1
|
Pivato M, Costa A, Wheeler G, Ballottari M. Abiotic Stress-Induced Chloroplast and Cytosolic Ca 2+ Dynamics in the Green Alga Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2025; 48:3939-3954. [PMID: 39853747 PMCID: PMC12050392 DOI: 10.1111/pce.15401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/15/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Calcium (Ca2+)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca2+ signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised. Here, compartment-specific Ca2+ dynamics were monitored in Chlamydomonas reinhardtii cells in response to environmental stressors, such as nutrient availability, osmotic stress, temperature fluctuations and carbon sensing. An in vivo single-cell imaging approach was adopted to directly visualise changes of Ca2+ concentrations at the level of specific subcellular compartments, using C. reinhardtii lines expressing a genetically encoded ratiometric Ca2+ indicator. Hyper-osmotic shock caused cytosolic and chloroplast Ca2+ elevations, whereas high temperature and inorganic carbon availability primarily induced Ca2+ transients in the chloroplast. In contrast, hypo-osmotic stress only induced Ca2+ elevations in the cytosol. The results herein reported show that in Chlamydomonas cells compartment-specific Ca2+ transients are closely related to specific external environmental stimuli, providing useful guidance for studying signal transduction mechanisms exploited by microalgae to respond to specific natural conditions.
Collapse
Affiliation(s)
- Matteo Pivato
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Alex Costa
- Department of BiosciencesUniversity of MilanMilanItaly
- Institute of BiophysicsNational Research Council of Italy (CNR)MilanoItaly
| | - Glen Wheeler
- Marine Biological AssociationThe LaboratoryPlymouthUK
| | | |
Collapse
|
2
|
Pan-utai W, Pornpukdeewattana S, Inrung W, Thurakit T, Srinophakun P. Enhancing Biomass and Lipid Production in Messastrum gracile Using Inorganic Carbon Substrates and Alternative Solvents for Lipid Extraction. Life (Basel) 2025; 15:407. [PMID: 40141752 PMCID: PMC11943732 DOI: 10.3390/life15030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Microalgae show promise as a biomass and bioproduct for applications in various industries. The cultivation of microalgae plays a crucial role in optimizing biomass yield and bioproduct accumulation. The provision of inorganic carbon substrates substantially enhances microalgal growth and lipid biosynthesis, resulting in marked increases in the production of biofuels and other bioproducts. This study examined biomass and lipid accumulation in Messastrum gracile IFRPD 1061 under inorganic stress conditions, previously unreported. M. gracile IFRPD 1061 was subjected to varying conditions of inorganic carbon substrates, 1-3 g·L-1 sodium carbonate and bicarbonate concentration, to enhance biomass and lipid accumulation. Optimal productivity levels were observed with sodium bicarbonate addition of 3 g·L-1 and 1 g·L-1 for biomass and lipids, resulting in productivities of 392.64 and 53.57 mg·L-1·d-1, respectively. Results underlined the effectiveness of sodium carbonate and bicarbonate as inorganic carbon sources for stimulating microalgal growth and enhancing the production of high-value products. The extraction of lipids from freeze-dried biomass of M. gracile IFRPD 1061 demonstrated optimal yield using methanol/hexane solvents compared with the control experiments. Lipid extraction yields using methanol/hexane were 42.18% and 46.81% from oven-dried and freeze-dried biomass, respectively. Lipids extracted from oven-dried M. gracile IFRPD 1061 using methanol/hexane/chloroform solvents indicated the potential of methanol/hexane as a solvent for lipid extraction from dry microalgal biomass using an ultrasonic-assisted technique. This study contributes valuable insights into maximizing biofuel and bioproduct production from microalgae, highlighting A. gracilis as a promising candidate for industrial applications.
