1
|
Wang H, Yuan X, Han J, Wu Z, Ma Z, Shi F, Luo Z, Chen Z, Guo C, Yuan G, He X, Ling Z, Meng L, Shen R, Huang J, Xu R. RO5126766 attenuates osteoarthritis by inhibiting osteoclastogenesis and protecting chondrocytes through mediating the ERK pathway. J Orthop Translat 2025; 52:27-39. [PMID: 40231159 PMCID: PMC11995706 DOI: 10.1016/j.jot.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/09/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Background Osteoarthritis (OA) is a degenerative joint disease that remains challenging to treat due to lack of complete understanding of its pathogenesis. Previous studies have identified RO5126766 (RO) as a small molecule compound that inhibited RAF/MEK-ERK pathway and garnered much interest for its anti-cancer properties. But its role in the treatment of OA remains unclear. Methods This study employed the anterior cruciate ligament transection (ACLT) procedure to create an OA model in mice. The effects of RO on pathological changes in articular cartilage and subchondral bone were assessed using micro-CT and histological staining. Mice received peritoneal injections of RO at 1 mg/kg and 5 mg/kg biweekly for 4 weeks after ACLT, while control mice received saline. In vitro, bone marrow-derived macrophages were cultured to examine the effects of RO on osteoclast activation using immunofluorescence, TRAP staining, and bone resorption assays. The inflammatory degeneration of chondrocytes and gene expression levels were evaluated using staining and RT-qPCR. Western blot and immunohistochemistry were used to analyze MAPK signaling and autophagy-related protein expression, investigating RO's molecular mechanism in OA treatment. Human single-cell data were also analyzed to identify genes and pathways upregulated in OA tissues. Results Our findings showed that RO protects subchondral bone by inhibiting osteoclast formation in the ACLT mouse model of OA. In vitro, RO was shown to inhibit osteoclast differentiation and reduce inflammatory degeneration of chondrocytes. Mechanistically, RO counteracted subchondral osteoclast hyperactivation by suppressing the ERK/c-fos/NFATc1 signaling pathway. Additionally, RO inhibited LPS-induced inflammatory degeneration of chondrocytes and enhanced autophagy via the ERK pathway. Single-cell analysis further confirmed significant upregulation of the ERK signaling pathway in human OA tissues. Conclusions Overall, our findings suggested that RO inhibited osteoclast differentiation and protected articular cartilage, suggesting its potential as a novel treatment for OA. Translational potential of this article In this study, we have, for the first time, substantiated the therapeutic potential of RO in the treatment of OA. By demonstrating its ability to inhibit osteoclast differentiation and protect articular cartilage, RO could offer a new avenue for disease-modifying treatments in OA. Thus, this paper provides valuable insights into understanding the molecular mechanisms and treatment of OA.
Collapse
Affiliation(s)
- Han Wang
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73rd Group Military Hospital of People's Liberation Army), School of Medicine, Xiamen University, Xiamen, 361003, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Xiwen Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Jie Han
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zuoxing Wu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zheru Ma
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Fan Shi
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zhengqiong Luo
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zihan Chen
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Chenyang Guo
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Guixin Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Xuemei He
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Zemin Ling
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lin Meng
- Department of Electronic and Computer Engineering, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Rong Shen
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73rd Group Military Hospital of People's Liberation Army), School of Medicine, Xiamen University, Xiamen, 361003, China
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Jianming Huang
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73rd Group Military Hospital of People's Liberation Army), School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Ren Xu
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73rd Group Military Hospital of People's Liberation Army), School of Medicine, Xiamen University, Xiamen, 361003, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361000, China
| |
Collapse
|
2
|
