1
|
Yao Y, Guo W, Gou J, Hu Z, Liu J, Ma J, Zong Y, Xin M, Chen W, Li Q, Wang Z, Zhang R, Uauy C, Baloch FS, Ni Z, Sun Q. Wheat2035: Integrating pan-omics and advanced biotechnology for future wheat design. MOLECULAR PLANT 2025; 18:272-297. [PMID: 39780492 DOI: 10.1016/j.molp.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Wheat (Triticum aestivum) production is vital for global food security, providing energy and protein to millions of people worldwide. Recent advancements in wheat research have led to significant increases in production, fueled by technological and scientific innovation. Here, we summarize the major advancements in wheat research, particularly the integration of biotechnologies and a deeper understanding of wheat biology. The shift from multi-omics to pan-omics approaches in wheat research has greatly enhanced our understanding of the complex genome, genomic variations, and regulatory networks to decode complex traits. We also outline key scientific questions, potential research directions, and technological strategies for improving wheat over the next decade. Since global wheat production is expected to increase by 60% in 2050, continued innovation and collaboration are crucial. Integrating biotechnologies and a deeper understanding of wheat biology will be essential for addressing future challenges in wheat production, ensuring sustainable practices and improved productivity.
Collapse
Affiliation(s)
- Yingyin Yao
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinying Gou
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jun Ma
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zihao Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Ruijie Zhang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Yenişehir, Mersin 33343, Turkey; Department of Plant Resources and Environment, Jeju National University, Jeju City, Republic of Korea
| | - Zhongfu Ni
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Qixin Sun
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Zhang Y, Chen G, Zang Y, Bhavani S, Bai B, Liu W, Zhao M, Cheng Y, Li S, Chen W, Yan W, Mao H, Su H, Singh RP, Lagudah E, Li Q, Lan C. Lr34/Yr18/Sr57/Pm38 confers broad-spectrum resistance to fungal diseases via sinapyl alcohol transport for cell wall lignification in wheat. PLANT COMMUNICATIONS 2024; 5:101077. [PMID: 39233441 PMCID: PMC11671766 DOI: 10.1016/j.xplc.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/26/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
The widely recognized pleiotropic adult plant resistance gene Lr34 encodes an ATP-binding cassette transporter and plays an important role in breeding wheat for enhanced resistance to multiple fungal diseases. Despite its significance, the mechanisms underlying Lr34-mediated pathogen defense remain largely unknown. Our study demonstrates that wheat lines carrying the Lr34res allele exhibit thicker cell walls and enhanced resistance to fungal penetration compared to those without Lr34res. Transcriptome and metabolite profiling revealed that the lignin biosynthetic pathway is suppressed in lr34 mutants, indicating a disruption in cell wall lignification. Additionally, we discovered that lr34 mutant lines are hypersensitive to sinapyl alcohol, a major monolignol crucial for cell wall lignification. Yeast accumulation and efflux assays confirmed that the LR34 protein functions as a sinapyl alcohol transporter. Both genetic and virus-induced gene silencing experiments demonstrated that the disease resistance conferred by Lr34 can be enhanced by incorporating the TaCOMT-3B gene, which is responsible for the biosynthesis of sinapyl alcohol. Collectively, our findings provide novel insights into the role of Lr34 in disease resistance through mediating sinapyl alcohol transport and cell wall deposition, and highlight the synergistic effect of TaCOMT-3B and Lr34 against multiple fungal pathogens by mediating cell wall lignification in adult wheat plants.
Collapse
Affiliation(s)
- Yichen Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Guang Chen
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Yiming Zang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, El Batán, Texcoco CP 56237E do, de México, Mexico
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou City, Gansu Province 730070, China
| | - Wei Liu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Miaomiao Zhao
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Yikeng Cheng
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Shunda Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Wei Chen
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Wenhao Yan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Hailiang Mao
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Handong Su
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Ravi P Singh
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China; International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, El Batán, Texcoco CP 56237E do, de México, Mexico
| | - Evans Lagudah
- CSIRO Agriculture & Food, Canberra, ACT 2601, Australia
| | - Qiang Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China.
| | - Caixia Lan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China.
| |
Collapse
|
3
|
Mascher M, Jayakodi M, Shim H, Stein N. Promises and challenges of crop translational genomics. Nature 2024; 636:585-593. [PMID: 39313530 PMCID: PMC7616746 DOI: 10.1038/s41586-024-07713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2024] [Indexed: 09/25/2024]
Abstract
Crop translational genomics applies breeding techniques based on genomic datasets to improve crops. Technological breakthroughs in the past ten years have made it possible to sequence the genomes of increasing numbers of crop varieties and have assisted in the genetic dissection of crop performance. However, translating research findings to breeding applications remains challenging. Here we review recent progress and future prospects for crop translational genomics in bringing results from the laboratory to the field. Genetic mapping, genomic selection and sequence-assisted characterization and deployment of plant genetic resources utilize rapid genotyping of large populations. These approaches have all had an impact on breeding for qualitative traits, where single genes with large phenotypic effects exert their influence. Characterization of the complex genetic architectures that underlie quantitative traits such as yield and flowering time, especially in newly domesticated crops, will require further basic research, including research into regulation and interactions of genes and the integration of genomic approaches and high-throughput phenotyping, before targeted interventions can be designed. Future priorities for translation include supporting genomics-assisted breeding in low-income countries and adaptation of crops to changing environments.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
- Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
4
|
Sirohi P, Chaudhary C, Sharma M, Anjanappa RB, Baliyan S, Vishnoi R, Mishra SK, Chaudhary R, Waghmode B, Poonia AK, Germain H, Sircar D, Chauhan H. Multi-omics analysis reveals the positive impact of differential chloroplast activity during in vitro regeneration of barley. PLANT MOLECULAR BIOLOGY 2024; 114:124. [PMID: 39538083 DOI: 10.1007/s11103-024-01517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024]
Abstract
Existence of potent in vitro regeneration system is a prerequisite for efficient genetic transformation and functional genomics of crop plants. In this study, two contrasting cultivars differencing in their in vitro regeneration efficiency were identified. Tissue culture friendly cultivar Golden Promise (GP) and tissue culture resistant DWRB91(D91) were selected as contrasting cultivars to investigate the molecular basis of regeneration efficiency through multiomics analysis. Transcriptomics analysis revealed 1487 differentially expressed genes (DEGs), in which 795 DEGs were upregulated and 692 DEGs were downregulated in the GP-D91 transcriptome. Genes encoding proteins localized in chloroplast and involved in ROS generation were upregulated in the embryogenic calli of GP. Moreover, proteome analysis by LC-MS/MS revealed 3062 protein groups and 16,989 peptide groups, out of these 1586 protein groups were differentially expressed proteins (DEPs). Eventually, GC-MS based metabolomics analysis revealed the higher activity of plastids and alterations in key metabolic processes such as sugar metabolism, fatty acid biosynthesis, and secondary metabolism. TEM analysis also revealed differential plastid development. Higher accumulation of sugars, amino acids and metabolites corresponding to lignin biosynthesis were observed in GP as compared to D91. A comprehensive examination of gene expression, protein profiling and metabolite patterns unveiled a significant increase in the genes encompassing various functions, such as ion homeostasis, chlorophyll metabolic process, ROS regulation, and the secondary metabolic pathway.
Collapse
Affiliation(s)
- Parul Sirohi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Chanderkant Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Mayank Sharma
- Institute of Molecular Plant Biology, ETH Zurich, Zurich, Switzerland
| | | | - Suchi Baliyan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ritika Vishnoi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sumit Kumar Mishra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Reeku Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Bhairavnath Waghmode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Anuj Kumar Poonia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
- University Institute of Biotechnology, Chandigarh University, Punjab, 140413, India
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, University of Quebec Trois Rivieres, Trois Rivieres, QC, Canada
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Harsh Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India.
| |
Collapse
|
5
|
Yin Z, Wei X, Cao Y, Dong Z, Long Y, Wan X. Regulatory balance between ear rot resistance and grain yield and their breeding applications in maize and other crops. J Adv Res 2024:S2090-1232(24)00479-X. [PMID: 39447642 DOI: 10.1016/j.jare.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Fungi are prevalent pathogens that cause substantial yield losses of major crops. Ear rot (ER), which is primarily induced by Fusarium or Aspergillus species, poses a significant challenge to maize production worldwide. ER resistance is regulated by several small effect quantitative trait loci (QTLs). To date, only a few ER-related genes have been identified that impede molecular breeding efforts to breed ER-resistant maize varieties. AIM OF REVIEW Our aim here is to explore the research progress and mine genic resources related to ER resistance, and to propose a regulatory model elucidating the ER-resistant mechanism in maize as well as a trade-off model illustrating how crops balance fungal resistance and grain yield. Key Scientific Concepts of Review: This review presents a comprehensive bibliometric analysis of the research history and current trends in the genetic and molecular regulation underlying ER resistance in maize. Moreover, we analyzed and discovered the genic resources by identifying 162 environmentally stable loci (ESLs) from various independent forward genetics studies as well as 1391 conservatively differentially expressed genes (DEGs) that respond to Fusarium or Aspergillus infection through multi-omics data analysis. Additionally, this review discusses the syntenies found among maize ER, wheat Fusariumhead blight (FHB), and rice Bakanaedisease (RBD) resistance-related loci, along with the significant overlap between fungal resistance loci and reported yield-related loci, thus providing valuable insights into the regulatory mechanisms underlying the trade-offs between yield and defense in crops.
Collapse
Affiliation(s)
- Zechao Yin
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yanyong Cao
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| | - Yan Long
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| |
Collapse
|
6
|
Sun P, Han X, Milne RJ, Li G. Trans-crop applications of atypical R genes for multipathogen resistance. TRENDS IN PLANT SCIENCE 2024; 29:1103-1112. [PMID: 38811244 DOI: 10.1016/j.tplants.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
Genetic resistance to plant diseases is essential for global food security. Significant progress has been achieved for plant disease-resistance (R) genes comprising nucleotide-binding domain, leucine-rich repeat-containing receptors (NLRs), and membrane-localized receptor-like kinases or proteins (RLKs/RLPs), which we refer to as typical R genes. However, there is a knowledge gap in how non-receptor-type or atypical R genes contribute to plant immunity. Here, we summarize resources and technologies facilitating the study of atypical R genes, examine diverse atypical R proteins for broad-spectrum resistance, and outline potential approaches for trans-crop applications of atypical R genes. Studies of atypical R genes are important for a holistic understanding of plant immunity and the development of novel strategies in disease control and crop improvement.
Collapse
Affiliation(s)
- Peng Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyu Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ricky J Milne
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Cheng X, Zhou G, Chen W, Tan L, Long Q, Cui F, Tan L, Zou G, Tan Y. Current status of molecular rice breeding for durable and broad-spectrum resistance to major diseases and insect pests. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:219. [PMID: 39254868 PMCID: PMC11387466 DOI: 10.1007/s00122-024-04729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
In the past century, there have been great achievements in identifying resistance (R) genes and quantitative trait loci (QTLs) as well as revealing the corresponding molecular mechanisms for resistance in rice to major diseases and insect pests. The introgression of R genes to develop resistant rice cultivars has become the most effective and eco-friendly method to control pathogens/insects at present. However, little attention has been paid to durable and broad-spectrum resistance, which determines the real applicability of R genes. Here, we summarize all the R genes and QTLs conferring durable and broad-spectrum resistance in rice to fungal blast, bacterial leaf blight (BLB), and the brown planthopper (BPH) in molecular breeding. We discuss the molecular mechanisms and feasible methods of improving durable and broad-spectrum resistance to blast, BLB, and BPH. We will particularly focus on pyramiding multiple R genes or QTLs as the most useful method to improve durability and broaden the disease/insect spectrum in practical breeding regardless of its uncertainty. We believe that this review provides useful information for scientists and breeders in rice breeding for multiple stress resistance in the future.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, People's Republic of China
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, People's Republic of China
| | - Guohua Zhou
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, People's Republic of China
| | - Wei Chen
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, People's Republic of China
| | - Lin Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Qishi Long
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Fusheng Cui
- Yichun Academy of Sciences (Jiangxi Selenium-Rich Industry Research Institute), Yichun, People's Republic of China
| | - Lei Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Guoxing Zou
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, People's Republic of China.
| | - Yong Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China.
