1
|
Li B, Sun C, Li J, Gao C. Targeted genome-modification tools and their advanced applications in crop breeding. Nat Rev Genet 2024; 25:603-622. [PMID: 38658741 DOI: 10.1038/s41576-024-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/26/2024]
Abstract
Crop improvement by genome editing involves the targeted alteration of genes to improve plant traits, such as stress tolerance, disease resistance or nutritional content. Techniques for the targeted modification of genomes have evolved from generating random mutations to precise base substitutions, followed by insertions, substitutions and deletions of small DNA fragments, and are finally starting to achieve precision manipulation of large DNA segments. Recent developments in base editing, prime editing and other CRISPR-associated systems have laid a solid technological foundation to enable plant basic research and precise molecular breeding. In this Review, we systematically outline the technological principles underlying precise and targeted genome-modification methods. We also review methods for the delivery of genome-editing reagents in plants and outline emerging crop-breeding strategies based on targeted genome modification. Finally, we consider potential future developments in precise genome-editing technologies, delivery methods and crop-breeding approaches, as well as regulatory policies for genome-editing products.
Collapse
Affiliation(s)
- Boshu Li
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Sun
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayang Li
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Van Duyne GD, Landy A. Bacteriophage lambda site-specific recombination. Mol Microbiol 2024; 121:895-911. [PMID: 38372210 PMCID: PMC11096046 DOI: 10.1111/mmi.15241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
The site-specific recombination pathway of bacteriophage λ encompasses isoenergetic but highly directional and tightly regulated integrative and excisive reactions that integrate and excise the vial chromosome into and out of the bacterial chromosome. The reactions require 240 bp of phage DNA and 21 bp of bacterial DNA comprising 16 protein binding sites that are differentially used in each pathway by the phage-encoded Int and Xis proteins and the host-encoded integration host factor and factor for inversion stimulation proteins. Structures of higher-order protein-DNA complexes of the four-way Holliday junction recombination intermediates provided clarifying insights into the mechanisms, directionality, and regulation of these two pathways, which are tightly linked to the physiology of the bacterial host cell. Here we review our current understanding of the mechanisms responsible for regulating and executing λ site-specific recombination, with an emphasis on key studies completed over the last decade.
Collapse
Affiliation(s)
- Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arthur Landy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
3
|
Pan C, Qi Y. PrimeRoot for targeted large DNA insertion in plants. TRENDS IN PLANT SCIENCE 2023; 28:870-872. [PMID: 37236858 DOI: 10.1016/j.tplants.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Genome editing technologies such as clustered regularly interspaced short palindromic repeats (CRISPR) have revolutionized plant breeding through targeted genome and transcriptome modifications. However, accurate insertion of large DNA cargoes remains challenging. Recently, Sun and colleagues introduced PrimeRoot, a groundbreaking technology that enables precise and targeted integration of large DNA cargoes into plant genomes with remarkable efficiency and accuracy.
Collapse
Affiliation(s)
- Changtian Pan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
4
|
Li Z, Zhong F, Guo J, Chen Z, Song J, Zhang Y. Improving Wheat Salt Tolerance for Saline Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14989-15006. [PMID: 36442507 DOI: 10.1021/acs.jafc.2c06381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Salinity is a major abiotic stress that threatens crop yield and food supply in saline soil areas. Crops have evolved various strategies to facilitate survival and production of harvestable yield under salinity stress. Wheat (Triticum aestivum L.) is the main crop in arid and semiarid land areas, which are often affected by soil salinity. In this review, we summarize the conventional approaches to enhance wheat salt tolerance, including cross-breeding, exogenous application of chemical compounds, beneficial soil microorganisms, and transgenic engineering. We also propose several new breeding techniques for increasing salt tolerance in wheat, such as identifying new quantitative trait loci or genes related to salt tolerance, gene stacking and multiple genome editing, and wheat wild relatives and orphan crops domestication. The challenges and possible countermeasures in enhancing wheat salinity tolerance are also discussed.
Collapse
Affiliation(s)
- Zihan Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Fan Zhong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
5
|
Kan M, Huang T, Zhao P. Artificial chromosome technology and its potential application in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:970943. [PMID: 36186059 PMCID: PMC9519882 DOI: 10.3389/fpls.2022.970943] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Plant genetic engineering and transgenic technology are powerful ways to study the function of genes and improve crop yield and quality in the past few years. However, only a few genes could be transformed by most available genetic engineering and transgenic technologies, so changes still need to be made to meet the demands for high throughput studies, such as investigating the whole genetic pathway of crop traits and avoiding undesirable genes simultaneously in the next generation. Plant artificial chromosome (PAC) technology provides a carrier which allows us to assemble multiple and specific genes to produce a variety of products by minichromosome. However, PAC technology also have limitations that may hinder its further development and application. In this review, we will introduce the current state of PACs technology from PACs formation, factors on PACs formation, problems and potential solutions of PACs and exogenous gene(s) integration.