Zhang T, Wang W, Sun J, Luo L, Li Y, Xu Z, Xu W. MiR-455-5p Mitigates Interleukin-1 β-induced Chondrocyte Damage Linked to Osteoarthritis by Targeting TNFAIP8. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2025; 68:100-108. [PMID: 40170451 DOI: 10.4103/ejpi.ejpi-d-24-00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/03/2025] [Indexed: 04/03/2025]
Abstract
ABSTRACT MicroRNAs have been extensively implicated in osteoarthritis (OA) progression. Our study aims to investigate the impact of miR-455-5p on OA progression and related molecular mechanisms. Cartilage tissues were collected from patients with OA and femoral neck fractures. An in vitro OA model was established by inducing injury in human chondrocytes (CHON-001) with interleukin (IL)-1 β. Cell viability and apoptosis were measured by cell counting kit-8 and flow cytometry assays, respectively. An enzyme-linked immunosorbent assay was performed to measure the concentrations of inflammation factors, and oxidative stress was evaluated by detecting superoxide dismutase activity and malondialdehyde levels. TargetScan was used to predict the binding sites between miR-455-5p and tumor necrosis factor (TNF)-α-induced protein 8 (TNFAIP8), which were then confirmed by dual-luciferase reporter assays. Quantitative real-time polymerase chain reaction and western blot analysis were employed to measure the related molecular markers. Our initial observations showed that the expression of miR-455-5p was downregulated in OA cartilage and IL-1 β-treated CHON-001 cells compared to normal cartilage tissues and untreated cells. Overexpression of miR-455-5p significantly protected CHON-001 cells from IL-1 β-induced injury by recovering cell viability, and inhibiting inflammation, apoptosis, and oxidative stress. TNFAIP8 was targeted by miR-455-5p and negatively regulated by miR-455-5p. TNFAIP8 knockdown imitated, while overexpression reversed the effects mediated by miR-455-5p in IL-1 β-induced chondrocyte injury, as further confirmed by the protein levels of iNOS, cleaved caspase-3, NQO1, Col2a1, and MMP13. Collectively, these results suggest that miR-455-5p may serve as a new therapeutic target for OA by targeting TNFAIP8 to alleviate IL-1 β-induced chondrocyte injury.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Immunology, Basic and Forensic Medicine of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| | - Wei Wang
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| | - Jinlei Sun
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| | - Long Luo
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| | - Yuan Li
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| | - Zhixiong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| | - Wensheng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| |
Collapse
|
3
|
Wang W, Hong J, Cao T, Ye F, Gao J, Qin S. Identification of Key Chondrocyte Apoptosis-Related Genes in Osteoarthritis Based on Weighted Gene Co-Expression Network Analysis and Experimental Verification. Crit Rev Immunol 2025; 45:15-29. [PMID: 39612274 DOI: 10.1615/critrevimmunol.2024051935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Osteoarthritis (OA) is the primary cause of disability worldwide. Chondrocyte apoptosis has important implications for OA onset and progression. This work was designed to explore the mechanisms of chondrocyte apoptosis in OA and identify key chondrocyte apoptosis-related genes (CARGs). GSE32317 and GSE55235 datasets were acquired from the Gene Expression Omnibus (GEO) database. OA-associated module genes were determined via weighted gene co-expression network analysis (WGCNA) in GSE32317. CARGs were acquired from public databases. ClusterProfiler was employed for GO and KEGG analyses. Protein-protein interaction (PPI) network establishment was realized via the STRING database and Cytoscape, and the hub genes were screened by MCC, MNC, and DMNC algorithms of cyto-Hubba. The diagnostic values of the hub CARGs in OA in GSE55235 were verified via receiver operating characteristic (ROC) curve analysis. C28/I2 cells were stimulated with IL-1Β to establish the in vitro OA model. WGCNA identified 9,141 OA-related genes and 248 CARGs, resulting in 75 CARGs in OA. GO and KEGG analyses demonstrated that the 75 CARGs were primarily enriched in response to lipopolysaccharide, transcription regulator complex, and DNA-binding transcription factor binding, along with NF-kappa B and TNF signaling pathways. NFKB1 and ICAM1 were identified as the hub CARGs in OA through the three algorithms, which showed favorable prognostic values for OA. Notably, both bioinformatics analysis and in vitro assays revealed upregulated NFKB1 and ICAM1 expression in OA. NFKB1 and ICAM1 were the hub CARGs in OA, and might serve as diagnostic signatures and therapeutic targets for OA therapy.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopaedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junyi Hong
- Department of Orthopaedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tianyi Cao