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, People's Republic of China.
| |
Collapse
|
8
|
Tong J, Zhao C, Liu D, Jambuthenne DT, Sun M, Dinglasan E, Periyannan SK, Hickey LT, Hayes BJ. Genome-wide atlas of rust resistance loci in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:179. [PMID: 38980436 PMCID: PMC11233289 DOI: 10.1007/s00122-024-04689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024]
Abstract
Rust diseases, including leaf rust, stripe/yellow rust, and stem rust, significantly impact wheat (Triticum aestivum L.) yields, causing substantial economic losses every year. Breeding and deployment of cultivars with genetic resistance is the most effective and sustainable approach to control these diseases. The genetic toolkit for wheat breeders to select for rust resistance has rapidly expanded with a multitude of genetic loci identified using the latest advances in genomics, mapping and cloning strategies. The goal of this review was to establish a wheat genome atlas that provides a comprehensive summary of reported loci associated with rust resistance. Our atlas provides a summary of mapped quantitative trait loci (QTL) and characterised genes for the three rusts from 170 publications over the past two decades. A total of 920 QTL or resistance genes were positioned across the 21 chromosomes of wheat based on the latest wheat reference genome (IWGSC RefSeq v2.1). Interestingly, 26 genomic regions contained multiple rust loci suggesting they could have pleiotropic effects on two or more rust diseases. We discuss a range of strategies to exploit this wealth of genetic information to efficiently utilise sources of resistance, including genomic information to stack desirable and multiple QTL to develop wheat cultivars with enhanced resistance to rust disease.
Collapse
Affiliation(s)
- Jingyang Tong
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Cong Zhao
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dan Liu
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dilani T Jambuthenne
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mengjing Sun
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Eric Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Sambasivam K Periyannan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Agriculture and Environmental Science and Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
9
|
Liu X, Yang C, Wu S, Dong H, Wang G, Han X, Fan B, Shang Y, Dang C, Xie C, Wang Z. Genetic Basis Identification of a NLR Gene, TaRGA5-like, That Confers Partial Powdery Mildew Resistance in Wheat SJ106. Int J Mol Sci 2024; 25:6603. [PMID: 38928313 PMCID: PMC11204014 DOI: 10.3390/ijms25126603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Wheat powdery mildew is an important fungal disease that seriously jeopardizes wheat production, which poses a serious threat to food safety. SJ106 is a high-quality, disease-resistant spring wheat variety; this disease resistance is derived from Wheat-wheatgrass 33. In this study, the powdery mildew resistance genes in SJ106 were located at the end of chromosome 6DS, a new disease resistance locus tentatively named PmSJ106 locus. This interval was composed of a nucleotide-binding leucine-rich repeat (NLR) gene cluster containing 19 NLR genes. Five NLRs were tandem duplicated genes, and one of them (a coiled coil domain-nucleotide binding site-leucine-rich repeat (CC-NBS-LRR; CNL) type gene, TaRGA5-like) expressed 69-836-fold in SJ106 compared with the susceptible control. The genome DNA and cDNA sequences of TaRGA5-like were amplified from SJ106, which contain several nucleotide polymorphisms in LRR regions compared with susceptible individuals and Chinese Spring. Overexpression of TaRGA5-like significantly increased resistance to powdery mildew in susceptible receptor wheat Jinqiang5. However, Virus induced gene silence (VIGS) of TaRGA5-like resulted in only a small decrease of SJ106 in disease resistance, presumably compensated by other NLR duplicated genes. The results suggested that TaRGA5-like confers partial powdery mildew resistance in SJ106. As a member of the PmSJ106 locus, TaRGA5-like functioned together with other NLR duplicated genes to improve wheat resistance to powdery mildew. Wheat variety SJ106 would become a novel and potentially valuable germplasm for powdery mildew resistance.
Collapse
Affiliation(s)
- Xiaoying Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Chenxiao Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Siqi Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Huixuan Dong
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Guangyu Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Xinyue Han
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Baoli Fan
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| | - Yuntao Shang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China;
| | - Chen Dang
- Key Laboratory of Crop Heterosis and Utilization (MOE), State Key Laboratory for Agro-Biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (C.D.); (C.X.)
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE), State Key Laboratory for Agro-Biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; (C.D.); (C.X.)
| | - Zhenying Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (X.L.); (C.Y.); (S.W.); (H.D.); (G.W.); (X.H.); (B.F.)
| |
Collapse
|
10
|
Mascher M, Marone MP, Schreiber M, Stein N. Are cereal grasses a single genetic system? NATURE PLANTS 2024; 10:719-731. [PMID: 38605239 PMCID: PMC7616769 DOI: 10.1038/s41477-024-01674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
In 1993, a passionate and provocative call to arms urged cereal researchers to consider the taxon they study as a single genetic system and collaborate with each other. Since then, that group of scientists has seen their discipline blossom. In an attempt to understand what unity of genetic systems means and how the notion was borne out by later research, we survey the progress and prospects of cereal genomics: sequence assemblies, population-scale sequencing, resistance gene cloning and domestication genetics. Gene order may not be as extraordinarily well conserved in the grasses as once thought. Still, several recurring themes have emerged. The same ancestral molecular pathways defining plant architecture have been co-opted in the evolution of different cereal crops. Such genetic convergence as much as cross-fertilization of ideas between cereal geneticists has led to a rich harvest of genes that, it is hoped, will lead to improved varieties.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Marina Püpke Marone
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Mona Schreiber
- University of Marburg, Department of Biology, Marburg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
11
|
Badiyal A, Mahajan R, Rana RS, Sood R, Walia A, Rana T, Manhas S, Jayswal DK. Synergizing biotechnology and natural farming: pioneering agricultural sustainability through innovative interventions. FRONTIERS IN PLANT SCIENCE 2024; 15:1280846. [PMID: 38584951 PMCID: PMC10995308 DOI: 10.3389/fpls.2024.1280846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/29/2024] [Indexed: 04/09/2024]
Abstract
The world has undergone a remarkable transformation from the era of famines to an age of global food production that caters to an exponentially growing population. This transformation has been made possible by significant agricultural revolutions, marked by the intensification of agriculture through the infusion of mechanical, industrial, and economic inputs. However, this rapid advancement in agriculture has also brought about the proliferation of agricultural inputs such as pesticides, fertilizers, and irrigation, which have given rise to long-term environmental crises. Over the past two decades, we have witnessed a concerning plateau in crop production, the loss of arable land, and dramatic shifts in climatic conditions. These challenges have underscored the urgent need to protect our global commons, particularly the environment, through a participatory approach that involves countries worldwide, regardless of their developmental status. To achieve the goal of sustainability in agriculture, it is imperative to adopt multidisciplinary approaches that integrate fields such as biology, engineering, chemistry, economics, and community development. One noteworthy initiative in this regard is Zero Budget Natural Farming, which highlights the significance of leveraging the synergistic effects of both plant and animal products to enhance crop establishment, build soil fertility, and promote the proliferation of beneficial microorganisms. The ultimate aim is to create self-sustainable agro-ecosystems. This review advocates for the incorporation of biotechnological tools in natural farming to expedite the dynamism of such systems in an eco-friendly manner. By harnessing the power of biotechnology, we can increase the productivity of agro-ecology and generate abundant supplies of food, feed, fiber, and nutraceuticals to meet the needs of our ever-expanding global population.
Collapse
Affiliation(s)
- Anila Badiyal
- Department of Microbiology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Rishi Mahajan
- Department of Microbiology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Ranbir Singh Rana
- Centre for Geo-Informatics Research and Training, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Ruchi Sood
- Centre for Geo-Informatics Research and Training, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Abhishek Walia
- Department of Microbiology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Tanuja Rana
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Shilpa Manhas
- Lovely Professional University, Phagwara, Punjab, India
| | - D. K. Jayswal
- National Agricultural Higher Education Project, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
12
|
Hudson A, Mullens A, Hind S, Jamann T, Balint‐Kurti P. Natural variation in the pattern-triggered immunity response in plants: Investigations, implications and applications. MOLECULAR PLANT PATHOLOGY 2024; 25:e13445. [PMID: 38528659 PMCID: PMC10963888 DOI: 10.1111/mpp.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024]
Abstract
The pattern-triggered immunity (PTI) response is triggered at the plant cell surface by the recognition of microbe-derived molecules known as microbe- or pathogen-associated molecular patterns or molecules derived from compromised host cells called damage-associated molecular patterns. Membrane-localized receptor proteins, known as pattern recognition receptors, are responsible for this recognition. Although much of the machinery of PTI is conserved, natural variation for the PTI response exists within and across species with respect to the components responsible for pattern recognition, activation of the response, and the strength of the response induced. This review describes what is known about this variation. We discuss how variation in the PTI response can be measured and how this knowledge might be utilized in the control of plant disease and in developing plant varieties with enhanced disease resistance.
Collapse
Affiliation(s)
- Asher Hudson
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Alexander Mullens
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Sarah Hind
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Tiffany Jamann
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Plant Science Research UnitUSDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|
13
|
Camenzind M, Koller T, Armbruster C, Jung E, Brunner S, Herren G, Keller B. Breeding for durable resistance against biotrophic fungal pathogens using transgenes from wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:8. [PMID: 38263979 PMCID: PMC10803697 DOI: 10.1007/s11032-024-01451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Breeding for resistant crops is a sustainable way to control disease and relies on the introduction of novel resistance genes. Here, we tested three strategies on how to use transgenes from wheat to achieve durable resistance against fungal pathogens in the field. First, we tested the highly effective, overexpressed single transgene Pm3e in the background of spring wheat cultivar Bobwhite in a long-term field trial over many years. Together with previous results, this revealed that transgenic wheat line Pm3e#2 conferred complete powdery mildew resistance during a total of nine field seasons without a negative impact on yield. Furthermore, overexpressed Pm3e provided resistance to powdery mildew isolates from our worldwide collection when crossed into the elite wheat cultivar Fiorina. Second, we pyramided the four overexpressed transgenes Pm3a, Pm3b, Pm3d, and Pm3f in the background of cultivar Bobwhite and showed that the pyramided line Pm3a,b,d,f was completely resistant to powdery mildew in five field seasons. Third, we performed field trials with three barley lines expressing adult plant resistance gene Lr34 from wheat during three field seasons. Line GLP8 expressed Lr34 under control of the pathogen-inducible Hv-Ger4c promoter and provided partial barley powdery mildew and leaf rust resistance in the field with small, negative effects on yield components which might need compensatory breeding. Overall, our study demonstrates and discusses three successful strategies for achieving fungal disease resistance of wheat and barley in the field using transgenes from wheat. These strategies might confer long-term resistance if applied in a sustainable way. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01451-2.