Collapse
Affiliation(s)
- Manman Kan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Panpan Zhao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Zhang Z, Guo Y, Marasigan KM, Conner JA, Ozias-Akins P. Gene activation via Cre/lox-mediated excision in cowpea (Vigna unguiculata). PLANT CELL REPORTS 2022; 41:119-138. [PMID: 34591155 PMCID: PMC8803690 DOI: 10.1007/s00299-021-02789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/15/2021] [Indexed: 05/11/2023]
Abstract
Expression of Cre recombinase by AtRps5apro or AtDD45pro enabled Cre/lox-mediated recombination at an early embryonic developmental stage upon crossing, activating transgenes in the hybrid cowpea and tobacco. Genetic engineering ideally results in precise spatiotemporal control of transgene expression. To activate transgenes exclusively in a hybrid upon fertilization, we evaluated a Cre/lox-mediated gene activation system with the Cre recombinase expressed by either AtRps5a or AtDD45 promoters that showed activity in egg cells and young embryos. In crosses between Cre recombinase lines and transgenic lines harboring a lox-excision reporter cassette with ZsGreen driven by the AtUbq3 promoter after Cre/lox-mediated recombination, we observed complete excision of the lox-flanked intervening DNA sequence between the AtUbq3pro and the ZsGreen coding sequence in F1 progeny upon genotyping but no ZsGreen expression in F1 seeds or seedlings. The incapability to observe ZsGreen fluorescence was attributed to the activity of the AtUbq3pro. Strong ZsGreen expression in F1 seeds was observed after recombination when ZsGreen was driven by the AtUbq10 promoter. Using the AtDD45pro to express Cre resulted in more variation in recombination frequencies between transgenic lines and crosses. Regardless of the promoter used to regulate Cre, mosaic F1 progeny were rare, suggesting gene activation at an early embryo-developmental stage. Observation of ZsGreen-expressing tobacco embryos at the globular stage from crosses with the AtRps5aproCre lines pollinated by the AtUbq3prolox line supported the early activation mode.
Collapse
Affiliation(s)
- Zhifen Zhang
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 2356 Rainwater Rd, Tifton, GA, 31793, USA
| | - Yinping Guo
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 2356 Rainwater Rd, Tifton, GA, 31793, USA
| | - Kathleen Monfero Marasigan
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 2356 Rainwater Rd, Tifton, GA, 31793, USA
| | - Joann A Conner
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 2356 Rainwater Rd, Tifton, GA, 31793, USA
| | - Peggy Ozias-Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 2356 Rainwater Rd, Tifton, GA, 31793, USA.
| |
Collapse
|
7
|
Pathak B, Nandy S, Srivastava V. Multigene Transformation Through Cre-lox Mediated Site-Specific Integration in Rice. Methods Mol Biol 2022; 2408:293-302. [PMID: 35325430 DOI: 10.1007/978-1-0716-1875-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plant transformation with multiple genes is a major challenge, rendering multi-trait engineering extremely difficult in crop plants. One of the hurdles in multigene transformation is the uncontrolled integration process that leads to low quality transgenic lines that are unsuitable for practical application. Recombinase-mediated site-specific integration has been tested and validated for developing high quality transgenic lines expressing one, two, or multiple genes. Of the numerous recombinase systems tested, Cre-lox and FLP-FRT show high efficiency in plants. Recently, Cre-lox system was successfully used to stack a set of 3 constitutive, 1 heat-induced, and 1 cold-induced gene. A number of transgenic lines were obtained through a relatively small effort, and the resulting transgenic lines all expressed the genes properly as determined by their promoter-specificity. Here, a method of Cre-lox mediated stacking of a multigene construct is described using rice as a model crop.
Collapse
Affiliation(s)
- Bhuvan Pathak
- Department of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Soumen Nandy
- Department of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Vibha Srivastava
- Department of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA.
- Department of Horticulture, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
8
|
Čermák T. Sequence modification on demand: search and replace tools for precise gene editing in plants. Transgenic Res 2021; 30:353-379. [PMID: 34086167 DOI: 10.1007/s11248-021-00253-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/05/2021] [Indexed: 12/26/2022]
Abstract
Until recently, our ability to generate allelic diversity in plants was limited to introduction of variants from domesticated and wild species by breeding via uncontrolled recombination or the use of chemical and physical mutagens-processes that are lengthy and costly or lack specificity, respectively. Gene editing provides a faster and more precise way to create new variation, although its application in plants has been dominated by the creation of short insertion and deletion mutations leading to loss of gene function, mostly due to the dependence of editing outcomes on DNA repair pathway choices intrinsic to higher eukaryotes. Other types of edits such as point mutations and precise and pre-designed targeted sequence insertions have rarely been implemented, despite providing means to modulate the expression of target genes or to engineer the function and stability of their protein products. Several advancements have been developed in recent years to facilitate custom editing by regulation of repair pathway choices or by taking advantage of alternative types of DNA repair. We have seen the advent of novel gene editing tools that are independent of DNA double-strand break repair, and methods completely independent of host DNA repair processes are being increasingly explored. With the aim to provide a comprehensive review of the state-of-the-art methodology for allele replacement in plants, I discuss the adoption of these improvements for plant genome engineering.
Collapse
|
9
|
FLP-Mediated Site-Specific Gene Integration in Rice. Methods Mol Biol 2021. [PMID: 33471335 DOI: 10.1007/978-1-0716-1068-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Enabling precise gene integration is important for installing traits in the plants. One of the practical methods of achieving precise gene integration is by using the yeast FLP-FRT recombination system that is efficient in directing DNA integration into the "engineered" genomic sites. The critical parameters of this method include the use of the thermostable version of FLP protein and the promoter trap design to select site-specific integration clones. The resulting transgenic plants display stable expression that is transmitted to the progeny. Therefore, FLP-mediated site-specific integration method could be used for trait engineering in the crop plants or testing gene functions in the model plants.