- Department of Orthopaedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Fusheng Ye
- Department of Orthopaedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junwei Gao
- Department of Orthopaedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shumei Qin
- Affiliated Xiaoshan Hospital, Hangzhou Normal University
| |
Collapse
|
4
|
Geng S, Hu B, Guan Y, Jiang Y, Shu Z, Li C, Huang G. Advances of the multifaceted functions of PSTPIP2 in inflammatory diseases. Front Immunol 2024; 15:1492878. [PMID: 39660128 PMCID: PMC11628490 DOI: 10.3389/fimmu.2024.1492878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
The complex interaction between the immune system and autoinflammatory disorders highlights the centrality of autoimmune mechanisms in the pathogenesis of autoinflammatory diseases. With the exploration of PSTPIP2, it has been discovered to play an inhibitory role in immune diseases, suggesting its potential utility in the research and treatment of rheumatic diseases. This review outlines the mechanisms of PSTPIP2 in chronic multifocal osteomyelitis (CMO), rheumatoid arthritis (RA), synovitis-acne-pustulosis-hyperostosis-osteitis (SAPHO) syndrome, liver diseases, renal diseases, pressure ulcer sepsis and diabetic obesity. The mechanisms include inhibiting the IL-1β inflammatory responses, NF-κB, ERK phosphorylation etc., promoting Erβ, and modulating the polarization of macrophage to prevent the inflammatory diseases. This review summarized current findings and offered perspectives on future research directions, laying a foundation for applying of PSTPIP2 in inflammatory diseases.
Collapse
Affiliation(s)
- Shaohui Geng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Bohan Hu
- School of Chinese Materia Medica , Beijing University of Chinese Medicine, Beijing, China
| | - Yiwei Guan
- School of Chinese Materia Medica , Beijing University of Chinese Medicine, Beijing, China
| | - Yijin Jiang
- School of Chinese Materia Medica , Beijing University of Chinese Medicine, Beijing, China
| | - Zixuan Shu
- School of Chinese Materia Medica , Beijing University of Chinese Medicine, Beijing, China
| | - Chen Li
- Department of Rheumatology, Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Halabitska I, Oksenych V, Kamyshnyi O. Exploring the Efficacy of Alpha-Lipoic Acid in Comorbid Osteoarthritis and Type 2 Diabetes Mellitus. Nutrients 2024; 16:3349. [PMID: 39408316 PMCID: PMC11478474 DOI: 10.3390/nu16193349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives. The comorbidity of osteoarthritis and type 2 diabetes mellitus poses a complex clinical challenge, complicating patient management due to overlapping pathophysiological mechanisms. This research aims to analyze the exacerbation of clinical symptoms and biochemical markers in patients with OA and T2DM compared to those with OA alone. Methods. We employed various assessment methods to evaluate inflammation, oxidative stress, and glycemic control in both cohorts. This study includes the administration of alpha-lipoic acid (ALA) to patients with comorbid OA and T2DM, monitoring its effects on joint function, inflammatory markers, oxidative stress levels, and glycemic control. Results. The findings indicate that T2DM significantly worsens clinical symptoms and biochemical markers in OA patients. Those with both conditions exhibited elevated indicators of inflammation and oxidative stress compared to OA-only patients. Additionally, correlations among metabolic, psychological, and inflammatory factors were identified. Body mass index emerged as a potential predictor for the deterioration of evaluated parameters. The analysis revealed that ALA administration led to statistically significant improvements in WOMAC pain scores, the Lequesne Algofunctional Index, and the AIMS-P compared to the control group. Conclusions. Further research into ALA's effects on OA progression in patients with comorbidities is essential for developing personalized treatment approaches.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
6
|
Wang X, Wang Y, Luo J, Wang L, Guo L, Zhu X. PSTPIP2 is associated with disease severity in patients with pressure ulcer sepsis and has anti-inflammatory effects. Allergol Immunopathol (Madr) 2023; 51:23-28. [PMID: 37695226 DOI: 10.15586/aei.v51i5.939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/04/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND One of the common adverse reactions in patients with pressure ulcers (PU) is sepsis, which is mainly related to microbial infections caused by pathogenic organisms. The activation of nuclear factor kappa-B (NF-κB) frequently occurs in conjunction with pathogenic microbial infections. Proline-serine-threonine-phosphatase-interacting protein 2 (PSTPIP2) is closely related to inflammatory disorders. The role and mechanism of