Collapse
Affiliation(s)
- Marcela Camenzind
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Teresa Koller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Cygni Armbruster
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Esther Jung
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | | | - Gerhard Herren
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| |
Collapse
|
14
|
Jevtić R, Župunski V. The challenge of managing yellow rust ( Puccinia striiformis f.sp. tritici) in winter wheat: how combined climate and pathogen stressors impact variability in genotype reactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1270087. [PMID: 37929173 PMCID: PMC10623137 DOI: 10.3389/fpls.2023.1270087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Despite the ongoing evolution of wheat pathogens due to the selection pressures of agro-ecological conditions, many studies have often overlooked the combined impact of both biotic and abiotic factors on disease occurrence. From 2016 to 2023, a comprehensive screening of obligate pathogens, including B. graminis f. sp. tritici, P. graminis f. sp. tritici, P. triticina, and P. striiformis f. sp. tritici, was carried out. This screening was conducted on a phenotyping platform encompassing 2715 winter wheat genotypes and their wild relatives, both with and without resistant genes (Lr, Yr, and Sr) for rust diseases. The data were analyzed using PCAmix, best subsets regression, and linear regression modeling. The findings from this study reveal that the plant reactions to leaf and yellow rust infections is far from straightforward. It is heavily influenced not only by prevalent rust races and climatic factors that impact pathogen life cycles but also by variations in the susceptibility reactions of wheat genotypes to the broader agro-ecological conditions. We also observed a tendency for leaf rust and yellow rust to coexist within the same host plant, even though yellow rust is typically considered more aggressive. We reported for the first time genes related to yellow rust resistance breakdown in Serbia in 2023. Lastly, we underscored the importance of investigating resistance responses to rust diseases not exclusively through the interrelation between resistance genes and pathogen virulence, but also by considering how plants respond to the combined stresses of abiotic and biotic factors. Consequently, our study sets the groundwork for further research into how plants respond to multiple stressors and contributes for further investigations related with effective integrated rust management.
Collapse
Affiliation(s)
- Radivoje Jevtić
- Laboratory for Phytopathology, Small Grains Department, Institute of Field and Vegetable Crops, Novi Sad, Serbia
| | | |
Collapse
|
15
|
Li H, Zhang P, Luo M, Hoque M, Chakraborty S, Brooks B, Li J, Singh S, Forest K, Binney A, Zhang L, Mather D, Ayliffe M. Introgression of the bread wheat D genome encoded Lr34/Yr18/Sr57/Pm38/Ltn1 adult plant resistance gene into Triticum turgidum (durum wheat). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:226. [PMID: 37847385 PMCID: PMC10581953 DOI: 10.1007/s00122-023-04466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
KEY MESSAGE Lack of function of a D-genome adult plant resistance gene upon introgression into durum wheat. The wheat Lr34/Yr18/Sr57/Pm38/Ltn1 adult plant resistance gene (Lr34), located on chromosome arm 7DS, provides broad spectrum, partial, adult plant resistance to leaf rust, stripe rust, stem rust and powdery mildew. It has been used extensively in hexaploid bread wheat (AABBDD) and conferred durable resistance for many decades. These same diseases also occur on cultivated tetraploid durum wheat and emmer wheat but transfer of D genome sequences to those subspecies is restricted due to very limited intergenomic recombination. Herein we have introgressed the Lr34 gene into chromosome 7A of durum wheat. Durum chromosome substitution line Langdon 7D(7A) was crossed to Cappelli ph1c, a mutant derivative of durum cultivar Cappelli homozygous for a deletion of the chromosome pairing locus Ph1. Screening of BC1F2 plants and their progeny by KASP and PCR markers, 90 K SNP genotyping and cytology identified 7A chromosomes containing small chromosome 7D fragments encoding Lr34. However, in contrast to previous transgenesis experiments in durum wheat, resistance to wheat stripe rust was not observed in either Cappelli/Langdon 7D(7A) or Bansi durum plants carrying this Lr34 encoding segment due to low levels of Lr34 gene expression. KEY MESSAGE
Collapse
Affiliation(s)
- Hongyu Li
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Ming Luo
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Mohammad Hoque
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Soma Chakraborty
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Brenton Brooks
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Jianbo Li
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Smriti Singh
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Kerrie Forest
- Agriculture Victoria, Department of Energy, Environment and Climate Action, AgriBio Centre for AgriBioscience, 5 Ring Rd, Bundoora, VIC, 3083, Australia
| | - Allan Binney
- School of Agriculture, Food & Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Diane Mather
- School of Agriculture, Food & Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Michael Ayliffe
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia.
| |
Collapse
|
16
|
Dracatos PM, Lu J, Sánchez‐Martín J, Wulff BB. Resistance that stacks up: engineering rust and mildew disease control in the cereal crops wheat and barley. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1938-1951. [PMID: 37494504 PMCID: PMC10502761 DOI: 10.1111/pbi.14106] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 07/28/2023]
Abstract
Staying ahead of the arms race against rust and mildew diseases in cereal crops is essential to maintain and preserve food security. The methodological challenges associated with conventional resistance breeding are major bottlenecks for deploying resistance (R) genes in high-yielding crop varieties. Advancements in our knowledge of plant genomes, structural mechanisms, innovations in bioinformatics, and improved plant transformation techniques have alleviated this bottleneck by permitting rapid gene isolation, functional studies, directed engineering of synthetic resistance and precise genome manipulation in elite crop cultivars. Most cloned cereal R genes encode canonical immune receptors which, on their own, are prone to being overcome through selection for resistance-evading pathogenic strains. However, the increasingly large repertoire of cloned R genes permits multi-gene stacking that, in principle, should provide longer-lasting resistance. This review discusses how these genomics-enabled developments are leading to new breeding and biotechnological opportunities to achieve durable rust and powdery mildew control in cereals.
Collapse
Affiliation(s)
- Peter M. Dracatos
- La Trobe Institute for Sustainable Agriculture & Food (LISAF)Department of Animal, Plant and Soil SciencesLa Trobe UniversityVIC 3086Australia
| | - Jing Lu
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Center for Desert AgricultureKAUSTThuwalSaudi Arabia
- College of Life SciencesSichuan UniversityChengduChina
- Chengdu Institute of Biology, Chinese Academy of SciencesChengduChina
| | - Javier Sánchez‐Martín
- Department of Microbiology and Genetics, Spanish‐Portuguese Agricultural Research Center (CIALE)University of SalamancaSalamancaSpain
| | - Brande B.H. Wulff
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Center for Desert AgricultureKAUSTThuwalSaudi Arabia
| |
Collapse
|
17
|
Nazareno ES, Fiedler JD, Ardayfio NK, Miller ME, Figueroa M, Kianian SF. Genetic Analysis and Physical Mapping of Oat Adult Plant Resistance Loci Against Puccinia coronata f. sp. avenae. PHYTOPATHOLOGY 2023; 113:1307-1316. [PMID: 36721375 DOI: 10.1094/phyto-10-22-0395-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Six quantitative trait loci (QTLs) for adult plant resistance against oat crown rust (Puccinia coronata f. sp. avenae) were identified from mapping three recombinant inbred populations. Using genotyping-by-sequencing with markers called against the OT3098 v1 reference genome, the QTLs were mapped on six different chromosomes: Chr1D, Chr4D, Chr5A, Chr5D, Chr7A, and Chr7C. Composite interval mapping with marker cofactor selection showed that the phenotypic variance explained by all identified QTLs for coefficient of infection range from 12.2 to 46.9%, whereas heritability estimates ranged from 0.11 to 0.38. The significant regions were narrowed down to intervals of 3.9 to 25 cM, equivalent to physical distances of 11 to 133 Mb. At least two flanking single-nucleotide polymorphism markers were identified within 10 cM of each QTL that could be used in marker-assisted introgression, pyramiding, and selection. The additive effects of the QTLs in each population were determined using single-nucleotide polymorphism haplotype data, which showed a significantly lower coefficient of infection in lines homozygous for the resistant alleles. Analysis of pairwise linkage disequilibrium also revealed high correlation of markers and presence of linkage blocks in the significant regions. To further facilitate marker-assisted breeding, polymerase chain reaction allelic competitive extension (PACE) markers for the adult plant resistance loci were developed. Putative candidate genes were also identified in each of the significant regions, which include resistance gene analogs that encode for kinases, ligases, and predicted receptors of avirulence proteins from pathogens.
Collapse
Affiliation(s)
- Eric S Nazareno
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, U.S.A
| | - Jason D Fiedler
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND, U.S.A
| | - Naa Korkoi Ardayfio
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND, U.S.A
| | - Marisa E Miller
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, U.S.A
- Pairwise Plants, LLC, 807 East Main Street, Suite 4-100, Durham, NC, U.S.A
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Shahryar F Kianian
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, U.S.A
| |
Collapse
|
18
|
Spychała J, Tomkowiak A, Noweiska A, Bobrowska R, Bocianowski J, Książkiewicz M, Sobiech A, Kwiatek MT. Expression Profiling of the Slow Rusting Resistance Genes Lr34/ Yr18 and Lr67/ Yr46 in Common Wheat ( Triticum aestivum L.) and Associated miRNAs Patterns. Genes (Basel) 2023; 14:1376. [PMID: 37510281 PMCID: PMC10378930 DOI: 10.3390/genes14071376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
The main efforts in common wheat (Triticum aestivum L.) breeding focus on yield, grain quality, and resistance to biotic and abiotic stresses. One of the major threats affecting global wheat cultivation and causing significant crop production losses are rust diseases, including leaf rust caused by a biotrophic fungus Puccinia triticina Eriks. Genetically determined resistance to leaf rust has been characterized in young plants (seedling resistance) as well as in plants at the adult plant stage. At the seedling stage, resistance is controlled vertically by major R genes, conferring a race-specific response that is highly effective but usually short-lived due to the rapid evolution of potentially virulent fungi. In mature plants, horizontal adult plant resistance (APR) was described, which provides long-term protection against multiple races of pathogens. A better understanding of molecular mechanisms underlying the function of APR genes would enable the development of new strategies for resistance breeding in wheat. Therefore, in the present study we focused on early transcriptomic responses of two major wheat APR genes, Lr34 and Lr67, and three complementary miRNAs, tae-miR9653b, tae-miR9773 and tae-miR9677b, to inoculation with P. triticina. Plant material consisted of five wheat reference varieties, Artigas, NP846, Glenlea, Lerma Rojo and TX89D6435, containing the Lr34/Yr18 and Lr67/Yr46 resistance genes. Biotic stress was induced by inoculation with fungal spores under controlled conditions in a phytotron. Plant material consisted of leaf tissue sampled before inoculation as well as 6, 12, 24 and 48 h postinoculation (hpi). The APR gene expression was quantified using real-time PCR with two reference genes, whereas miRNA was quantified using droplet digital PCR. This paper describes the resistance response of APR genes to inoculation with races of leaf rust-causing fungi that occur in central Europe. The study revealed high variability of expression profiles between varieties and time-points, with the prevalence of downregulation for APR genes and upregulation for miRNAs during the development of an early defense response. Nevertheless, despite the downregulation initially observed, the expression of Lr34 and Lr67 genes in studied cultivars was significantly higher than in a control line carrying wild (susceptible) alleles.
Collapse
Affiliation(s)
- Julia Spychała
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd Str., 60-632 Poznań, Poland
| | - Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd Str., 60-632 Poznań, Poland
| | - Aleksandra Noweiska
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd Str., 60-632 Poznań, Poland
| | - Roksana Bobrowska
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd Str., 60-632 Poznań, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 28 Wojska Polskiego St., 60-637 Poznań, Poland
| | - Michał Książkiewicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Aleksandra Sobiech
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd Str., 60-632 Poznań, Poland
| | - Michał Tomasz Kwiatek
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd Str., 60-632 Poznań, Poland
| |
Collapse
|
19
|
Milne RJ, Dibley KE, Bose J, Ashton AR, Ryan PR, Tyerman SD, Lagudah ES. Expression of the wheat multipathogen resistance hexose transporter Lr67res is associated with anion fluxes. PLANT PHYSIOLOGY 2023; 192:1254-1267. [PMID: 36806945 DOI: 10.1093/plphys/kiad104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 06/01/2023]
Abstract
Many disease resistance genes in wheat (Triticum aestivum L.) confer strong resistance to specific pathogen races or strains, and only a small number of genes confer multipathogen resistance. The Leaf rust resistance 67 (Lr67) gene fits into the latter category as it confers partial resistance to multiple biotrophic fungal pathogens in wheat and encodes a Sugar Transport Protein 13 (STP13) family hexose-proton symporter variant. Two mutations (G144R, V387L) in the resistant variant, Lr67res, differentiate it from the susceptible Lr67sus variant. The molecular function of the Lr67res protein is not understood, and this study aimed to broaden our knowledge on this topic. Biophysical analysis of the wheat Lr67sus and Lr67res protein variants was performed using Xenopus laevis oocytes as a heterologous expression system. Oocytes injected with Lr67sus displayed properties typically associated with proton-coupled sugar transport proteins-glucose-dependent inward currents, a Km of 110 ± 10 µM glucose, and a substrate selectivity permitting the transport of pentoses and hexoses. By contrast, Lr67res induced much larger sugar-independent inward currents in oocytes, implicating an alternative function. Since Lr67res is a mutated hexose-proton symporter, the possibility of protons underlying these currents was investigated but rejected. Instead, currents in Lr67res oocytes appeared to be dominated by anions. This conclusion was supported by electrophysiology and 36Cl- uptake studies and the similarities with oocytes expressing the known chloride channel from Torpedo marmorata, TmClC-0. This study provides insights into the function of an important disease resistance gene in wheat, which can be used to determine how this gene variant underpins disease resistance in planta.
