include additional life history stages and focus on a more mechanistic understanding of species thermal tolerance. Such studies could increase the realism of predicted responses to climate change and could account for asynchronous changes in species development, which will alter community composition and ecosystem functioning.
Collapse
|
12
|
DiLeo MF, Nonaka E, Husby A, Saastamoinen M. Effects of environment and genotype on dispersal differ across departure, transfer and settlement in a butterfly metapopulation. Proc Biol Sci 2022; 289:20220322. [PMID: 35673865 PMCID: PMC9174707 DOI: 10.1098/rspb.2022.0322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Active dispersal is driven by extrinsic and intrinsic factors at the three stages of departure, transfer and settlement. Most empirical studies capture only one stage of this complex process, and knowledge of how much can be generalized from one stage to another remains unknown. Here we use genetic assignment tests to reconstruct dispersal across 5 years and 232 habitat patches of a Glanville fritillary butterfly (Melitaea cinxia) metapopulation. We link individual dispersal events to weather, landscape structure, size and quality of habitat patches, and individual genotype to identify the factors that influence the three stages of dispersal and post-settlement survival. We found that nearly all tested factors strongly affected departure probabilities, but that the same factors explained very little variation in realized dispersal distances. Surprisingly, we found no effect of dispersal distance on post-settlement survival. Rather, survival was influenced by weather conditions, quality of the natal habitat patch, and a strong interaction between genotype and occupancy status of the settled habitat patch, with more mobile genotypes having higher survival as colonists rather than as immigrants. Our work highlights the multi-causality of dispersal and that some dispersal costs can only be understood by considering extrinsic and intrinsic factors and their interaction across the entire dispersal process.
Collapse
Affiliation(s)
- Michelle F. DiLeo
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland,Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry, Peterborough, ON, Canada
| | - Etsuko Nonaka
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Arild Husby
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Marjo Saastamoinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Stewart JE, Maclean IMD, Trujillo G, Bridle J, Wilson RJ. Climate-driven variation in biotic interactions provides a narrow and variable window of opportunity for an insect herbivore at its ecological margin. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210021. [PMID: 35184597 PMCID: PMC8859521 DOI: 10.1098/rstb.2021.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Climate-driven geographic range shifts have been associated with transitions between dietary specialism and generalism at range margins. The mechanisms underpinning these often transient niche breadth modifications are poorly known, but utilization of novel resources likely depends on phenological synchrony between the consumer and resource. We use a climate-driven range and host shift by the butterfly Aricia agestis to test how climate-driven changes in host phenology and condition affect phenological synchrony, and consider implications for host use. Our data suggest that the perennial plant that was the primary host before range expansion is a more reliable resource than the annual Geraniaceae upon which the butterfly has become specialized in newly colonized parts of its range. In particular, climate-driven phenological variation in the novel host Geranium dissectum generates a narrow and variable 'window of opportunity' for larval productivity in summer. Therefore, although climatic change may allow species to shift hosts and colonise novel environments, specialization on phenologically limited hosts may not persist at ecological margins as climate change continues. We highlight the potential role for phenological (a)synchrony in determining lability of consumer-resource associations at range margins and the importance of considering causes of synchrony in biotic interactions when predicting range shifts. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- James E. Stewart
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4PS, UK
| | - Ilya M. D. Maclean
- Environment & Sustainability Institute, University of Exeter, Penryn Campus, Exeter TR10 9FE, UK
| | - Gara Trujillo
- International Institute for Industrial Environmental Economics (IIIEE), Lund University, P.O. Box 196, 22100 Lund, Sweden
| | - Jon Bridle
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Robert J. Wilson
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4PS, UK
- Environment & Sustainability Institute, University of Exeter, Penryn Campus, Exeter TR10 9FE, UK
- Departmento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, Madrid E28006, Spain
| |
Collapse
|
14
|
Gireesh M, Joseph SV. Influence of Abiotic Factors on Walking Behavior of Hunting Billbugs (Coleoptera: Curculionidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:101-108. [PMID: 34865051 DOI: 10.1093/jee/toab217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Indexed: 06/13/2023]
Abstract
The hunting billbug, Sphenophorus venatus vestitus Chittenden, is an important insect pest of warm-season turfgrass. Larvae and adult S. venatus vestitus feed on turfgrass and affect normal grass growth and development. In sod farms and golf courses, management sprays are typically confined to affected areas because of the high insecticide and application costs. Understanding the walking behavior of S. venatus vestitus adults would help us to refine management tactics. Thus, the objective of this study was to determine the influence of abiotic factors on the walking behavior of adult S. venatus vestitus. A series of laboratory, semifield, and field assays were conducted in 2019 and 2020. For the laboratory assays, field-collected S. venatus vestitus adults were acclimated at 15, 18, 21, 28, and 32°C for 24 h, and the distances walked by these pre-acclimated adults were measured on sand and filter paper substrates using Noldus EthoVision XT software. For the semifield assays, the total and net distances walked by pre-acclimated adults were measured on a paved indoor surface. Sphenophorus venatus vestitus males and females moved farther when the temperature increased from 15 to 28°C in the laboratory and semifield assays. For the field assays, field-collected S. venatus vestitus adults were not acclimated. The total and net distances walked by the adults were documented on a paved surface. Increases in temperature and relative humidity did not affect the distance moved by adults, but an increase in wind speed reduced the distance moved.
Collapse
Affiliation(s)
- Midhula Gireesh
- Department of Entomology, University of Georgia, Griffin, GA, USA
| | - Shimat V Joseph
- Department of Entomology, University of Georgia, Griffin, GA, USA
| |
Collapse
|
15
|
Hällfors MH, Pöyry J, Heliölä J, Kohonen I, Kuussaari M, Leinonen R, Schmucki R, Sihvonen P, Saastamoinen M. Combining range and phenology shifts offers a winning strategy for boreal Lepidoptera. Ecol Lett 2021; 24:1619-1632. [PMID: 34101328 DOI: 10.1111/ele.13774] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/15/2021] [Accepted: 04/14/2021] [Indexed: 01/01/2023]
Abstract
Species can adapt to climate change by adjusting in situ or by dispersing to new areas, and these strategies may complement or enhance each other. Here, we investigate temporal shifts in phenology and spatial shifts in northern range boundaries for 289 Lepidoptera species by using long-term data sampled over two decades. While 40% of the species neither advanced phenology nor moved northward, nearly half (45%) used one of the two strategies. The strongest positive population trends were observed for the minority of species (15%) that both advanced flight phenology and shifted their northern range boundaries northward. We show that, for boreal Lepidoptera, a combination of phenology and range shifts is the most viable strategy under a changing climate. Effectively, this may divide species into winners and losers based on their propensity to capitalize on this combination, with potentially large consequences on future community composition.
Collapse
Affiliation(s)
- Maria H Hällfors
- Research Centre for Environmental Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Life-history Evolution Research Group, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Juha Pöyry
- Biodiversity Centre, Finnish Environment Institute (SYKE), Helsinki, Finland
| | - Janne Heliölä
- Biodiversity Centre, Finnish Environment Institute (SYKE), Helsinki, Finland
| | - Ilmari Kohonen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Mikko Kuussaari
- Biodiversity Centre, Finnish Environment Institute (SYKE), Helsinki, Finland
| | - Reima Leinonen
- Kainuu Centre for Economic Development, Transport and the Environment, Kajaani, Finland
| | | | - Pasi Sihvonen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Marjo Saastamoinen
- Research Centre for Environmental Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Life-history Evolution Research Group, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|