PSTPIP2 in sepsis because of pressure ulcers is unclear. In this study, we discovered that PSTPIP2 was lowly expressed in peripheral blood of patients with sepsis induced by pressure ulcers. METHODS Peripheral blood was collected from 20 patients with sepsis due to pressure ulcers and 10 healthy controls, and the expression of PSTPIP2 in peripheral blood was discovered by polymerase chain reaction and Western blot analysis. Information on the clinical characteristics of patients was summarized, and the expression data of PSTPIP2 were correlated with the patients' acute physiology and chronic health evaluation (APACHE) II score, sequential organ failure assessment (SOFA) score, and C-reactive protein (CRP) and procalcitonin (PCT) scores by Spearman's correlation analysis. One of the main mediators of Gram-negative sepsis is lipopolysaccharide (LPS). In order to establish an in vitro sepsis model, THP-1 cells were treated with LPS, and the cells were transfected with PSTPIP2. Contents of interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor-α (TNF-α) in each group of cells were detected by enzyme-linked--immunosorbent serologic assay, and NF-κB-related proteins were detected by Western blot analysis. RESULTS When compared to healthy controls, the peripheral blood of patients with pressure sepsis had lower PSTPIP2 expression, which had a negative correlation with the APACHE II, SOFA, CRP, and PCT scores. LPS-induced THP-1 cells expressed less PSTPIP2 than the untreated control cells, and PSTPIP2 transfection decreased IL-6, IL-1β, and TNF-α levels and inhibited the activation of NF-κB pathway. CONCLUSION PSTPIP2 is associated with disease severity in patients with pressure ulcer sepsis and has anti-inflammatory effects.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Critical Care Medicine, The 903rd Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Hangzhou, Zhejiang Province, China
| | - Youli Wang
- Department of Dermatology, Zhuji Traditional Chinese Medicine Hospital, Shaoxing, Zhejiang Province, China;
| | - Jianjun Luo
- Department of Critical Care Medicine, The 903rd Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Hangzhou, Zhejiang Province, China
| | - Lipeng Wang
- Department of Critical Care Medicine, The 903rd Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Hangzhou, Zhejiang Province, China
| | - Liye Guo
- Department of Critical Care Medicine, The 903rd Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Hangzhou, Zhejiang Province, China
| | - Xinxin Zhu
- Department of Critical Care Medicine, The 903rd Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Hangzhou, Zhejiang Province, China
| |
Collapse
|
7
|
Xu J, Lv H. PSTPIP2 alleviates obesity associated adipose tissue inflammation and insulin resistance in diabetes mice through promoting M2 macrophage polarization via activation of PPARγ. J Diabetes Complications 2023; 37:108479. [PMID: 37150118 DOI: 10.1016/j.jdiacomp.2023.108479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 04/15/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Proline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2) plays a role in inflammatory disease. In diabetes, very little is known about PSTPIP2 until now. Hence, this study aimed to determine PSTPIP2 functional role in diabetes. METHODS Diabetes mouse model was constructed by feeding high fat diet (HFD). Intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test were examined the glucose and insulin tolerance. The expression of genes and proteins was detected by quantitative real time PCR, immunohistochemistry and western blotting. The pathological changes of epididymal adipose tissues were examined by hematoxylin-eosin staining. RAW264.7 macrophages were treated with GW9662 (PPARγ antagonist). Flow cytometry examined the proportion of M1/M2 macrophages. RESULTS HFD enhanced the body weight, glucose and insulin tolerance, and inhibited PSTPIP2 expression in mice. PSTPIP2 overexpression alleviated glucose and insulin tolerance, reduced inflammation and macrophage accumulation in the epididymal adipose tissues of diabetic mice. The expression of iNOS and TNF-α was increased, the expression of IL-10 and Arg-1 was decreased in diabetic mice, which was abrogated by PSTPIP2 overexpression. In vitro, PSTPIP2 overexpression reduced the proportions of iNOS-positive cells and enhanced the proportions of CD206-positive cells in RAW264.7 cells. PPARγ and p-STAT6 were up-regulated, STAT6 was down-regulated in RAW264.7 cells. GW9662 impaired PSTPIP2 overexpression-mediated up-regulation of Arg-1, YM-1 and FIZZ1 in RAW264.7 cells. CONCLUSION PSTPIP2 alleviates obesity associated adipose tissue inflammation and insulin resistance in diabetic mice through promoting M2 macrophage polarization via activation of PPARγ, suggesting that PSTPIP2 is a prospective target for diabetes treatment.