Collapse
Affiliation(s)
- Ricky J Milne
- CSIRO, Agriculture and Food, Canberra, ACT 2601, Australia
| | | | - Jayakumar Bose
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064, Australia
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia
| | | | - Peter R Ryan
- CSIRO, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Stephen D Tyerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064, Australia
| | | |
Collapse
|
20
|
Cloutier S, Reimer E, Khadka B, McCallum BD. Variations in exons 11 and 12 of the multi-pest resistance wheat gene Lr34 are independently additive for leaf rust resistance. FRONTIERS IN PLANT SCIENCE 2023; 13:1061490. [PMID: 36910459 PMCID: PMC9995823 DOI: 10.3389/fpls.2022.1061490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Characterization of germplasm collections for the wheat leaf rust gene Lr34 previously defined five haplotypes in spring wheat. All resistant lines had a 3-bp TTC deletion (null) in exon 11, resulting in the absence of a phenylalanine residue in the ABC transporter, as well as a single nucleotide C (Tyrosine in Lr34+) to T (Histidine in Lr34-) transition in exon 12. A rare haplotype present in Odesskaja 13 and Koktunkulskaja 332, both of intermediate rust resistance, had the 3-bp deletion typical of Lr34+ in exon 11 but the T nucleotide of Lr34- in exon 12. METHODS To quantify the role of each mutation in leaf rust resistance, Odesskaja 13 and Koktunkulskaja 332 were crossed to Thatcher and its near-isogenic line Thatcher-Lr34 (RL6058). Single seed descent populations were generated and evaluated for rust resistance in six different rust nurseries. RESULTS The Odesskaja 13 progeny with the TTC/T haplotype were susceptible with an average severity rating of 62.3%, the null/T haplotype progeny averaged 39.7% and the null/C haplotype was highly resistant, averaging 13.3% severity. The numbers for the Koktunkulskaja 332 crosses were similar with 63.5%, 43.5% and 23.7% severity ratings, respectively. Differences between all classes in all crosses were statistically significant, indicating that both mutations are independently additive for leaf rust resistance. The three-dimensional structural models of LR34 were used to analyze the locations and putative interference of both amino acids with the transport channel. Koktunkulskaja 332 also segregated for marker csLV46 which is linked to Lr46. Rust severity in lines with Lr34+ and csLV46+ had significantly lower rust severity ratings than those without, indicating the additivity of the two loci. DISCUSSION This has implications for the deployment of Lr34 in wheat cultivars and for the basic understanding of this important wheat multi-pest durable resistance gene.
Collapse
Affiliation(s)
- Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Elsa Reimer
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Bijendra Khadka
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Brent D. McCallum
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| |
Collapse
|
21
|
Gou M, Balint-Kurti P, Xu M, Yang Q. Quantitative disease resistance: Multifaceted players in plant defense. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:594-610. [PMID: 36448658 DOI: 10.1111/jipb.13419] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
In contrast to large-effect qualitative disease resistance, quantitative disease resistance (QDR) exhibits partial and generally durable resistance and has been extensively utilized in crop breeding. The molecular mechanisms underlying QDR remain largely unknown but considerable progress has been made in this area in recent years. In this review, we summarize the genes that have been associated with plant QDR and their biological functions. Many QDR genes belong to the canonical resistance gene categories with predicted functions in pathogen perception, signal transduction, phytohormone homeostasis, metabolite transport and biosynthesis, and epigenetic regulation. However, other "atypical" QDR genes are predicted to be involved in processes that are not commonly associated with disease resistance, such as vesicle trafficking, molecular chaperones, and others. This diversity of function for QDR genes contrasts with qualitative resistance, which is often based on the actions of nucleotide-binding leucine-rich repeat (NLR) resistance proteins. An understanding of the diversity of QDR mechanisms and of which mechanisms are effective against which classes of pathogens will enable the more effective deployment of QDR to produce more durably resistant, resilient crops.
Collapse
Affiliation(s)
- Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
- Plant Science Research Unit, USDA-ARS, Raleigh, NC, 27695, USA
| | - Mingliang Xu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy, China Agricultural University, Beijing, 100193, China
| | - Qin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
22
|
Tang Y, He G, He Y, He T. Plant Resistance to Fungal Pathogens: Bibliometric Analysis and Visualization. TOXICS 2022; 10:624. [PMID: 36287902 PMCID: PMC9609943 DOI: 10.3390/toxics10100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Plants are susceptible to fungal pathogen infection, threatening plant growth and development. Researchers worldwide have conducted extensive studies to address this issue and have published numerous articles on the subject, but they lack a scientometric evaluation. This study analyzed international research on the topic "Plant resistance to fungal pathogens" between 2008 and 2021, using the core database of the Web of Science (WoS). By searching the subject words "Plants", "Disease Resistance", and "Fungal Pathogens", we received 6687 articles. Bibliometric visualization software analyzes the most published countries, institutions, journals, authors, the most cited articles, and the most common keywords. The results show that the number of articles in the database has increased year by year, with the United States and China occupying the core positions, accounting for 46.16% of the total published articles worldwide. The United States Department of Agriculture (USDA) is the main publishing organization. Wang Guoliang is the author with the most published articles, and the Frontiers in Plant Science ranks first in published articles. The research on plant anti-fungal pathogens is booming, and international exchanges and cooperation need to be further strengthened. This paper summarizes five possible research ideas, from fungal pathogens, gene editing technology, extraction of secondary metabolites from plants as anti-fungal agents, identification of related signal pathways, fungal molecular databases, and development of nanomaterials, to provide data for related research.
Collapse
Affiliation(s)
- Yueyue Tang
- College of Agriculture, Guizhou University, Guiyang 550025, China
- New Rural Development Research Institute, Guizhou University, Guiyang 550025, China
| | - Guandi He
- College of Agriculture, Guizhou University, Guiyang 550025, China
- New Rural Development Research Institute, Guizhou University, Guiyang 550025, China
| | - Yeqing He
- College of Agriculture, Guizhou University, Guiyang 550025, China
- New Rural Development Research Institute, Guizhou University, Guiyang 550025, China
| | - Tengbing He
- College of Agriculture, Guizhou University, Guiyang 550025, China
- New Rural Development Research Institute, Guizhou University, Guiyang 550025, China
| |
Collapse
|
23
|
Mapuranga J, Zhang N, Zhang L, Liu W, Chang J, Yang W. Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:951095. [PMID: 36311120 PMCID: PMC9614308 DOI: 10.3389/fpls.2022.951095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Wheat is one of the most important staple foods on earth. Leaf rust, stem rust and stripe rust, caused by Puccini triticina, Puccinia f. sp. graminis and Puccinia f. sp. striiformis, respectively, continue to threaten wheat production worldwide. Utilization of resistant cultivars is the most effective and chemical-free strategy to control rust diseases. Convectional and molecular biology techniques identified more than 200 resistance genes and their associated markers from common wheat and wheat wild relatives, which can be used by breeders in resistance breeding programmes. However, there is continuous emergence of new races of rust pathogens with novel degrees of virulence, thus rendering wheat resistance genes ineffective. An integration of genomic selection, genome editing, molecular breeding and marker-assisted selection, and phenotypic evaluations is required in developing high quality wheat varieties with resistance to multiple pathogens. Although host genotype resistance and application of fungicides are the most generally utilized approaches for controlling wheat rusts, effective agronomic methods are required to reduce disease management costs and increase wheat production sustainability. This review gives a critical overview of the current knowledge of rust resistance, particularly race-specific and non-race specific resistance, the role of pathogenesis-related proteins, non-coding RNAs, and transcription factors in rust resistance, and the molecular basis of interactions between wheat and rust pathogens. It will also discuss the new advances on how integrated rust management methods can assist in developing more durable resistant cultivars in these pathosystems.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenxiang Yang
- College of Plant Protection, Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| |
Collapse
|
24
|
Harnessing adult-plant resistance genes to deploy durable disease resistance in crops. Essays Biochem 2022; 66:571-580. [PMID: 35912968 PMCID: PMC9528086 DOI: 10.1042/ebc20210096] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Adult-plant resistance (APR) is a type of genetic resistance in cereals that is effective during the later growth stages and can protect plants from a range of disease-causing pathogens. Our understanding of the functions of APR-associated genes stems from the well-studied wheat-rust pathosystem. Genes conferring APR can offer pathogen-specific resistance or multi-pathogen resistance, whereby resistance is activated following a molecular recognition event. The breeding community prefers APR to other types of resistance because it offers broad-spectrum protection that has proven to be more durable. In practice, however, deployment of new cultivars incorporating APR is challenging because there is a lack of well-characterised APRs in elite germplasm and multiple loci must be combined to achieve high levels of resistance. Genebanks provide an excellent source of genetic diversity that can be used to diversify resistance factors, but introgression of novel alleles into elite germplasm is a lengthy and challenging process. To overcome this bottleneck, new tools in breeding for resistance must be integrated to fast-track the discovery, introgression and pyramiding of APR genes. This review highlights recent advances in understanding the functions of APR genes in the well-studied wheat-rust pathosystem, the opportunities to adopt APR genes in other crops and the technology that can speed up the utilisation of new sources of APR in genebank accessions.
Collapse
|
25
|
Unconventional R proteins in the botanical tribe Triticeae. Essays Biochem 2022; 66:561-569. [PMID: 35670039 DOI: 10.1042/ebc20210081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Plant immunity is triggered following the perception of pathogen-derived molecules by plant receptor proteins. Two protein families, membrane-localized receptor-like kinases (RLK) and intracellular nucleotide-binding leucine-rich repeat (NLR) receptors, play key roles in pathogen perception and in the initiation of downstream signaling cascades that lead to defense responses. In addition to RLKs and NLRs, recent research has identified additional protein families that function as plant resistance (R) proteins. In particular, the botanical tribe Triticeae, which includes the globally important crop species wheat and barley, has played a significant role in the discovery of 'unconventional' R proteins. In this review, we will summarize the current knowledge on unconventional R genes in Triticeae and the proteins they encode. The knowledge on unconventional R proteins will not only broaden our understanding of plant-pathogen interactions but also have great implications for disease resistance breeding in crops.