Collapse
|
10
|
Hathwaik LT, Horstman J, Thomson JG, Thilmony R. Efficient Gene Stacking in Rice Using the GAANTRY System. RICE (NEW YORK, N.Y.) 2021; 14:17. [PMID: 33547973 PMCID: PMC7867672 DOI: 10.1186/s12284-021-00460-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/28/2021] [Indexed: 05/29/2023]
Abstract
Genetic engineering of rice provides a means for improving rice grain quality and yield, and the introduction and expression of multiple genes can produce new traits that would otherwise be difficult to obtain through conventional breeding. GAANTRY (Gene Assembly in Agrobacterium by Nucleic acid Transfer using Recombinase technologY) was previously shown to be a precise and robust system to stably stack ten genes (28 kilobases (kb)) within an Agrobacterium virulence plasmid Transfer-DNA (T-DNA) and obtain high-quality Arabidopsis and potato transgenic events. To determine whether the GAANTRY system can be used to engineer a monocotyledonous crop, two new T-DNA constructs, carrying five (16.9 kb) or eleven (37.4 kb) cargo sequences were assembled and transformed into rice. Characterization of 53 independent transgenic events demonstrated that more than 50% of the plants carried all of the desired cargo sequences and exhibited the introduced traits. Additionally, more than 18% of the lines were high-quality events containing a single copy of the introduced transgenes and were free of sequences from outside of the T-DNA. Therefore, GAANTRY provides a simple, precise and versatile tool for transgene stacking in rice and potentially other cereal grain crops.
Collapse
Affiliation(s)
- Leyla T Hathwaik
- United States Department of Agriculture-Agriculture Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA
| | - James Horstman
- United States Department of Agriculture-Agriculture Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA
| | - James G Thomson
- United States Department of Agriculture-Agriculture Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA
| | - Roger Thilmony
- United States Department of Agriculture-Agriculture Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA.
| |
Collapse
|
11
|
Gene Pyramiding for Sustainable Crop Improvement against Biotic and Abiotic Stresses. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091255] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sustainable agricultural production is endangered by several ecological factors, such as drought, extreme temperatures, excessive salts, parasitic ailments, and insect pest infestation. These challenging environmental factors may have adverse effects on future agriculture production in many countries. In modern agriculture, conventional crop-breeding techniques alone are inadequate for achieving the increasing population’s food demand on a sustainable basis. The advancement of molecular genetics and related technologies are promising tools for the selection of new crop species. Gene pyramiding through marker-assisted selection (MAS) and other techniques have accelerated the development of durable resistant/tolerant lines with high accuracy in the shortest period of time for agricultural sustainability. Gene stacking has not been fully utilized for biotic stress resistance development and quality improvement in most of the major cultivated crops. This review emphasizes on gene pyramiding techniques that are being successfully deployed in modern agriculture for improving crop tolerance to biotic and abiotic stresses for sustainable crop improvement.
Collapse
|
12
|
Pathak B, Srivastava V. Recombinase-mediated integration of a multigene cassette in rice leads to stable expression and inheritance of the stacked locus. PLANT DIRECT 2020; 4:e00236. [PMID: 32760877 PMCID: PMC7391932 DOI: 10.1002/pld3.236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 05/03/2023]
Abstract
Efficient methods for multigene transformation are important for developing novel crop varieties. Methods based on random integrations of multiple genes have been successfully used for metabolic engineering in plants. However, efficiency of co-integration and co-expression of the genes could present a bottleneck. Recombinase-mediated integration into the engineered target sites is arguably a more efficient method of targeted integration that leads to the generation of stable transgenic lines at a high rate. This method has the potential to streamline multigene transformation for metabolic engineering and trait stacking in plants. Therefore, empirical testing of transgene(s) stability from the multigene site-specific integration locus is needed. Here, the recombinase technology based on Cre-lox recombination was evaluated for developing multigenic lines harboring constitutively-expressed and inducible genes. Targeted integration of a five genes cassette in the rice genome generated a precise full-length integration of the cassette at a high rate, and the resulting multigenic lines expressed each gene reliably as defined by their promoter activity. The stable constitutive or inducible expression was faithfully transmitted to the progeny, indicating inheritance-stability of the multigene locus. Co-localization of two distinctly inducible genes by heat or cold with the strongly constitutive genes did not appear to interfere with each other's expression pattern. In summary, high rate of co-integration and co-expression of the multigene cassette installed by the recombinase technology in rice shows that this approach is appropriate for multigene transformation and introduction of co-segregating traits. SIGNIFICANCE STATEMENT Recombinase-mediated site-specific integration approach was found to be highly efficacious in multigene transformation of rice showing proper regulation of each gene driven by constitutive or inducible promoter. This approach holds promise for streamlining gene stacking in crops and expressing complex multigenic traits.
Collapse
Affiliation(s)
- Bhuvan Pathak
- Department of Crop, Soil & Environmental SciencesUniversity of ArkansasFayettevilleARUSA
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleARUSA
| | - Vibha Srivastava
- Department of Crop, Soil & Environmental SciencesUniversity of ArkansasFayettevilleARUSA
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleARUSA
- Department of HorticultureUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
13
|
Kalluri UC, Yang X, Wullschleger SD. Plant Biosystems Design for a Carbon-Neutral Bioeconomy. BIODESIGN RESEARCH 2020; 2020:7914051. [PMID: 37849896 PMCID: PMC10521676 DOI: 10.34133/2020/7914051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/18/2020] [Indexed: 10/19/2023] Open
Abstract
Our society faces multiple daunting challenges including finding sustainable solutions towards climate change mitigation; efficient production of food, biofuels, and biomaterials; maximizing land-use efficiency; and enabling a sustainable bioeconomy. Plants can provide environmentally and economically sustainable solutions to these challenges due to their inherent capabilities for photosynthetic capture of atmospheric CO2, allocation of carbon to various organs and partitioning into various chemical forms, including contributions to total soil carbon. In order to enhance crop productivity and optimize chemistry simultaneously in the above- and belowground plant tissues, transformative biosystems design strategies are needed. Concerted research efforts will be required for accelerating the development of plant cultivars, genotypes, or varieties that are cooptimized in the contexts of biomass-derived fuels and/or materials aboveground and enhanced carbon sequestration belowground. Here, we briefly discuss significant knowledge gaps in our process understanding and the potential of synthetic biology in enabling advancements along the fundamental to applied research arc. Ultimately, a convergence of perspectives from academic, industrial, government, and consumer sectors will be needed to realize the potential merits of plant biosystems design for a carbon neutral bioeconomy.