Collapse
Affiliation(s)
- Jing Xu
- Department of Geriatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.
| | - Huayao Lv
- Department of Geriatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
8
|
Welhaven HD, Welfley AH, Pershad P, Satalich J, O’Connell R, Bothner B, Vap AR, June RK. Metabolomic Phenotypes Reflect Patient Sex and Injury Status: A Cross-Sectional Analysis of Human Synovial Fluid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527040. [PMID: 36846378 PMCID: PMC9959930 DOI: 10.1101/2023.02.03.527040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Post-traumatic osteoarthritis (PTOA) is caused by knee injuries like anterior cruciate ligament (ACL) injuries. Often, ACL injuries are accompanied by damage to other tissues and structures within the knee including the meniscus. Both are known to cause PTOA but underlying cellular mechanisms driving disease remain unknown. Aside from injury, patient sex is a prevalent risk factor associated with PTOA. Hypothesis Metabolic phenotypes of synovial fluid that differ by knee injury pathology and participant sex will be distinct from each other. Study Design A cross-sectional study. Methods Synovial fluid from n=33 knee arthroscopy patients between 18 and 70 years with no prior knee injuries was obtained pre-procedure and injury pathology assigned post-procedure. Synovial fluid was extracted and analyzed via liquid chromatography mass spectrometry metabolomic profiling to examine differences in metabolism between injury pathologies and participant sex. Additionally, samples were pooled and underwent fragmentation to identify metabolites. Results Metabolite profiles revealed that injury pathology phenotypes were distinct from each other where differences in endogenous repair pathways that are triggered post-injury were detected. Specifically, acute differences in metabolism mapped to amino acid metabolism, lipid-related oxidative metabolism, and inflammatory-associated pathways. Lastly, sexual dimorphic metabolic phenotypes were examined between male and female participants, and within injury pathology. Specifically, Cervonyl Carnitine and other identified metabolites differed in concentration between sexes. Conclusions The results of this study suggest that different injuries (e.g., ligament vs. meniscus), as well as sex are associated with distinct metabolic phenotypes. Considering these phenotypic associations, a greater understanding of metabolic mechanisms associated with specific injuries and PTOA development may yield data regarding how endogenous repair pathways differ between injury types. Furthermore, ongoing metabolomic analysis of synovial fluid in injured male and female patients can be performed to monitor PTOA development and progression. Clinical Relevance Extension of this work may potentially lead to the identification of biomarkers as well as drug targets that slow, stop, or reverse PTOA progression based on injury type and patient sex.