Collapse
|
26
|
Dong Y, Xu D, Xu X, Ren Y, Gao F, Song J, Jia A, Hao Y, He Z, Xia X. Fine mapping of QPm.caas-3BS, a stable QTL for adult-plant resistance to powdery mildew in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1083-1099. [PMID: 35006334 DOI: 10.1007/s00122-021-04019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
A stable QTL QPm.caas-3BS for adult-plant resistance to powdery mildew was mapped in an interval of 431 kb, and candidate genes were predicted based on gene sequences and expression profiles. Powdery mildew is a devastating foliar disease occurring in most wheat-growing areas. Characterization and fine mapping of genes for powdery mildew resistance can benefit marker-assisted breeding. We previously identified a stable quantitative trait locus (QTL) QPm.caas-3BS for adult-plant resistance to powdery mildew in a recombinant inbred line population of Zhou8425B/Chinese Spring by phenotyping across four environments. Using 11 heterozygous recombinants and high-density molecular markers, QPm.caas-3BS was delimited in a physical interval of approximately 3.91 Mb. Based on re-sequenced data and expression profiles, three genes TraesCS3B02G014800, TraesCS3B02G016800 and TraesCS3B02G019900 were associated with the powdery mildew resistance locus. Three gene-specific kompetitive allele-specific PCR (KASP) markers were developed from these genes and validated in the Zhou8425B derivatives and Zhou8425B/Chinese Spring population in which the resistance gene was mapped to a 0.3 cM interval flanked by KASP14800 and snp_50465, corresponding to a 431 kb region at the distal end of chromosome 3BS. Within the interval, TraesCS3B02G014800 was the most likely candidate gene for QPm.caas-3BS, but TraesCS3B02G016300 and TraesCS3B02G016400 were less likely candidates based on gene annotations and sequence variation between the parents. These results not only offer high-throughput KASP markers for improvement of powdery mildew resistance but also pave the way to map-based cloning of the resistance gene.
Collapse
Affiliation(s)
- Yan Dong
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Dengan Xu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xiaowan Xu
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yan Ren
- College of Agronomy, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, 450002, Henan, China
| | - Fengmei Gao
- Institute of Crop Germplasm Resources, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Jie Song
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Aolin Jia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
27
|
Banasiak J, Jasiński M. ATP-binding cassette transporters in nonmodel plants. THE NEW PHYTOLOGIST 2022; 233:1597-1612. [PMID: 34614235 DOI: 10.1111/nph.17779] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Knowledge about plant ATP-binding cassette (ABC) proteins is of great value for sustainable agriculture, economic yield, and the generation of high-quality products, especially under unfavorable growth conditions. We have learned much about ABC proteins in model organisms, notably Arabidopsis thaliana; however, the importance of research dedicated to these transporters extends far beyond Arabidopsis biology. Recent progress in genomic and transcriptomic approaches for nonmodel and noncanonical model plants allows us to look at ABC transporters from a wider perspective and consider chemodiversity and functionally driven adaptation as distinctive mechanisms during their evolution. Here, by considering several representatives from agriculturally important families and recent progress in functional characterization of nonArabidopsis ABC proteins, we aim to bring attention to understanding the evolutionary background, distribution among lineages and possible mechanisms underlying the adaptation of this versatile transport system for plant needs. Increasing the knowledge of ABC proteins in nonmodel plants will facilitate breeding and development of new varieties based on, for example, genetic variations of endogenous genes and/or genome editing, representing an alternative to transgenic approaches.
Collapse
Affiliation(s)
- Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland
| |
Collapse
|
28
|
Seni S, Kaur S, Malik P, Yadav IS, Sirohi P, Chauhan H, Kaur A, Chhuneja P. Transcriptome based identification and validation of heat stress transcription factors in wheat progenitor species Aegilops speltoides. Sci Rep 2021; 11:22049. [PMID: 34764387 PMCID: PMC8586331 DOI: 10.1038/s41598-021-01596-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022] Open
Abstract
Wheat, one of the major cereal crops worldwide, get adversely affected by rising global temperature. We have identified the diploid B genome progenitor of wheat, Aegilops speltoides (SS), as a potential donor for heat stress tolerance. Therefore, the present work was planned to study the total transcriptome profile of heat stress-tolerant Ae. speltoides accession pau3809 (AS3809) and compare with that of tetraploid and hexaploid wheat cultivars PDW274 and PBW725, respectively. The comparative transcriptome was utilized to identify and validate heat stress transcription factors (HSFs), the key genes involved in imparting heat stress tolerance. Transcriptome analysis led to the identification of a total of 74 K, 68 K, and 76 K genes in AS3809, PDW274, and PBW725, respectively. There was a high uniformity of GO profiles under the biological, molecular, and cellular functions across the three wheat transcriptomes, suggesting the conservation of gene function. Twelve HSFs having the highest FPKM value were identified in the AS3809 transcriptome data, while six of these HSFs namely HSFA3, HSFA5, HSFA9, HSFB2a, HSFB2b, and HSFC1b, were validated with qRT PCR. These six HSFs were identified as an important component of thermotolerance in AS3809 as evident from their comparative higher expression under heat stress.
Collapse
Affiliation(s)
- Sushmita Seni
- grid.412577.20000 0001 2176 2352School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Palvi Malik
- grid.412577.20000 0001 2176 2352School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Inderjit Singh Yadav
- grid.412577.20000 0001 2176 2352School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Parul Sirohi
- grid.19003.3b0000 0000 9429 752XDepartment of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Harsh Chauhan
- grid.19003.3b0000 0000 9429 752XDepartment of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Amandeep Kaur
- grid.412577.20000 0001 2176 2352School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Parveen Chhuneja
- grid.412577.20000 0001 2176 2352School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
29
|
Bräunlich S, Koller T, Glauser G, Krattinger SG, Keller B. Expression of the wheat disease resistance gene Lr34 in transgenic barley leads to accumulation of abscisic acid at the leaf tip. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:950-957. [PMID: 34247109 DOI: 10.1016/j.plaphy.2021.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Durable disease resistance genes such as the wheat gene Lr34 are valuable sources of resistance for agricultural breeding programs. Lr34 encodes an ATP-binding cassette transporter protein involved in the transport of the phytohormone abscisic acid. Lr34 from wheat is functionally transferable to barley, maize, rice and sorghum. A pleiotropic effect of Lr34 induces the development of a senescence-like phenotype, referred to as leaf tip necrosis. We used Lr34-expressing wheat and transgenic barley plants to elucidate the role of abscisic acid in the development of leaf tip necrosis. Leaf tips in Lr34-expressing wheat and barley showed an accumulation of abscisic acid. No increase of Lr34 expression was detected in the leaf tip. Instead, the development of ectopic, Lr34-induced leaf tip necrosis after removing the leaf tip suggests an increased flux of abscisic acid towards the tip, where it accumulates and mediates the development of leaf tip necrosis. This redistribution of abscisic acid was also observed in adult transgenic barley plants with a high Lr34 expression level growing in the field and coincided with leaf tip necrosis as well as complete field resistance against Puccinia hordei and Blumeria graminis f. sp. hordei. In a barley transgenic line with a lower Lr34 expression level, a quantitative resistance against Puccinia hordei was still observed, but without a significant redistribution of abscisic acid or apparent leaf tip necrosis. Thus, our results imply that fine-tuning the Lr34 expression level is essential to balance disease resistance versus leaf tip necrosis to deploy transgenic Lr34 in breeding programs.
Collapse
Affiliation(s)
- Stephanie Bräunlich
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Teresa Koller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, Neuchâtel, 2000, Switzerland
| | - Simon G Krattinger
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.
| |
Collapse
|
30
|
Biotechnological Resources to Increase Disease-Resistance by Improving Plant Immunity: A Sustainable Approach to Save Cereal Crop Production. PLANTS 2021; 10:plants10061146. [PMID: 34199861 PMCID: PMC8229257 DOI: 10.3390/plants10061146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/17/2021] [Accepted: 05/29/2021] [Indexed: 12/16/2022]
Abstract
Plant diseases are globally causing substantial losses in staple crop production, undermining the urgent goal of a 60% increase needed to meet the food demand, a task made more challenging by the climate changes. Main consequences concern the reduction of food amount and quality. Crop diseases also compromise food safety due to the presence of pesticides and/or toxins. Nowadays, biotechnology represents our best resource both for protecting crop yield and for a science-based increased sustainability in agriculture. Over the last decades, agricultural biotechnologies have made important progress based on the diffusion of new, fast and efficient technologies, offering a broad spectrum of options for understanding plant molecular mechanisms and breeding. This knowledge is accelerating the identification of key resistance traits to be rapidly and efficiently transferred and applied in crop breeding programs. This review gathers examples of how disease resistance may be implemented in cereals by exploiting a combination of basic research derived knowledge with fast and precise genetic engineering techniques. Priming and/or boosting the immune system in crops represent a sustainable, rapid and effective way to save part of the global harvest currently lost to diseases and to prevent food contamination.
Collapse
|
31
|
Cao Y, Zhang Y, Chen Y, Yu N, Liaqat S, Wu W, Chen D, Cheng S, Wei X, Cao L, Zhang Y, Liu Q. OsPG1 Encodes a Polygalacturonase that Determines Cell Wall Architecture and Affects Resistance to Bacterial Blight Pathogen in Rice. RICE (NEW YORK, N.Y.) 2021; 14:36. [PMID: 33881659 PMCID: PMC8060378 DOI: 10.1186/s12284-021-00478-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plant cell walls are the main physical barrier encountered by pathogens colonizing plant tissues. Alteration of cell wall integrity (CWI) can activate specific defenses by impairing proteins involved in cell wall biosynthesis, degradation and remodeling, or cell wall damage due to biotic or abiotic stress. Polygalacturonase (PG) depolymerize pectin by hydrolysis, thereby altering pectin composition and structures and activating cell wall defense. Although many studies of CWI have been reported, the mechanism of how PGs regulate cell wall immune response is not well understood. RESULTS Necrosis appeared in leaf tips at the tillering stage, finally resulting in 3-5 cm of dark brown necrotic tissue. ltn-212 showed obvious cell death and accumulation of H2O2 in leaf tips. The defense responses were activated in ltn-212 to resist bacterial blight pathogen of rice. Map based cloning revealed that a single base substitution (G-A) in the first intron caused incorrect splicing of OsPG1, resulting in a necrotic phenotype. OsPG1 is constitutively expressed in all organs, and the wild-type phenotype was restored in complementation individuals and knockout of wild-type lines resulted in necrosis as in ltn-212. Transmission electron microscopy showed that thicknesses of cell walls were significantly reduced and cell size and shape were significantly diminished in ltn-212. CONCLUSION These results demonstrate that OsPG1 encodes a PG in response to the leaf tip necrosis phenotype of ltn-212. Loss-of-function mutation of ltn-212 destroyed CWI, resulting in spontaneous cell death and an auto-activated defense response including reactive oxygen species (ROS) burst and pathogenesis-related (PR) gene expression, as well as enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo). These findings promote our understanding of the CWI mediated defense response.
Collapse
Affiliation(s)
- Yongrun Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Yue Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Yuyu Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Ning Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Shah Liaqat
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Weixun Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Daibo Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Xinghua Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Liyong Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China.
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China.
| | - Qunen Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China.
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China.
| |
Collapse
|
32
|
Cabre L, Peyrard S, Sirven C, Gilles L, Pelissier B, Ducerf S, Poussereau N. Identification and characterization of a new soybean promoter induced by Phakopsora pachyrhizi, the causal agent of Asian soybean rust. BMC Biotechnol 2021; 21:27. [PMID: 33765998 PMCID: PMC7995590 DOI: 10.1186/s12896-021-00684-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phakopsora pachyrhizi is a biotrophic fungal pathogen responsible for the Asian soybean rust disease causing important yield losses in tropical and subtropical soybean-producing countries. P. pachyrhizi triggers important transcriptional changes in soybean plants during infection, with several hundreds of genes being either up- or downregulated. RESULTS Based on published transcriptomic data, we identified a predicted chitinase gene, referred to as GmCHIT1, that was upregulated in the first hours of infection. We first confirmed this early induction and showed that this gene was expressed as early as 8 h after P. pachyrhizi inoculation. To investigate the promoter of GmCHIT1, transgenic soybean plants expressing the green fluorescence protein (GFP) under the control of the GmCHIT1 promoter were generated. Following inoculation of these transgenic plants with P. pachyrhizi, GFP fluorescence was detected in a limited area located around appressoria, the fungal penetration structures. Fluorescence was also observed after mechanical wounding whereas no variation in fluorescence of pGmCHIT1:GFP transgenic plants was detected after a treatment with an ethylene precursor or a methyl jasmonate analogue. CONCLUSION We identified a soybean chitinase promoter exhibiting an early induction by P. pachyrhizi located in the first infected soybean leaf cells. Our results on the induction of GmCHIT1 promoter by P. pachyrhizi contribute to the identification of a new pathogen inducible promoter in soybean and beyond to the development of a strategy for the Asian soybean rust disease control using biotechnological approaches.