Collapse
Affiliation(s)
- Udaya C. Kalluri
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6422, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6422, USA
| | - Stan D. Wullschleger
- Environmental Sciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6422, USA
| |
Collapse
|
14
|
Gao H, Mutti J, Young JK, Yang M, Schroder M, Lenderts B, Wang L, Peterson D, St. Clair G, Jones S, Feigenbutz L, Marsh W, Zeng M, Wagner S, Farrell J, Snopek K, Scelonge C, Sopko X, Sander JD, Betts S, Cigan AM, Chilcoat ND. Complex Trait Loci in Maize Enabled by CRISPR-Cas9 Mediated Gene Insertion. FRONTIERS IN PLANT SCIENCE 2020; 11:535. [PMID: 32431725 PMCID: PMC7214728 DOI: 10.3389/fpls.2020.00535] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/08/2020] [Indexed: 05/03/2023]
Abstract
Modern maize hybrids often contain biotech and native traits. To-date all biotech traits have been randomly inserted in the genome. Consequently, developing hybrids with multiple traits is expensive, time-consuming, and complex. Here we report using CRISPR-Cas9 to generate a complex trait locus (CTL) to facilitate trait stacking. A CTL consists of multiple preselected sites positioned within a small well-characterized chromosomal region where trait genes are inserted. We generated individual lines, each carrying a site-specific insertion landing pad (SSILP) that was targeted to a preselected site and capable of efficiently receiving a transgene via recombinase-mediated cassette exchange. The selected sites supported consistent transgene expression and the SSILP insertion had no effect on grain yield. We demonstrated that two traits residing at different sites within a CTL can be combined via genetic recombination. CTL technology is a major step forward in the development of multi-trait maize hybrids.
Collapse
Affiliation(s)
- Huirong Gao
- Research and Development, Corteva Agriscience, Johnston, IA, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bernabé-Orts JM, Quijano-Rubio A, Vazquez-Vilar M, Mancheño-Bonillo J, Moles-Casas V, Selma S, Gianoglio S, Granell A, Orzaez D. A memory switch for plant synthetic biology based on the phage ϕC31 integration system. Nucleic Acids Res 2020; 48:3379-3394. [PMID: 32083668 PMCID: PMC7102980 DOI: 10.1093/nar/gkaa104] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Synthetic biology has advanced from the setup of basic genetic devices to the design of increasingly complex gene circuits to provide organisms with new functions. While many bacterial, fungal and mammalian unicellular chassis have been extensively engineered, this progress has been delayed in plants due to the lack of reliable DNA parts and devices that enable precise control over these new synthetic functions. In particular, memory switches based on DNA site-specific recombination have been the tool of choice to build long-term and stable synthetic memory in other organisms, because they enable a shift between two alternative states registering the information at the DNA level. Here we report a memory switch for whole plants based on the bacteriophage ϕC31 site-specific integrase. The switch was built as a modular device made of standard DNA parts, designed to control the transcriptional state (on or off) of two genes of interest by alternative inversion of a central DNA regulatory element. The state of the switch can be externally operated by action of the ϕC31 integrase (Int), and its recombination directionality factor (RDF). The kinetics, memory, and reversibility of the switch were extensively characterized in Nicotiana benthamiana plants.
Collapse
Affiliation(s)
- Joan Miquel Bernabé-Orts
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Alfredo Quijano-Rubio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Marta Vazquez-Vilar
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Javier Mancheño-Bonillo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Victor Moles-Casas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Sara Selma
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Silvia Gianoglio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
16
|
van Esse HP, Reuber TL, van der Does D. Genetic modification to improve disease resistance in crops. THE NEW PHYTOLOGIST 2020; 225:70-86. [PMID: 31135961 PMCID: PMC6916320 DOI: 10.1111/nph.15967] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 05/19/2023]
Abstract
Plant pathogens are a significant challenge in agriculture despite our best efforts to combat them. One of the most effective and sustainable ways to manage plant pathogens is to use genetic modification (GM) and genome editing, expanding the breeder's toolkit. For use in the field, these solutions must be efficacious, with no negative effect on plant agronomy, and deployed thoughtfully. They must also not introduce a potential allergen or toxin. Expensive regulation of biotech crops is prohibitive for local solutions. With 11-30% average global yield losses and greater local impacts, tackling plant pathogens is an ethical imperative. We need to increase world food production by at least 60% using the same amount of land, by 2050. The time to act is now and we cannot afford to ignore the new solutions that GM provides to manage plant pathogens.