Collapse
Affiliation(s)
- Hope D. Welhaven
- Department of Chemistry & Biochemistry, Montana State University, Bozeman MT
| | - Avery H. Welfley
- Department of Microbiology & Cell Biology, Montana State University, Bozeman MT
| | - Prayag Pershad
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - James Satalich
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - Robert O’Connell
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - Brian Bothner
- Department of Chemistry & Biochemistry, Montana State University, Bozeman MT
| | - Alexander R. Vap
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond VA
| | - Ronald K. June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman MT
| |
Collapse
|
9
|
Xie Z, Aitken D, Liu M, Lei G, Jones G, Cicuttini F, Zhai G. Serum Metabolomic Signatures for Knee Cartilage Volume Loss over 10 Years in Community-Dwelling Older Adults. Life (Basel) 2022; 12:869. [PMID: 35743900 PMCID: PMC9225196 DOI: 10.3390/life12060869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disorder characterized by joint structural pathological changes with the loss of articular cartilage as its hallmark. Tools that can predict cartilage loss would help identify people at high risk, thus preventing OA development. The recent advance of the metabolomics provides a new avenue to systematically investigate metabolic alterations in disease and identify biomarkers for early diagnosis. Using a metabolomics approach, the current study aimed to identify serum metabolomic signatures for predicting knee cartilage volume loss over 10 years in the Tasmania Older Adult Cohort (TASOAC). Cartilage volume was measured in the medial, lateral, and patellar compartments of the knee by MRI at baseline and follow-up. Changes in cartilage volume over 10 years were calculated as percentage change per year. Fasting serum samples collected at 2.6-year follow-up were metabolomically profiled using the TMIC Prime Metabolomics Profiling Assay and pairwise metabolite ratios as the proxies of enzymatic reaction were calculated. Linear regression was used to identify metabolite ratio(s) associated with change in cartilage volume in each of the knee compartments with adjustment for age, sex, and BMI. The significance level was defined at α = 3.0 × 10−6 to control multiple testing. A total of 344 participants (51% females) were included in the study. The mean age was 62.83 ± 6.13 years and the mean BMI was 27.48 ± 4.41 kg/m2 at baseline. The average follow-up time was 10.84 ± 0.66 years. Cartilage volume was reduced by 1.34 ± 0.72%, 1.06 ± 0.58%, and 0.98 ± 0.46% per year in the medial, lateral, and patellar compartments, respectively. Our data showed that the increased ratios of hexadecenoylcarnitine (C16:1) to tetradecanoylcarnitine (C14) and C16:1 to dodecanoylcarnitine (C12) were associated with 0.12 ± 0.02% reduction per year in patellar cartilage volume (both p < 3.03 × 10−6). In conclusion, our data suggested that alteration of long chain fatty acid β-oxidation was involved in patellar cartilage loss. While confirmation is needed, the ratios of C16:1 to C14 and C12 might be used to predict long-term cartilage loss.
Collapse
Affiliation(s)
- Zikun Xie
- Division of Biomedical Sciences (Genetics), Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada; (Z.X.); (M.L.)
- Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Dawn Aitken
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7005, Australia; (D.A.); (G.J.)
| | - Ming Liu
- Division of Biomedical Sciences (Genetics), Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada; (Z.X.); (M.L.)
| | - Guanghua Lei
- Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Graeme Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7005, Australia; (D.A.); (G.J.)
| | - Flavia Cicuttini
- Department of Epidemiology and Preventive Medicine, Monash University Medical School, Melbourne 3006, Australia;
| | - Guangju Zhai
- Division of Biomedical Sciences (Genetics), Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada; (Z.X.); (M.L.)
| |
Collapse
|
10
|
Cheng K, Guo Q, Yang W, Wang Y, Sun Z, Wu H. Mapping Knowledge Landscapes and Emerging Trends of the Links Between Bone Metabolism and Diabetes Mellitus: A Bibliometric Analysis From 2000 to 2021. Front Public Health 2022; 10:918483. [PMID: 35719662 PMCID: PMC9204186 DOI: 10.3389/fpubh.2022.918483] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
BackgroundDiabetes mellitus (DM) have become seriously threatens to human health and life quality worldwide. As a systemic metabolic disease, multiple studies have revealed that DM is related to metabolic bone diseases and always induces higher risk of fracture. In view of this, the links between bone metabolism (BM) and DM (BMDM) have gained much attention and numerous related papers have been published. Nevertheless, no prior studies have yet been performed to analyze the field of BMDM research through bibliometric approach. To fill this knowledge gap, we performed a comprehensive bibliometric analysis of the global scientific publications in this field.MethodsArticles and reviews regarding BMDM published between 2000 and 2021 were obtained from the Web of Science after manually screening. VOSviewer 1.6.16, CiteSpace V 5.8.R3, Bibliometrix, and two online analysis platforms were used to conduct the bibliometric and visualization analyses.ResultsA total of 2,525 documents including 2,255 articles and 270 reviews were retrieved. Our analysis demonstrated a steady increasing trend in the number of publications over the past 22 years (R2 = 0.989). The United States has occupied the leading position with the largest outputs and highest H-index. University of California San Francisco contributed the most publications, and Schwartz AV was the most influential author. Collaboration among institutions from different countries was relatively few. The journals that published the most BMDM-related papers were Bone and Osteoporosis International. Osteoporosis and related fractures are the main bone metabolic diseases of greatest concern in this field. According to co-cited references result, “high glucose environment,” “glycation end-product” and “sodium-glucose co-transporter” have been recognized as the current research focus in this domain. The keywords co-occurrence analysis indicated that “diabetic osteoporosis,” “osteoarthritis,” “fracture risk,” “meta-analysis,” “osteogenic differentiation,” “bone regeneration,” “osteogenesis,” and “trabecular bone score” might remain the research hotspots and frontiers in the near future.ConclusionAs a cross-discipline research field, the links between bone metabolism and diabetes mellitus are attracting increased attention. Osteoporosis and related fractures are the main bone metabolic diseases of greatest concern in this field. These insights may be helpful for clinicians to recognize diabetic osteopenia and provide more attention and support to such patients.