Collapse
Affiliation(s)
- L. Cabre
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Bayer SAS Crop Science Division, UMR 5240 MAP, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet BP 99163, 69263 Lyon Cedex 09, France
| | - S. Peyrard
- Bayer SAS, Crop Science Division, 14 Impasse Pierre Baizet, BP 99163, 69263 Lyon Cedex 09, France
| | - C. Sirven
- Bayer SAS, Crop Science Division, 14 Impasse Pierre Baizet, BP 99163, 69263 Lyon Cedex 09, France
| | - L. Gilles
- Bayer SAS, Crop Science Division, 14 Impasse Pierre Baizet, BP 99163, 69263 Lyon Cedex 09, France
- Present address: Limagrain, Biopôle Clermont-Limagne, Rue Henri Mondor, 63360 Saint Beauzire, France
| | - B. Pelissier
- Bayer SAS, Crop Science Division, 14 Impasse Pierre Baizet, BP 99163, 69263 Lyon Cedex 09, France
| | - S. Ducerf
- Bayer SAS, Crop Science Division, 14 Impasse Pierre Baizet, BP 99163, 69263 Lyon Cedex 09, France
| | - N. Poussereau
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Bayer SAS Crop Science Division, UMR 5240 MAP, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet BP 99163, 69263 Lyon Cedex 09, France
| |
Collapse
|
33
|
Hatta MAM, Arora S, Ghosh S, Matny O, Smedley MA, Yu G, Chakraborty S, Bhatt D, Xia X, Steuernagel B, Richardson T, Mago R, Lagudah ES, Patron NJ, Ayliffe M, Rouse MN, Harwood WA, Periyannan S, Steffenson BJ, Wulff BB. The wheat Sr22, Sr33, Sr35 and Sr45 genes confer resistance against stem rust in barley. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:273-284. [PMID: 32744350 PMCID: PMC7868974 DOI: 10.1111/pbi.13460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 06/17/2020] [Indexed: 05/16/2023]
Abstract
In the last 20 years, stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), has re-emerged as a major threat to wheat and barley production in Africa and Europe. In contrast to wheat with 60 designated stem rust (Sr) resistance genes, barley's genetic variation for stem rust resistance is very narrow with only ten resistance genes genetically identified. Of these, only one complex locus consisting of three genes is effective against TTKSK, a widely virulent Pgt race of the Ug99 tribe which emerged in Uganda in 1999 and has since spread to much of East Africa and parts of the Middle East. The objective of this study was to assess the functionality, in barley, of cloned wheat Sr genes effective against race TTKSK. Sr22, Sr33, Sr35 and Sr45 were transformed into barley cv. Golden Promise using Agrobacterium-mediated transformation. All four genes were found to confer effective stem rust resistance. The barley transgenics remained susceptible to the barley leaf rust pathogen Puccinia hordei, indicating that the resistance conferred by these wheat Sr genes was specific for Pgt. Furthermore, these transgenic plants did not display significant adverse agronomic effects in the absence of disease. Cloned Sr genes from wheat are therefore a potential source of resistance against wheat stem rust in barley.
Collapse
Affiliation(s)
- M. Asyraf Md Hatta
- John Innes CentreNorwich Research ParkNorwichUK
- Department of Agriculture TechnologyFaculty of AgricultureUniversiti Putra MalaysiaSerdangMalaysia
| | - Sanu Arora
- John Innes CentreNorwich Research ParkNorwichUK
| | - Sreya Ghosh
- John Innes CentreNorwich Research ParkNorwichUK
| | - Oadi Matny
- Department of Plant PathologyStakman Borlaug Center for Sustainable Plant HealthUniversity of MinnesotaSt. PaulMNUSA
| | | | - Guotai Yu
- John Innes CentreNorwich Research ParkNorwichUK
| | - Soma Chakraborty
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Dhara Bhatt
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Xiaodi Xia
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | | | - Terese Richardson
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Rohit Mago
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Evans S. Lagudah
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | | | - Michael Ayliffe
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Matthew N. Rouse
- Department of Plant PathologyStakman Borlaug Center for Sustainable Plant HealthUniversity of MinnesotaSt. PaulMNUSA
- USDA‐ARS Cereal Disease LaboratorySt. PaulMNUSA
| | | | - Sambasivam Periyannan
- Commonwealth Scientific and Industrial Research Organization (CSIRO)Agriculture and FoodCanberraACTAustralia
| | - Brian J. Steffenson
- Department of Plant PathologyStakman Borlaug Center for Sustainable Plant HealthUniversity of MinnesotaSt. PaulMNUSA
| | | |
Collapse
|
34
|
Zhao ZX, Xu YJ, Lei Y, Li Q, Zhao JQ, Li Y, Fan J, Xiao S, Wang WM. ANNEXIN 8 negatively regulates RPW8.1-mediated cell death and disease resistance in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:378-392. [PMID: 33073904 DOI: 10.1111/jipb.13025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Study on the regulation of broad-spectrum resistance is an active area in plant biology. RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) is one of a few broad-spectrum resistance genes triggering the hypersensitive response (HR) to restrict multiple pathogenic infections. To address the question how RPW8.1 signaling is regulated, we performed a genetic screen and tried to identify mutations enhancing RPW8.1-mediated HR. Here, we provided evidence to connect an annexin protein with RPW8.1-mediated resistance in Arabidopsis against powdery mildew. We isolated and characterized Arabidopsis b7-6 mutant. A point mutation in b7-6 at the At5g12380 locus resulted in an amino acid substitution in ANNEXIN 8 (AtANN8). Loss-of-function or RNA-silencing of AtANN8 led to enhanced expression of RPW8.1, RPW8.1-dependent necrotic lesions in leaves, and defense against powdery mildew. Conversely, over-expression of AtANN8 compromised RPW8.1-mediated disease resistance and cell death. Interestingly, the mutation in AtANN8 enhanced RPW8.1-triggered H2 O2 . In addition, mutation in AtANN8 led to hypersensitivity to salt stress. Together, our data indicate that AtANN8 is involved in multiple stress signaling pathways and negatively regulates RPW8.1-mediated resistance against powdery mildew and cell death, thus linking ANNEXIN's function with plant immunity.
Collapse
Affiliation(s)
- Zhi-Xue Zhao
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong-Ju Xu
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Lei
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qin Li
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Qun Zhao
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Li
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Fan
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Science and Landscape Architecture, University of Maryland, Rockville, Maryland, 20850, USA
| | - Wen-Ming Wang
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
35
|
Poonia AK, Mishra SK, Sirohi P, Chaudhary R, Kanwar M, Germain H, Chauhan H. Overexpression of wheat transcription factor (TaHsfA6b) provides thermotolerance in barley. PLANTA 2020; 252:53. [PMID: 32945950 DOI: 10.1007/s00425-020-03457-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/28/2020] [Indexed: 05/22/2023]
Abstract
Overexpressing a heat shock factor gene (TaHsfA6bT) from wheat provides thermotolerance in barley by constitutive expression of heat and other abiotic stress-response genes. Temperature is one of the most crucial abiotic factors defining the yield potential of temperate cereal crops, such as barley. The regulators of heat shock response (HSR), heat stress transcription factors (Hsfs), modulate the transcription level of heat-responsive genes to protect the plants from heat stress. In this study, an Hsf from wheat (TaHsfA6b) is overexpressed in barley for providing thermotolerance. Transgenic barley lines overexpressing TaHsfA6b showed improvement in thermotolerance. The constitutive overexpression of a TaHsfA6b gene upregulated the expression of major heat shock proteins and other abiotic stress-responsive genes. RNA-seq and qRT-PCR analysis confirmed the upregulation of Hsps, chaperonins, DNAJ, LEA protein genes, and genes related to anti-oxidative enzymes in transgenic lines. Excessive generation and accumulation of reactive oxygen species (ROS) occurred in wild-type (WT) plants during heat stress; however, the transgenic lines reflected improved ROS homeostasis mechanisms, showing lesser ROS accumulation under high temperature. No negative phenotypic changes were observed in overexpression lines. These results suggest that TaHsfA6b is a regulator of HSR and its overexpression altered the expression patterns of some main stress-related genes and enhanced the thermotolerance of this cereal crop.
Collapse
Affiliation(s)
- Anuj Kumar Poonia
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Sumit Kumar Mishra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Parul Sirohi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | - Reeku Chaudhary
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Meenakshi Kanwar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | - Harsh Chauhan
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
36
|
Babu P, Baranwal DK, Harikrishna, Pal D, Bharti H, Joshi P, Thiyagarajan B, Gaikwad KB, Bhardwaj SC, Singh GP, Singh A. Application of Genomics Tools in Wheat Breeding to Attain Durable Rust Resistance. FRONTIERS IN PLANT SCIENCE 2020; 11:567147. [PMID: 33013989 PMCID: PMC7516254 DOI: 10.3389/fpls.2020.567147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/12/2020] [Indexed: 11/13/2023]
Abstract
Wheat is an important source of dietary protein and calories for the majority of the world's population. It is one of the largest grown cereal in the world occupying over 215 M ha. Wheat production globally is challenged by biotic stresses such as pests and diseases. Of the 50 diseases of wheat that are of economic importance, the three rust diseases are the most ubiquitous causing significant yield losses in the majority of wheat production environments. Under severe epidemics they can lead to food insecurity threats amid the continuous evolution of new races of the pathogens, shifts in population dynamics and their virulence patterns, thereby rendering several effective resistance genes deployed in wheat breeding programs vulnerable. This emphasizes the need to identify, characterize, and deploy effective rust-resistant genes from diverse sources into pre-breeding lines and future wheat varieties. The use of genetic resistance has been marked as eco-friendly and to curb the further evolution of rust pathogens. Deployment of multiple rust resistance genes including major and minor genes in wheat lines could enhance the durability of resistance thereby reducing pathogen evolution. Advances in next-generation sequencing (NGS) platforms and associated bioinformatics tools have revolutionized wheat genomics. The sequence alignment of the wheat genome is the most important landmark which will enable genomics to identify marker-trait associations, candidate genes and enhanced breeding values in genomic selection (GS) studies. High throughput genotyping platforms have demonstrated their role in the estimation of genetic diversity, construction of the high-density genetic maps, dissecting polygenic traits, and better understanding their interactions through GWAS (genome-wide association studies) and QTL mapping, and isolation of R genes. Application of breeder's friendly KASP assays in the wheat breeding program has expedited the identification and pyramiding of rust resistance alleles/genes in elite lines. The present review covers the evolutionary trends of the rust pathogen and contemporary wheat varieties, and how these research strategies galvanized to control the wheat killer genus Puccinia. It will also highlight the outcome and research impact of cost-effective NGS technologies and cloning of rust resistance genes amid the public availability of common and tetraploid wheat reference genomes.