Collapse
Affiliation(s)
- H. Peter van Esse
- 2Blades Foundation1630 Chicago AvenueEvanstonIL 60201USA
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research ParkNR4 7UHUK
| | | | | |
Collapse
|
17
|
Chen W, Kaur G, Hou L, Li R, Ow DW. Replacement of stacked transgenes in planta. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2029-2031. [PMID: 31127663 PMCID: PMC6790365 DOI: 10.1111/pbi.13172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/05/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Weiqiang Chen
- Plant Gene Engineering CenterChinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic ImprovementGuangdong Key Laboratory of Applied BotanySouth China Botanical GardenGuangzhouChina
| | - Gurminder Kaur
- Plant Gene Engineering CenterChinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic ImprovementGuangdong Key Laboratory of Applied BotanySouth China Botanical GardenGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lili Hou
- Plant Gene Engineering CenterChinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic ImprovementGuangdong Key Laboratory of Applied BotanySouth China Botanical GardenGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ruyu Li
- Plant Gene Engineering CenterChinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic ImprovementGuangdong Key Laboratory of Applied BotanySouth China Botanical GardenGuangzhouChina
| | - David W. Ow
- Plant Gene Engineering CenterChinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic ImprovementGuangdong Key Laboratory of Applied BotanySouth China Botanical GardenGuangzhouChina
| |
Collapse
|
18
|
Anand A, Wu E, Li Z, TeRonde S, Arling M, Lenderts B, Mutti JS, Gordon‐Kamm W, Jones TJ, Chilcoat ND. High efficiency Agrobacterium-mediated site-specific gene integration in maize utilizing the FLP-FRT recombination system. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1636-1645. [PMID: 30706638 PMCID: PMC6662307 DOI: 10.1111/pbi.13089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 05/20/2023]
Abstract
An efficient Agrobacterium-mediated site-specific integration (SSI) technology using the flipase/flipase recognition target (FLP/FRT) system in elite maize inbred lines is described. The system allows precise integration of a single copy of a donor DNA flanked by heterologous FRT sites into a predefined recombinant target line (RTL) containing the corresponding heterologous FRT sites. A promoter-trap system consisting of a pre-integrated promoter followed by an FRT site enables efficient selection of events. The efficiency of this system is dependent on several factors including Agrobacterium tumefaciens strain, expression of morphogenic genes Babyboom (Bbm) and Wuschel2 (Wus2) and choice of heterologous FRT pairs. Of the Agrobacterium strains tested, strain AGL1 resulted in higher transformation frequency than strain LBA4404 THY- (0.27% vs. 0.05%; per cent of infected embryos producing events). The addition of morphogenic genes increased transformation frequency (2.65% in AGL1; 0.65% in LBA4404 THY-). Following further optimization, including the choice of FRT pairs, a method was developed that achieved 19%-22.5% transformation frequency. Importantly, >50% of T0 transformants contain the desired full-length site-specific insertion. The frequencies reported here establish a new benchmark for generating targeted quality events compatible with commercial product development.
Collapse
Affiliation(s)
- Ajith Anand
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Emily Wu
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Zhi Li
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Sue TeRonde
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Maren Arling
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Brian Lenderts
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Jasdeep S. Mutti
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | | | - Todd J. Jones
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | | |
Collapse
|
19
|
Zhao Y, Kim JY, Karan R, Jung JH, Pathak B, Williamson B, Kannan B, Wang D, Fan C, Yu W, Dong S, Srivastava V, Altpeter F. Generation of a selectable marker free, highly expressed single copy locus as landing pad for transgene stacking in sugarcane. PLANT MOLECULAR BIOLOGY 2019; 100:247-263. [PMID: 30919152 DOI: 10.1007/s11103-019-00856-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/15/2019] [Indexed: 05/23/2023]
Abstract
A selectable marker free, highly expressed single copy locus flanked by insulators was created as landing pad for transgene stacking in sugarcane. These events displayed superior transgene expression compared to single-copy transgenic lines lacking insulators. Excision of the selectable marker gene from transgenic sugarcane lines was supported by FLPe/FRT site-specific recombination. Sugarcane, a tropical C4 grass in the genus Saccharum (Poaceae), accounts for nearly 80% of sugar produced worldwide and is also an important feedstock for biofuel production. Generating transgenic sugarcane with predictable and stable transgene expression is critical for crop improvement. In this study, we generated a highly expressed single copy locus as landing pad for transgene stacking. Transgenic sugarcane lines with stable integration of a single copy nptII expression cassette flanked by insulators supported higher transgene expression along with reduced line to line variation when compared to single copy events without insulators by NPTII ELISA analysis. Subsequently, the nptII selectable marker gene was efficiently excised from the sugarcane genome by the FLPe/FRT site-specific recombination system to create selectable marker free plants. This study provides valuable resources for future gene stacking using site-specific recombination or genome editing tools.
Collapse
Affiliation(s)
- Yang Zhao
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Jae Y Kim
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Ratna Karan
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Je H Jung
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- Smart Farm Research Center, Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangwon-do, 25451, Republic of Korea
| | - Bhuvan Pathak
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Bruce Williamson
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Baskaran Kannan
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Duoduo Wang
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Chunyang Fan
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Wenjin Yu
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Shujie Dong
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Vibha Srivastava
- Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida - IFAS, Gainesville, FL, 32611, USA.