Collapse
Affiliation(s)
- Wanida Pan-utai
- Department of Applied Microbiology, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand;
| | - Soisuda Pornpukdeewattana
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (S.P.); (W.I.)
| | - Wilasinee Inrung
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (S.P.); (W.I.)
| | - Theera Thurakit
- Department of Applied Microbiology, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand;
| | - Penjit Srinophakun
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
3
|
Catherall E, Musial S, Atkinson N, Walker CE, Mackinder LCM, McCormick AJ. From algae to plants: understanding pyrenoid-based CO 2-concentrating mechanisms. Trends Biochem Sci 2025; 50:33-45. [PMID: 39592300 DOI: 10.1016/j.tibs.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Pyrenoids are the key component of one of the most abundant biological CO2 concentration mechanisms found in nature. Pyrenoid-based CO2-concentrating mechanisms (pCCMs) are estimated to account for one third of global photosynthetic CO2 capture. Our molecular understanding of how pyrenoids work is based largely on work in the green algae Chlamydomonas reinhardtii. Here, we review recent advances in our fundamental knowledge of the biogenesis, architecture, and function of pyrenoids in Chlamydomonas and ongoing engineering biology efforts to introduce a functional pCCM into chloroplasts of vascular plants, which, if successful, has the potential to enhance crop productivity and resilience to climate change.
Collapse
Affiliation(s)
- Ella Catherall
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK; Centre for Engineering Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Sabina Musial
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Nicky Atkinson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK; Centre for Engineering Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Charlotte E Walker
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Luke C M Mackinder
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK; Centre for Engineering Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
4
|
Adler L, Lau CS, Shaikh KM, van Maldegem KA, Payne-Dwyer AL, Lefoulon C, Girr P, Atkinson N, Barrett J, Emrich-Mills TZ, Dukic E, Blatt MR, Leake MC, Peltier G, Spetea C, Burlacot A, McCormick AJ, Mackinder LCM, Walker CE. Bestrophin-like protein 4 is involved in photosynthetic acclimation to light fluctuations in Chlamydomonas. PLANT PHYSIOLOGY 2024; 196:2374-2394. [PMID: 39240724 PMCID: PMC11638005 DOI: 10.1093/plphys/kiae450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/22/2024] [Accepted: 07/01/2024] [Indexed: 09/08/2024]
Abstract
In many eukaryotic algae, CO2 fixation by Rubisco is enhanced by a CO2-concentrating mechanism, which utilizes a Rubisco-rich organelle called the pyrenoid. The pyrenoid is traversed by a network of thylakoid membranes called pyrenoid tubules, which are proposed to deliver CO2. In the model alga Chlamydomonas (Chlamydomonas reinhardtii), the pyrenoid tubules have been proposed to be tethered to the Rubisco matrix by a bestrophin-like transmembrane protein, BST4. Here, we show that BST4 forms a complex that localizes to the pyrenoid tubules. A Chlamydomonas mutant impaired in the accumulation of BST4 (bst4) formed normal pyrenoid tubules, and heterologous expression of BST4 in Arabidopsis (Arabidopsis thaliana) did not lead to the incorporation of thylakoids into a reconstituted Rubisco condensate. Chlamydomonas bst4 mutants did not show impaired growth under continuous light at air level CO2 but were impaired in their growth under fluctuating light. By quantifying the non-photochemical quenching (NPQ) of chlorophyll fluorescence, we propose that bst4 has a transiently lower thylakoid lumenal pH during dark-to-light transition compared to control strains. We conclude that BST4 is not a tethering protein but is most likely a pyrenoid tubule ion channel involved in the ion homeostasis of the lumen with particular importance during light fluctuations.