Collapse
Affiliation(s)
- Kunming Cheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Kunming Cheng
| | - Qiang Guo
- Department of Orthopaedic Surgery, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Weiguang Yang
- Graduate School of Tianjin Medical University, Tianjin, China
- Department of Orthopaedic Surgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Graduate School of Tianjin Medical University, Tianjin, China
- Department of Orthopaedic Surgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zaijie Sun
- Department of Orthopaedic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- *Correspondence: Zaijie Sun
| | - Haiyang Wu
- Graduate School of Tianjin Medical University, Tianjin, China
- Department of Orthopaedic Surgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Haiyang Wu
| |
Collapse
|
11
|
Feng X, Lu J, Wu Y, Xu H. MiR-18a-3p improves cartilage matrix remodeling and inhibits inflammation in osteoarthritis by suppressing PDP1. J Physiol Sci 2022; 72:3. [PMID: 35148687 PMCID: PMC10717587 DOI: 10.1186/s12576-022-00827-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/19/2022] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease characterized by synovial inflammation. MiR-18a-3p was reported to be downregulated in knee anterior cruciate ligament of OA patients. In the present study, the specific functions and mechanism of miR-18a-3p in OA were explored. An in vitro model of OA was established using 10 ng/ml IL-1β to treat ATDC5 cells, and medial meniscus instability surgery was performed on Wistar rats to establish in vivo rat model of OA. RT-qPCR revealed that miR-18a-3p was downregulated in IL-1β-stimulated ATDC5 cells. MiR-18a-3p overexpression inhibited secretion of inflammatory cytokines and concentration of matrix metalloproteinases, as shown by ELISA and western blotting. The binding relation between miR-18a-3p and pyruvate dehydrogenase phosphatase catalytic subunit 1 (PDP1) was detected by luciferase reporter assays. MiR-18a-3p targeted PDP1 and negatively regulated PDP1 expression. Results of rescue assays revealed that PDP1 upregulation reserved the suppressive effect of miR-18a-3p overexpression on levels of inflammatory cytokines and matrix metalloproteinases in IL-1β-stimulated ATDC5 cells. H&E staining was used to observe pathological changes of synovial tissues in the knee joint of Wistar rats. Safranin O-fast green/hematoxylin was used to stain cartilage samples of knee joints. MiR-18a-3p overexpression suppressed OA progression in vivo. Overall, miR-18a-3p improves cartilage matrix remodeling and suppresses inflammation in OA by targeting PDP1.
Collapse
Affiliation(s)
- Xiaoguang Feng
- Department of Orthopedics, Changzhou Cancer Hospital Affiliated to Soochow University, No.68 Honghe Road, Xinbei District, Changzhou, 213000, Jiangsu, China
| | - Jiajun Lu
- Department of Orthopedics, Changzhou Cancer Hospital Affiliated to Soochow University, No.68 Honghe Road, Xinbei District, Changzhou, 213000, Jiangsu, China
| | - Yixiong Wu
- Department of Orthopedics, Changzhou Cancer Hospital Affiliated to Soochow University, No.68 Honghe Road, Xinbei District, Changzhou, 213000, Jiangsu, China
| | - Haiyun Xu
- Department of Orthopedics, Changzhou Cancer Hospital Affiliated to Soochow University, No.68 Honghe Road, Xinbei District, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|