| |
Collapse
|
20
|
Pathak BP, Pruett E, Guan H, Srivastava V. Utility of I-SceI and CCR5-ZFN nucleases in excising selectable marker genes from transgenic plants. BMC Res Notes 2019; 12:272. [PMID: 31088537 PMCID: PMC6518718 DOI: 10.1186/s13104-019-4304-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/04/2019] [Indexed: 11/21/2022] Open
Abstract
Objectives Removal of selection marker genes from transgenic plants is highly desirable for their regulatory approval and public acceptance. This study evaluated the use of two nucleases, the yeast homing endonuclease, I-SceI, and the designed zinc finger nuclease, CCR5-ZFN, in excising marker genes from plants using rice and Arabidopsis as the models. Results In an in vitro culture assay, both nucleases were effective in precisely excising the DNA fragments marked by the nuclease target sites. However, rice cultures were found to be refractory to transformation with the I-SceI and CCR5-ZFN overexpressing constructs. The inducible I-SceI expression was also problematic in rice as the progeny of the transgenic lines expressing the heat-inducible I-SceI did not inherit the functional gene. On the other hand, heat-inducible I-SceI expression in Arabidopsis was effective in creating somatic excisions in transgenic plants but ineffective in generating heritable excisions. The inducible expression of CCR5-ZFN in rice, although transmitted stably to the progeny, appeared ineffective in creating detectable excisions. Therefore, toxicity of these nucleases in plant cells poses major bottleneck in their application in plant biotechnology, which could be avoided by expressing them transiently in cultures in vitro. Electronic supplementary material The online version of this article (10.1186/s13104-019-4304-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bhuvan P Pathak
- Dept. of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Eliott Pruett
- Dept. of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Huazhong Guan
- Dept. of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA.,Fujian Provincial Key Laboratory of Crop Breeding, Fujian Agricultural & Forestry University, Fuzhou, China
| | - Vibha Srivastava
- Dept. of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA. .,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA. .,Dept. of Horticulture, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
21
|
Srivastava V. Gene Stacking in Plants Through the Application of Site-Specific Recombination and Nuclease Activity. Methods Mol Biol 2019; 1864:267-277. [PMID: 30415342 DOI: 10.1007/978-1-4939-8778-8_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biotechnology methods for inserting genes one by one or as a block of fragment into plant genomes are needed to introduce valuable traits into crop varieties. Insertion of multiple genes into a single site, called as molecular stacking, is important to allow co-inheritance of the genes into the progeny. Generally, two approaches are available for creating gene stacks: nuclease-induced targeted gene integration into native sites and recombinase-mediated gene integration into the engineered sites. The recombinase application is attractive as several recombinases show high efficiency and precision in plant genomes. This chapter describes a gene stacking method based on the use of Cre-lox site-specific recombination system to integrate genes into the engineered sites and nucleases to delete selection genes leading to stacking of traits into a single genomic site. High efficiency and precision, and undetectable off-target effects of Cre-lox in a number of plant species, make it an attractive tool for complex applications such as gene stacking.
Collapse
Affiliation(s)
- Vibha Srivastava
- Department of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA. .,Department of Horticulture, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
22
|
Murphy KC, Nelson SJ, Nambi S, Papavinasasundaram K, Baer CE, Sassetti CM. ORBIT: a New Paradigm for Genetic Engineering of Mycobacterial Chromosomes. mBio 2018; 9:e01467-18. [PMID: 30538179 PMCID: PMC6299477 DOI: 10.1128/mbio.01467-18] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/19/2018] [Indexed: 11/20/2022] Open
Abstract
Two efficient recombination systems were combined to produce a versatile method for chromosomal engineering that obviates the need to prepare double-stranded DNA (dsDNA) recombination substrates. A synthetic "targeting oligonucleotide" is incorporated into the chromosome via homologous recombination mediated by the phage Che9c RecT annealase. This oligonucleotide contains a site-specific recombination site for the directional Bxb1 integrase (Int), which allows the simultaneous integration of a "payload plasmid" that contains a cognate recombination site and a selectable marker. The targeting oligonucleotide and payload plasmid are cotransformed into a RecT- and Int-expressing strain, and drug-resistant homologous recombinants are selected in a single step. A library of reusable target-independent payload plasmids is available to generate gene knockouts, promoter replacements, or C-terminal tags. This new system is called ORBIT (for "oligonucleotide-mediated recombineering followed by Bxb1 integrase targeting") and is ideally suited for the creation of libraries consisting of large numbers of deletions, insertions, or fusions in a bacterial chromosome. We demonstrate the utility of this "drag and drop" strategy by the construction of insertions or deletions in over 100 genes in Mycobacteriumtuberculosis and M. smegmatisIMPORTANCE We sought to develop a system that could increase the usefulness of oligonucleotide-mediated recombineering of bacterial chromosomes by expanding the types of modifications generated by an oligonucleotide (i.e., insertions and deletions) and by making recombinant formation a selectable event. This paper describes such a system for use in M. smegmatis and M. tuberculosis By incorporating a single-stranded DNA (ssDNA) version of the phage Bxb1 attP site into the oligonucleotide and coelectroporating it with a nonreplicative plasmid that carries an attB site and a drug selection marker, we show both formation of a chromosomal attP site and integration of the plasmid in a single transformation. No target-specific dsDNA substrates are required. This system will allow investigators studying mycobacterial diseases, including tuberculosis, to easily generate multiple mutants for analysis of virulence factors, identification of new drug targets, and development of new vaccines.
Collapse
Affiliation(s)
- Kenan C Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Samantha J Nelson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Subhalaxmi Nambi
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christina E Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
23
|
Vazquez-Vilar M, Orzaez D, Patron N. DNA assembly standards: Setting the low-level programming code for plant biotechnology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:33-41. [PMID: 29907307 DOI: 10.1016/j.plantsci.2018.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 05/28/2023]
Abstract
Synthetic Biology is defined as the application of engineering principles to biology. It aims to increase the speed, ease and predictability with which desirable changes and novel traits can be conferred to living cells. The initial steps in this process aim to simplify the encoding of new instructions in DNA by establishing low-level programming languages for biology. Together with advances in the laboratory that allow multiple DNA molecules to be efficiently assembled together into a desired order in a single step, this approach has simplified the design and assembly of multigene constructs and has even facilitated the automated construction of synthetic chromosomes. These advances and technologies are now being applied to plants, for which there are a growing number of software and wetware tools for the design, construction and delivery of DNA molecules and for the engineering of endogenous genes. Here we review the efforts of the past decade that have established synthetic biology workflows and tools for plants and discuss the constraints and bottlenecks of this emerging field.