Collapse
Affiliation(s)
- Liat Adler
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
- Department of Plant Biology, Division of Biosphere Science and Engineering, Carnegie Science, Stanford, CA 94305, USA
| | - Chun Sing Lau
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Kashif M Shaikh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Kim A van Maldegem
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Alex L Payne-Dwyer
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK
| | - Cecile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Philipp Girr
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Nicky Atkinson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - James Barrett
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Tom Z Emrich-Mills
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Emilija Dukic
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mark C Leake
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK
| | - Gilles Peltier
- Aix-Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance 13108, France
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Adrien Burlacot
- Department of Plant Biology, Division of Biosphere Science and Engineering, Carnegie Science, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Luke C M Mackinder
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Charlotte E Walker
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
5
|
Fakhimi N, Grossman AR. Photosynthetic Electron Flows and Networks of Metabolite Trafficking to Sustain Metabolism in Photosynthetic Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:3015. [PMID: 39519934 PMCID: PMC11548211 DOI: 10.3390/plants13213015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Photosynthetic eukaryotes have metabolic pathways that occur in distinct subcellular compartments. However, because metabolites synthesized in one compartment, including fixed carbon compounds and reductant generated by photosynthetic electron flows, may be integral to processes in other compartments, the cells must efficiently move metabolites among the different compartments. This review examines the various photosynthetic electron flows used to generate ATP and fixed carbon and the trafficking of metabolites in the green alga Chlamydomomas reinhardtii; information on other algae and plants is provided to add depth and nuance to the discussion. We emphasized the trafficking of metabolites across the envelope membranes of the two energy powerhouse organelles of the cell, the chloroplast and mitochondrion, the nature and roles of the major mobile metabolites that move among these compartments, and the specific or presumed transporters involved in that trafficking. These transporters include sugar-phosphate (sugar-P)/inorganic phosphate (Pi) transporters and dicarboxylate transporters, although, in many cases, we know little about the substrate specificities of these transporters, how their activities are regulated/coordinated, compensatory responses among transporters when specific transporters are compromised, associations between transporters and other cellular proteins, and the possibilities for forming specific 'megacomplexes' involving interactions between enzymes of central metabolism with specific transport proteins. Finally, we discuss metabolite trafficking associated with specific biological processes that occur under various environmental conditions to help to maintain the cell's fitness. These processes include C4 metabolism in plants and the carbon concentrating mechanism, photorespiration, and fermentation metabolism in algae.
Collapse
Affiliation(s)
- Neda Fakhimi
- Department of Biosphere Sciences and Engineering, The Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA;
| | - Arthur R. Grossman
- Department of Biosphere Sciences and Engineering, The Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA;
- Courtesy Appointment, Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Rottet S, Rourke LM, Pabuayon ICM, Phua SY, Yee S, Weerasooriya HN, Wang X, Mehra HS, Nguyen ND, Long BM, Moroney JV, Price GD. Engineering the cyanobacterial ATP-driven BCT1 bicarbonate transporter for functional targeting to C3 plant chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4926-4943. [PMID: 38776254 PMCID: PMC11349869 DOI: 10.1093/jxb/erae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 05/24/2024]
Abstract
The ATP-driven bicarbonate transporter 1 (BCT1) from Synechococcus is a four-component complex in the cyanobacterial CO2-concentrating mechanism. BCT1 could enhance photosynthetic CO2 assimilation in plant chloroplasts. However, directing its subunits (CmpA, CmpB, CmpC, and CmpD) to three chloroplast sub-compartments is highly complex. Investigating BCT1 integration into Nicotiana benthamiana chloroplasts revealed promising targeting strategies using transit peptides from the intermembrane space protein Tic22 for correct CmpA targeting, while the transit peptide of the chloroplastic ABCD2 transporter effectively targeted CmpB to the inner envelope membrane. CmpC and CmpD were targeted to the stroma by RecA and recruited to the inner envelope membrane by CmpB. Despite successful targeting, expression of this complex in CO2-dependent Escherichia coli failed to demonstrate bicarbonate uptake. We then used rational design and directed evolution to generate new BCT1 forms that were constitutively active. Several mutants were recovered, including a CmpCD fusion. Selected mutants were further characterized and stably expressed in Arabidopsis thaliana, but the transformed plants did not have higher carbon assimilation rates or decreased CO2 compensation points in mature leaves. While further analysis is required, this directed evolution and heterologous testing approach presents potential for iterative modification and assessment of CO2-concentrating mechanism components to improve plant photosynthesis.