Collapse
Affiliation(s)
- Prashanth Babu
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | | | - Harikrishna
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | - Dharam Pal
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | - Hemlata Bharti
- Directorate of Medicinal and Aromatic Plants Research (ICAR), Anand, India
| | - Priyanka Joshi
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | | | | | | | | - Anupam Singh
- DCM SHRIRAM-Bioseed Research India, ICRISAT, Hyderabad, India
| |
Collapse
|
37
|
Fang T, Lei L, Li G, Powers C, Hunger RM, Carver BF, Yan L. Development and deployment of KASP markers for multiple alleles of Lr34 in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2183-2195. [PMID: 32281004 PMCID: PMC7311377 DOI: 10.1007/s00122-020-03589-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/31/2020] [Indexed: 05/03/2023]
Abstract
Heterogeneous Lr34 genes for leaf rust in winter wheat cultivar 'Duster' and KASP markers for allelic variation in exon 11 and exon 22 of Lr34. Wheat, Triticum aestivum (2n = 6x = 42, AABBDD), is a hexaploid species, and each of three homoeologous genomes A, B, and D should have one copy for a gene in its ancestral form if the gene has no duplication. Previously reported leaf rust resistance gene Lr34 has one copy on the short arm of chromosome 7D in hexaploid wheat, and allelic variation in Lr34 is in intron 4, exon 11, exon 12, or exon 22. In this study, we discovered that Oklahoma hard red winter wheat cultivar 'Duster' (PI 644,016) has two copies of the Lr34 gene, the resistance allele Lr34a and the susceptibility allele Lr34b. Both Lr34a and Lr34b were mapped in the same linkage group on chromosome 7D in a doubled-haploid population generated from a cross between Duster and a winter wheat cultivar 'Billings' which carries the susceptibility allele Lr34c. A chromosomal fragment including Lr34 and at least two neighboring genes on its proximal side but excluding genes on its distal side was duplicated in Duster. The Duster Lr34ab allele was associated with tip necrosis and increased resistance against leaf rust at adult plants in the Duster × Billings DH population tested in the field, demonstrating the function of the Duster Lr34ab allele in wheat. We have developed KASP markers for allelic variation in exon 11 and exon 22 of Lr34 in wheat. These markers can be utilized to accelerate the selection of Lr34 in wheat.
Collapse
Affiliation(s)
- Tilin Fang
- Department of Plant and Soil Sciences Department, Oklahoma State University, 368 AG Hall, Stillwater, OK, 74078, USA
| | - Lei Lei
- Department of Plant and Soil Sciences Department, Oklahoma State University, 368 AG Hall, Stillwater, OK, 74078, USA
| | - Genqiao Li
- Department of Plant and Soil Sciences Department, Oklahoma State University, 368 AG Hall, Stillwater, OK, 74078, USA
| | - Carol Powers
- Department of Plant and Soil Sciences Department, Oklahoma State University, 368 AG Hall, Stillwater, OK, 74078, USA
| | - Robert M Hunger
- Entomology and Plant Pathology Department, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brett F Carver
- Department of Plant and Soil Sciences Department, Oklahoma State University, 368 AG Hall, Stillwater, OK, 74078, USA
| | - Liuling Yan
- Department of Plant and Soil Sciences Department, Oklahoma State University, 368 AG Hall, Stillwater, OK, 74078, USA.
| |
Collapse
|
38
|
Liu TT, Ye FC, Pang CP, Yong TQ, Tang WD, Xiao J, Shang CH, Lu ZJ. Isolation and identification of bioactive substance 1-hydroxyphenazine from Pseudomonas aeruginosa and its antimicrobial activity. Lett Appl Microbiol 2020; 71:303-310. [PMID: 32449160 DOI: 10.1111/lam.13332] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/05/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
A strain named as Pseudomonas aeruginosa 2016NX1, which could produce phenazine and cereusitin, was isolated from the root of Millettia specisoa. Phenazines were extracted, isolated and purified by chloroform, thin-layer chromatography, column chromatography and high-performance liquid chromatography. Then the purified materials were identified by analysis of nuclear magnetic resonance. The major yellow component is 1-hydroxyphenazine and the minor blue component is cereusitin A. The tests of antimicrobial activity of yellow component showed that the growth of several common plant pathogenic fungi and bacteria (such as Cochliobolus miyabeanus, Diaporthe citri, Salmonella sp., Klebsiella oxytoca) could be strongly inhibited. This study suggested that Pseudomonas aeruginosa strain 2016NX1 had a significant potential for biological control of phytopathogenic fungi. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, one bioactive substance from Pseudomonas aeruginosa 2016NX1 was identified and its antimicrobial activity was verified. This study demonstrated that one bioactive substance from P. aeruginosa can strongly inhibit the growth of plant pathogenic fungi and bacteria. This study suggested that P. aeruginosa strain 2016NX1 has a significant potential for biological control of phytopathogenic fungi.
Collapse
Affiliation(s)
- T T Liu
- College of Life Science, Guangxi Normal University, Guilin, Guangxi, China.,Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China
| | - F C Ye
- College of Life Science, Guangxi Normal University, Guilin, Guangxi, China.,Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China
| | - C P Pang
- College of Life Science, Guangxi Normal University, Guilin, Guangxi, China.,Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China
| | - T Q Yong
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application and Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - W D Tang
- College of Life Science, Guangxi Normal University, Guilin, Guangxi, China.,Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China
| | - J Xiao
- College of Life Science, Guangxi Normal University, Guilin, Guangxi, China.,Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China
| | - C H Shang
- College of Life Science, Guangxi Normal University, Guilin, Guangxi, China.,Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China
| | - Z J Lu
- College of Life Science, Guangxi Normal University, Guilin, Guangxi, China.,Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China
| |
Collapse
|
39
|
Zhang J, Zhang P, Dodds P, Lagudah E. How Target-Sequence Enrichment and Sequencing (TEnSeq) Pipelines Have Catalyzed Resistance Gene Cloning in the Wheat-Rust Pathosystem. FRONTIERS IN PLANT SCIENCE 2020; 11:678. [PMID: 32528511 PMCID: PMC7264398 DOI: 10.3389/fpls.2020.00678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/30/2020] [Indexed: 05/02/2023]
Abstract
The wheat-rust pathosystem has been well-studied among host-pathogen interactions since last century due to its economic importance. Intensified efforts toward cloning of wheat rust resistance genes commenced in the late 1990s with the first successful isolation published in 2003. Currently, a total of 24 genes have been cloned from wheat that provides resistance to stem rust, leaf rust, and stripe rust. Among them, more than half (15) were cloned over the last 4 years. This rapid cloning of resistance genes from wheat can be largely credited to the development of approaches for reducing the genome complexity as 10 out of the 15 genes cloned recently were achieved by approaches that are summarized as TEnSeq (Target-sequence Enrichment and Sequencing) pipelines in this review. The growing repertoire of cloned rust resistance genes provides new tools to support deployment strategies aimed at achieving durable resistance. This will be supported by the identification of genetic variation in corresponding Avr genes from rust pathogens, which has recently begun. Although developed with wheat resistance genes as the primary targets, TEnSeq approaches are also applicable to other classes of genes as well as for other crops with complex genomes.
Collapse
Affiliation(s)
| | - Peng Zhang
- Plant Breeding Institute Cobbitty, The University of Sydney, Sydney, NSW, Australia
| | - Peter Dodds
- CSIRO Agriculture & Food, Canberra, ACT, Australia
| | - Evans Lagudah
- CSIRO Agriculture & Food, Canberra, ACT, Australia
- Plant Breeding Institute Cobbitty, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
40
|
|
41
|
van Esse HP, Reuber TL, van der Does D. Genetic modification to improve disease resistance in crops. THE NEW PHYTOLOGIST 2020; 225:70-86. [PMID: 31135961 PMCID: PMC6916320 DOI: 10.1111/nph.15967] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 05/19/2023]
Abstract
Plant pathogens are a significant challenge in agriculture despite our best efforts to combat them. One of the most effective and sustainable ways to manage plant pathogens is to use genetic modification (GM) and genome editing, expanding the breeder's toolkit. For use in the field, these solutions must be efficacious, with no negative effect on plant agronomy, and deployed thoughtfully. They must also not introduce a potential allergen or toxin. Expensive regulation of biotech crops is prohibitive for local solutions. With 11-30% average global yield losses and greater local impacts, tackling plant pathogens is an ethical imperative. We need to increase world food production by at least 60% using the same amount of land, by 2050. The time to act is now and we cannot afford to ignore the new solutions that GM provides to manage plant pathogens.
Collapse
Affiliation(s)
- H. Peter van Esse
- 2Blades Foundation1630 Chicago AvenueEvanstonIL 60201USA
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research ParkNR4 7UHUK
| | | | | |
Collapse
|
42
|
Laroche A, Frick M, Graf RJ, Larsen J, Laurie JD. Pyramiding disease resistance genes in elite winter wheat germplasm for Western Canada. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2019.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Abstract
Approaches to manipulating disease resistance in plants is expanding exponentially due to advances in our understanding of plant defense mechanisms and new tools for manipulating the plant genome. The application of effective strategies is only limited now by adoption of rapid classical genetic techniques and the acceptance of genetically engineered traits for some problems. The use of genome editing and cis-genetics, where possible, may facilitate applications that otherwise require considerable time or genetic engineering, depending on settling legal definitions of the products. Nonetheless, the variety of approaches to developing disease resistance has never been greater.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Frank F. White
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
44
|
Biotechnological potential of engineering pathogen effector proteins for use in plant disease management. Biotechnol Adv 2019; 37:107387. [DOI: 10.1016/j.biotechadv.2019.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 11/19/2022]
|
45
|
Krattinger SG, Kang J, Bräunlich S, Boni R, Chauhan H, Selter LL, Robinson MD, Schmid MW, Wiederhold E, Hensel G, Kumlehn J, Sucher J, Martinoia E, Keller B. Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34. THE NEW PHYTOLOGIST 2019; 223:853-866. [PMID: 30913300 PMCID: PMC6618152 DOI: 10.1111/nph.15815] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/20/2019] [Indexed: 05/10/2023]
Abstract
The wheat Lr34res allele, coding for an ATP-binding cassette transporter, confers durable resistance against multiple fungal pathogens. The Lr34sus allele, differing from Lr34res by two critical nucleotide polymorphisms, is found in susceptible wheat cultivars. Lr34res is functionally transferrable as a transgene into all major cereals, including rice, barley, maize, and sorghum. Here, we used transcriptomics, physiology, genetics, and in vitro and in vivo transport assays to study the molecular function of Lr34. We report that Lr34res results in a constitutive induction of transcripts reminiscent of an abscisic acid (ABA)-regulated response in transgenic rice. Lr34-expressing rice was altered in biological processes that are controlled by this phytohormone, including dehydration tolerance, transpiration and seedling growth. In planta seedling and in vitro yeast accumulation assays revealed that both LR34res and LR34sus act as ABA transporters. However, whereas the LR34res protein was detected in planta the LR34sus version was not, suggesting a post-transcriptional regulatory mechanism. Our results identify ABA as a substrate of the LR34 ABC transporter. We conclude that LR34res-mediated ABA redistribution has a major effect on the transcriptional response and physiology of Lr34res-expressing plants and that ABA is a candidate molecule that contributes to Lr34res-mediated disease resistance.
Collapse
Affiliation(s)
- Simon G. Krattinger
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
- Biological and Environmental Science & Engineering DivisionKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Joohyun Kang
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Stephanie Bräunlich
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Rainer Boni
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Harsh Chauhan
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Liselotte L. Selter
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Mark D. Robinson
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- SIB Swiss Institute of BioinformaticsUniversity of ZurichZurichSwitzerland
| | - Marc W. Schmid
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Elena Wiederhold
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Goetz Hensel
- Plant Reproductive BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeeland/OT, GaterslebenGermany
| | - Jochen Kumlehn
- Plant Reproductive BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeeland/OT, GaterslebenGermany
| | - Justine Sucher
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Enrico Martinoia
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Beat Keller
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
46
|
Sánchez-Martín J, Keller B. Contribution of recent technological advances to future resistance breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:713-732. [PMID: 30756126 DOI: 10.1007/s00122-019-03297-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/02/2019] [Indexed: 05/23/2023]
Abstract
The development of durable host resistance strategies to control crop diseases is a primary need for sustainable agricultural production in the future. This article highlights the potential of recent progress in the understanding of host resistance for future cereal breeding. Much of the novel work is based on advancements in large-scale sequencing and genomics, rapid gene isolation techniques and high-throughput molecular marker technologies. Moreover, emerging applications on the pathogen side like effector identification or field pathogenomics are discussed. The combination of knowledge from both sides of cereal pathosystems will result in new approaches for resistance breeding. We describe future applications and innovative strategies to implement effective and durable strategies to combat diseases of major cereal crops while reducing pesticide dependency.