Collapse
Affiliation(s)
- Marta Vazquez-Vilar
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Spain.
| | - Nicola Patron
- Department of Engineering Biology, The Earlham Institute, Norwich Research Park, Norfolk, NR1 7UZ, UK.
| |
Collapse
|
24
|
Collier R, Thomson JG, Thilmony R. A versatile and robust Agrobacterium-based gene stacking system generates high-quality transgenic Arabidopsis plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:573-583. [PMID: 29901840 DOI: 10.1111/tpj.13992] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 05/20/2023]
Abstract
Biotechnology provides a means for the rapid genetic improvement of plants. Although single genes have been important in engineering herbicide and pest tolerance traits in crops, future improvements of complex traits like yield and nutritional quality will likely require the introduction of multiple genes. This research reports a system (GAANTRY; Gene Assembly in Agrobacterium by Nucleic acid Transfer using Recombinase technologY) for the flexible, in vivo stacking of multiple genes within an Agrobacterium virulence plasmid Transfer-DNA (T-DNA). The GAANTRY system utilizes in vivo transient expression of unidirectional site-specific recombinases and an alternating selection scheme to sequentially assemble multiple genes into a single transformation construct. To demonstrate GAANTRY's capabilities, 10 cargo sequences were sequentially stacked together to produce a 28.5-kbp T-DNA, which was used to generate hundreds of transgenic events. Approximately 90% of the events identified using a dual antibiotic selection screen exhibited all of the introduced traits. A total of 68% of the tested lines carried a single copy of the selection marker transgene located near the T-DNA left border, and only 8% contained sequence from outside the T-DNA. The GAANTRY system can be modified to easily accommodate any method of DNA assembly and generate high-quality transgenic plants, making it a powerful, yet simple to use tool for plant genetic engineering.
Collapse
Affiliation(s)
- Ray Collier
- United States Department of Agriculture-Agriculture Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA
| | - James G Thomson
- United States Department of Agriculture-Agriculture Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA
| | - Roger Thilmony
- United States Department of Agriculture-Agriculture Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA
| |
Collapse
|
25
|
Advancing Agrobacterium-Based Crop Transformation and Genome Modification Technology for Agricultural Biotechnology. Curr Top Microbiol Immunol 2018; 418:489-507. [PMID: 29959543 DOI: 10.1007/82_2018_97] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The last decade has seen significant strides in Agrobacterium-mediated plant transformation technology. This has not only expanded the number of crop species that can be transformed by Agrobacterium, but has also made it possible to routinely transform several recalcitrant crop species including cereals (e.g., maize, sorghum, and wheat). However, the technology is limited by the random nature of DNA insertions, genotype dependency, low frequency of quality events, and variation in gene expression arising from genomic insertion sites. A majority of these deficiencies have now been addressed by improving the frequency of quality events, developing genotype-independent transformation capability in maize, developing an Agrobacterium-based site-specific integration technology for precise gene targeting, and adopting Agrobacterium-delivered CRISPR-Cas genes for gene editing. These improved transformation technologies are discussed in detail in this chapter.
Collapse
|
26
|
Effect of gene order in DNA constructs on gene expression upon integration into plant genome. 3 Biotech 2017; 7:94. [PMID: 28555430 DOI: 10.1007/s13205-017-0729-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/29/2017] [Indexed: 10/19/2022] Open
Abstract
Several plant biotechnology applications are based on the expression of multiple genes located on a single transformation vector. The principles of stable expression of foreign genes in plant cells include integration of full-length gene fragments consisting of promoter and transcription terminator sequences, and avoiding converging orientation of the gene transcriptional direction. Therefore, investigators usually generate constructs in which genes are assembled in the same orientation. However, no specific information is available on the effect of the order in which genes should be assembled in the construct to support optimum expression of each gene upon integration in the genome. While many factors, including genomic position and the integration structure, could affect gene expression, the investigators judiciously design DNA constructs to avoid glitches. However, the gene order in a multigene assembly remains an open question. This study addressed the effect of gene order in the DNA construct on gene expression in rice using a simple design of two genes placed in two possible orders with respect to the genomic context. Transgenic rice lines containing green fluorescent protein (GFP) and β-glucuronidase (GUS) genes in two distinct orders were developed by Cre-lox-mediated site-specific integration. Gene expression analysis of transgenic lines showed that both genes were expressed at similar levels in either orientation, and different transgenic lines expressed each gene within 1-2× range. Thus, no significant effect of the gene order on gene expression was found in the transformed rice lines containing precise site-specific integrations and stable gene expression in plant cells could be obtained with altered gene orders. Therefore, gene orientation and integration structures are more important factors governing gene expression than gene orders in the genomic context.
Collapse
|
27
|
Xu Y, Li P, Zou C, Lu Y, Xie C, Zhang X, Prasanna BM, Olsen MS. Enhancing genetic gain in the era of molecular breeding. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2641-2666. [PMID: 28830098 DOI: 10.1093/jxb/erx135] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/03/2017] [Indexed: 05/20/2023]
Abstract
As one of the important concepts in conventional quantitative genetics and breeding, genetic gain can be defined as the amount of increase in performance that is achieved annually through artificial selection. To develop pro ducts that meet the increasing demand of mankind, especially for food and feed, in addition to various industrial uses, breeders are challenged to enhance the potential of genetic gain continuously, at ever higher rates, while they close the gaps that remain between the yield potential in breeders' demonstration trials and the actual yield in farmers' fields. Factors affecting genetic gain include genetic variation available in breeding materials, heritability for traits of interest, selection intensity, and the time required to complete a breeding cycle. Genetic gain can be improved through enhancing the potential and closing the gaps, which has been evolving and complemented with modern breeding techniques and platforms, mainly driven by molecular and genomic tools, combined with improved agronomic practice. Several key strategies are reviewed in this article. Favorable genetic variation can be unlocked and created through molecular and genomic approaches including mutation, gene mapping and discovery, and transgene and genome editing. Estimation of heritability can be improved by refining field experiments through well-controlled and precisely assayed environmental factors or envirotyping, particularly for understanding and controlling spatial heterogeneity at the field level. Selection intensity can be significantly heightened through improvements in the scale and precision of genotyping and phenotyping. The breeding cycle time can be shortened by accelerating breeding procedures through integrated breeding approaches such as marker-assisted selection and doubled haploid development. All the strategies can be integrated with other widely used conventional approaches in breeding programs to enhance genetic gain. More transdisciplinary approaches, team breeding, will be required to address the challenge of maintaining a plentiful and safe food supply for future generations. New opportunities for enhancing genetic gain, a high efficiency breeding pipeline, and broad-sense genetic gain are also discussed prospectively.
Collapse
Affiliation(s)
- Yunbi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, CP 56130, México
| | - Ping Li
- Nantong Xinhe Bio-Technology, Nantong 226019, PR China
| | - Cheng Zou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Chuanxiao Xie
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, CP 56130, México
| | - Boddupalli M Prasanna
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF campus, United Nations Avenue, Nairobi, Kenya
| | - Michael S Olsen
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF campus, United Nations Avenue, Nairobi, Kenya
| |
Collapse
|
28
|
Davies JP, Kumar S, Sastry-Dent L. Use of Zinc-Finger Nucleases for Crop Improvement. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 149:47-63. [PMID: 28712500 DOI: 10.1016/bs.pmbts.2017.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Over the past two decades, new technologies enabling targeted modification of plant genomes have been developed. Among these are zinc-finger nucleases (ZFNs) which are composed of engineered zinc-finger DNA-binding domains fused with a nuclease, generally the FokI nuclease. The zinc-finger domains are composed of a series of four to six 30 amino acid domains that can bind to trinucleotide sequences giving the entire DNA-binding domain specificity to 12-18 nucleotides. Since the FokI nuclease functions as a dimer, pairs of zinc-finger domains are designed to bind upstream and downstream of the cut site which increases the specificity of the complete ZFN to 24-36 nucleotides. The ability of these engineered nucleases to create targeted double-stranded breaks at designated locations throughout the genome has enabled precise deletion, addition, and editing of genes. These techniques are being used to create new genetic variation by deleting or editing endogenous gene sequences and enhancing the efficiency of transgenic product development through targeted insertion of transgenes to specific genomic locations and to sequentially add and/or delete transgenes from existing transgenic events.
Collapse
|
29
|
Puchta H. Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:5-15. [PMID: 26677816 DOI: 10.1111/tpj.13100] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 05/21/2023]
Abstract
It is possible to target individual sequence motives within genomes by using synthetic DNA-binding domains. This one-dimensional approach has been used successfully in plants to induce mutations or for the transcriptional regulation of single genes. When the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system was discovered, a tool became available allowing the extension of this approach from one to three dimensions and to construct at least partly synthetic entities on the genome, epigenome and transcriptome levels. The second dimension can be obtained by targeting the Cas9 protein to multiple unique genomic sites by applying multiple different single guiding (sg) RNAs, each defining a different DNA-binding site. Finally, the simultaneous use of phylogenetically different Cas9 proteins or sgRNAs that harbour different types of protein binding motives, allows for a third dimension of control. Thus, different types of enzyme activities - fused either to one type of Cas9 orthologue or to one type of RNA-binding domain specific to one type of sgRNA - can be targeted to multiple different genomic sites simultaneously. Thus, it should be possible to induce quantitatively different levels of expression of certain sets of genes and at the same time to repress other genes, redefining the nuclear transcriptome. Likewise, by the use of different types of histone-modifying and/or DNA (de)methylating activities, the epigenome of plants should be reprogrammable. On our way to synthetic plant genomes, the next steps will be to use complex genome engineering approaches within or between species borders to restructure and recombine natural or artificial chromosomes.
Collapse
Affiliation(s)
- Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, POB 6980, 76049, Karlsruhe, Germany
| |
Collapse
|
30
|
Cardi T, Neal Stewart C. Progress of targeted genome modification approaches in higher plants. PLANT CELL REPORTS 2016; 35:1401-16. [PMID: 27025856 DOI: 10.1007/s00299-016-1975-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/21/2016] [Indexed: 05/07/2023]
Abstract
Transgene integration in plants is based on illegitimate recombination between non-homologous sequences. The low control of integration site and number of (trans/cis)gene copies might have negative consequences on the expression of transferred genes and their insertion within endogenous coding sequences. The first experiments conducted to use precise homologous recombination for gene integration commenced soon after the first demonstration that transgenic plants could be produced. Modern transgene targeting categories used in plant biology are: (a) homologous recombination-dependent gene targeting; (b) recombinase-mediated site-specific gene integration; (c) oligonucleotide-directed mutagenesis; (d) nuclease-mediated site-specific genome modifications. New tools enable precise gene replacement or stacking with exogenous sequences and targeted mutagenesis of endogeneous sequences. The possibility to engineer chimeric designer nucleases, which are able to target virtually any genomic site, and use them for inducing double-strand breaks in host DNA create new opportunities for both applied plant breeding and functional genomics. CRISPR is the most recent technology available for precise genome editing. Its rapid adoption in biological research is based on its inherent simplicity and efficacy. Its utilization, however, depends on available sequence information, especially for genome-wide analysis. We will review the approaches used for genome modification, specifically those for affecting gene integration and modification in higher plants. For each approach, the advantages and limitations will be noted. We also will speculate on how their actual commercial development and implementation in plant breeding will be affected by governmental regulations.
Collapse
Affiliation(s)
- Teodoro Cardi
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca per l'Orticoltura, Via Cavalleggeri 25, 84098, Pontecagnano, Italy.
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
31
|
Petolino JF, Srivastava V, Daniell H. Editing Plant Genomes: a new era of crop improvement. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:435-6. [PMID: 26817702 PMCID: PMC11389002 DOI: 10.1111/pbi.12542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|