Collapse
Affiliation(s)
- Javier Sánchez-Martín
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| |
Collapse
|
47
|
Lopez-Zuniga LO, Wolters P, Davis S, Weldekidan T, Kolkman JM, Nelson R, Hooda KS, Rucker E, Thomason W, Wisser R, Balint-Kurti P. Using Maize Chromosome Segment Substitution Line Populations for the Identification of Loci Associated with Multiple Disease Resistance. G3 (BETHESDA, MD.) 2019; 9:189-201. [PMID: 30459178 PMCID: PMC6325898 DOI: 10.1534/g3.118.200866] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/15/2018] [Indexed: 11/24/2022]
Abstract
Southern Leaf Blight (SLB), Northern Leaf Blight (NLB), and Gray Leaf Spot (GLS) caused by Cochliobolus heterostrophus, Setosphaeria turcica, and Cercospora zeae-maydis respectively, are among the most important diseases of corn worldwide. Previously, moderately high and significantly positive genetic correlations between resistance levels to each of these diseases were identified in a panel of 253 diverse maize inbred lines. The goal of this study was to identify loci underlying disease resistance in some of the most multiple disease resistant (MDR) lines by the creation of chromosome segment substitution line (CSSL) populations in multiple disease susceptible (MDS) backgrounds. Four MDR lines (NC304, NC344, Ki3, NC262) were used as donor parents and two MDS lines (Oh7B, H100) were used as recurrent parents to produce eight BC3F4:5 CSSL populations comprising 1,611 lines in total. Each population was genotyped and assessed for each disease in replicated trials in two environments. Moderate to high heritabilities on an entry mean basis were observed (0.32 to 0.83). Several lines in each population were significantly more resistant than the MDS parental lines for each disease. Multiple quantitative trait loci (QTL) for disease resistance were detected for each disease in most of the populations. Seventeen QTL were associated with variation in resistance to more than one disease (SLB/NLB: 2; SLB/GLS: 7; NLB/GLS: 2 and 6 to all three diseases). For most populations and most disease combinations, significant correlations were observed between disease scores and also between marker effects for each disease. The number of lines that were resistant to more than one disease was significantly higher than would be expected by chance. Using the results from individual QTL analyses, a composite statistic based on Mahalanobis distance (Md) was used to identify joint marker associations with multiple diseases. Across all populations and diseases, 246 markers had significant Md values. However further analysis revealed that most of these associations were due to strong QTL effects on a single disease. Together, these findings reinforce our previous conclusions that loci associated with resistance to different diseases are clustered in the genome more often than would be expected by chance. Nevertheless true MDR loci which have significant effects on more than one disease are still much rarer than loci with single disease effects.
Collapse
Affiliation(s)
- Luis O Lopez-Zuniga
- Dept. of Crop Science, North Carolina State University, Box 7620, Raleigh, NC 27695
| | - Petra Wolters
- Dupont-Pioneer 7300 NW 62 Avenue P.O Box 1004 Johnston, IA, 50131-1004
| | - Scott Davis
- Dupont-Pioneer 7300 NW 62 Avenue P.O Box 1004 Johnston, IA, 50131-1004
| | | | - Judith M Kolkman
- Department of Plant Pathology and Plant-Microbe Biology Cornell University, Ithaca, NY 14853
| | - Rebecca Nelson
- Department of Plant Pathology and Plant-Microbe Biology Cornell University, Ithaca, NY 14853
| | - K S Hooda
- ICAR-Indian Institute of Maize Research, Indian Council of Agricultural Research, Pusa Campus, New Delhi 110 012, India
| | - Elizabeth Rucker
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061
| | - Wade Thomason
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061
| | - Randall Wisser
- Dept. of Plant and Soil Sciences, University of Delaware, Newark, DE 19716
| | - Peter Balint-Kurti
- Dept. of Entomology and Plant Pathology, North Carolina State University, Box 7616 Raleigh, NC 27695
- Plant Science Research Unit, USDA-ARS, Raleigh NC 27695-7616
| |
Collapse
|
48
|
Wang Y, Tan J, Wu Z, VandenLangenberg K, Wehner TC, Wen C, Zheng X, Owens K, Thornton A, Bang HH, Hoeft E, Kraan PAG, Suelmann J, Pan J, Weng Y. STAYGREEN, STAY HEALTHY: a loss-of-susceptibility mutation in the STAYGREEN gene provides durable, broad-spectrum disease resistances for over 50 years of US cucumber production. THE NEW PHYTOLOGIST 2019; 221:415-430. [PMID: 30022503 DOI: 10.1111/nph.15353] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/13/2018] [Indexed: 05/22/2023]
Abstract
The Gy14 cucumber (Cucumis sativus) is resistant to oomyceteous downy mildew (DM), bacterial angular leaf spot (ALS) and fungal anthracnose (AR) pathogens, but the underlying molecular mechanisms are unknown. Quantitative trait locus (QTL) mapping for the disease resistances in Gy14 and further map-based cloning identified a candidate gene for the resistant loci, which was validated and functionally characterized by spatial-temporal gene expression profiling, allelic diversity and phylogenetic analysis, as well as local association studies. We showed that the triple-disease resistances in Gy14 were controlled by the cucumber STAYGREEN (CsSGR) gene. A single nucleotide polymorphism (SNP) in the coding region resulted in a nonsynonymous amino acid substitution in the CsSGR protein, and thus disease resistance. Genes in the chlorophyll degradation pathway showed differential expression between resistant and susceptible lines in response to pathogen inoculation. The causal SNP was significantly associated with disease resistances in natural and breeding populations. The resistance allele has undergone selection in cucumber breeding. The durable, broad-spectrum disease resistance is caused by a loss-of-susceptibility mutation of CsSGR. Probably, this is achieved through the inhibition of reactive oxygen species over-accumulation and phytotoxic catabolite over-buildup in the chlorophyll degradation pathway. The CsSGR-mediated host resistance represents a novel function of this highly conserved gene in plants.
Collapse
Affiliation(s)
- Yuhui Wang
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Junyi Tan
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Zhiming Wu
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- Institute of Cash Crops, Hebei Academy of Agriculture & Forestry Sciences, Shijiazhuang, Hebei, 050051, China
| | - Kyle VandenLangenberg
- Horticultural Science Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Todd C Wehner
- Horticultural Science Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Changlong Wen
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | | | - Ken Owens
- Magnum Seeds Inc., Dixon, CA, 95620, USA
| | | | | | - Eric Hoeft
- HM Clause Seed Company, Davis, CA, 95618, USA
| | | | - Jos Suelmann
- Bayer Vegetable Seeds, 6083 AB, Nunhem, the Netherlands
| | - Junsong Pan
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200241, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, 53705, USA
| |
Collapse
|
49
|
Kunwar S, Iriarte F, Fan Q, Evaristo da Silva E, Ritchie L, Nguyen NS, Freeman JH, Stall RE, Jones JB, Minsavage GV, Colee J, Scott JW, Vallad GE, Zipfel C, Horvath D, Westwood J, Hutton SF, Paret ML. Transgenic Expression of EFR and Bs2 Genes for Field Management of Bacterial Wilt and Bacterial Spot of Tomato. PHYTOPATHOLOGY 2018; 108:1402-1411. [PMID: 29923802 DOI: 10.1094/phyto-12-17-0424-r] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Field trials were conducted at two locations in Florida to evaluate transgenic tomato expressing the ELONGATION FACTOR TU RECEPTOR (EFR) gene from Arabidopsis thaliana, the Bs2 gene from pepper, or both Bs2 and EFR (Bs2/EFR) for managing bacterial wilt caused by Ralstonia solanacearum and bacterial spot caused by Xanthomonas perforans. Expression of EFR or Bs2/EFR in the susceptible genotype Fla. 8000 significantly reduced bacterial wilt incidence (50 to 100%) and increased total yield (57 to 114%) relative to lines expressing only Bs2 or the nontransformed Fla. 8000 control, although the marketable yield was not significantly affected. Following harvest, surviving symptomatic and nonsymptomatic plants were assessed for colonization by R. solanacearum. There were no significant differences in the population at the lower stem. Interestingly, in the middle stem, no bacteria could be recovered from EFR or Bs2/EFR lines but viable bacterial populations were recovered from Bs2 and nontransformed control lines at 102 to 105 CFU/g of stem tissue. In growth-chamber experiments, the EFR transgenic tomato lines were found to be effective against seven different R. solanacearum strains isolated from the southeastern United States, indicating utility across the southeastern United States. In all of the bacterial spot trials, EFR and Bs2/EFR lines had significantly reduced disease severity (22 to 98%) compared with the Fla. 8000 control. The marketable and total yield of Bs2/EFR were significantly higher (43 to 170%) than Fla. 8000 control in three of four field trials. These results demonstrate for the first time the potential of using the EFR gene for field management of bacterial wilt and bacterial spot diseases of tomato.
Collapse
Affiliation(s)
- Sanju Kunwar
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Fanny Iriarte
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Qiurong Fan
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Eduardo Evaristo da Silva
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Laura Ritchie
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Nghi Song Nguyen
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Joshua H Freeman
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Robert E Stall
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Jeffrey B Jones
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Gerald V Minsavage
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - James Colee
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Jay W Scott
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Gary E Vallad
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Cyril Zipfel
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Diana Horvath
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Jack Westwood
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Samuel F Hutton
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Mathews L Paret
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| |
Collapse
|
50
|
Deppe JP, Rabbat R, Hörtensteiner S, Keller B, Martinoia E, Lopéz-Marqués RL. The wheat ABC transporter Lr34 modifies the lipid environment at the plasma membrane. J Biol Chem 2018; 293:18667-18679. [PMID: 30327425 PMCID: PMC6290163 DOI: 10.1074/jbc.ra118.002532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/18/2018] [Indexed: 11/06/2022] Open
Abstract
Phospholipids (PLs) are emerging as important factors that initiate signal transduction cascades at the plasma membrane. Their distribution within biological membranes is tightly regulated, e.g. by ATP-binding cassette (ABC) transporters, which preferably translocate PLs from the cytoplasmic to the exoplasmic membrane leaflet and are therefore called PL-floppases. Here, we demonstrate that a plant ABC transporter, Lr34 from wheat (Triticum aestivum), is involved in plasma membrane remodeling characterized by an intracellular accumulation of phosphatidic acid and enhanced outward translocation of phosphatidylserine. In addition, the content of phosphatidylinositol 4,5-bisphosphate in the cytoplasmic leaflet of the plasma membrane was reduced in the presence of the ABC transporter. When heterologously expressed in Saccharomyces cerevisiae, Lr34 promoted oil body formation in a mutant defective in PL-transfer in the secretory pathway. Our results suggest that PL redistribution by Lr34 potentially affects the membrane-bound proteome and contributes to the previously reported stimuli-independent activation of biotic and abiotic stress responses and neutral lipid accumulation in transgenic Lr34-expressing barley plants.
Collapse
Affiliation(s)
- Johannes P Deppe
- From the Department of Plant and Microbial Biology, University of Zürich (UZH), Zollikerstrasse 107, 8008 Zürich, Switzerland and
| | - Ritta Rabbat
- From the Department of Plant and Microbial Biology, University of Zürich (UZH), Zollikerstrasse 107, 8008 Zürich, Switzerland and
| | - Stefan Hörtensteiner
- From the Department of Plant and Microbial Biology, University of Zürich (UZH), Zollikerstrasse 107, 8008 Zürich, Switzerland and
| | - Beat Keller
- From the Department of Plant and Microbial Biology, University of Zürich (UZH), Zollikerstrasse 107, 8008 Zürich, Switzerland and
| | - Enrico Martinoia
- From the Department of Plant and Microbial Biology, University of Zürich (UZH), Zollikerstrasse 107, 8008 Zürich, Switzerland and
| | - Rosa L Lopéz-Marqués
- the Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|