Collapse
Affiliation(s)
- Sarah Rottet
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Loraine M Rourke
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Isaiah C M Pabuayon
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Su Yin Phua
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Suyan Yee
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Hiruni N Weerasooriya
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xiaozhuo Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Himanshu S Mehra
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nghiem D Nguyen
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Benedict M Long
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
- ARC Centre of Excellence in Synthetic Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - G Dean Price
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| |
Collapse
|
7
|
Nguyen ND, Pulsford SB, Förster B, Rottet S, Rourke L, Long BM, Price GD. A carboxysome-based CO 2 concentrating mechanism for C 3 crop chloroplasts: advances and the road ahead. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:940-952. [PMID: 38321620 DOI: 10.1111/tpj.16667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
The introduction of the carboxysome-based CO2 concentrating mechanism (CCM) into crop plants has been modelled to significantly increase crop yields. This projection serves as motivation for pursuing this strategy to contribute to global food security. The successful implementation of this engineering challenge is reliant upon the transfer of a microcompartment that encapsulates cyanobacterial Rubisco, known as the carboxysome, alongside active bicarbonate transporters. To date, significant progress has been achieved with respect to understanding various aspects of the cyanobacterial CCM, and more recently, different components of the carboxysome have been successfully introduced into plant chloroplasts. In this Perspective piece, we summarise recent findings and offer new research avenues that will accelerate research in this field to ultimately and successfully introduce the carboxysome into crop plants for increased crop yields.
Collapse
Affiliation(s)
- Nghiem D Nguyen
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Sacha B Pulsford
- Research School of Chemistry, Australian National University, 137 Sullivan's Ck Rd, Acton, Australian Capital Territory, 2601, Australia
| | - Britta Förster
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Sarah Rottet
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Loraine Rourke
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Benedict M Long
- Discipline of Biological Sciences, School of Environmental and Life Sciences, ARC Centre of Excellence in Synthetic Biology, The University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - G Dean Price
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| |
Collapse
|
8
|
Atkinson N, Stringer R, Mitchell SR, Seung D, McCormick AJ. SAGA1 and SAGA2 promote starch formation around proto-pyrenoids in Arabidopsis chloroplasts. Proc Natl Acad Sci U S A 2024; 121:e2311013121. [PMID: 38241434 PMCID: PMC10823261 DOI: 10.1073/pnas.2311013121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 01/21/2024] Open
Abstract
The pyrenoid is a chloroplastic microcompartment in which most algae and some terrestrial plants condense the primary carboxylase, Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) as part of a CO2-concentrating mechanism that improves the efficiency of CO2 capture. Engineering a pyrenoid-based CO2-concentrating mechanism (pCCM) into C3 crop plants is a promising strategy to enhance yield capacities and resilience to the changing climate. Many pyrenoids are characterized by a sheath of starch plates that is proposed to act as a barrier to limit CO2 diffusion. Recently, we have reconstituted a phase-separated "proto-pyrenoid" Rubisco matrix in the model C3 plant Arabidopsis thaliana using proteins from the alga with the most well-studied pyrenoid, Chlamydomonas reinhardtii [N. Atkinson, Y. Mao, K. X. Chan, A. J. McCormick, Nat. Commun. 11, 6303 (2020)]. Here, we describe the impact of introducing the Chlamydomonas proteins StArch Granules Abnormal 1 (SAGA1) and SAGA2, which are associated with the regulation of pyrenoid starch biogenesis and morphology. We show that SAGA1 localizes to the proto-pyrenoid in engineered Arabidopsis plants, which results in the formation of atypical spherical starch granules enclosed within the proto-pyrenoid condensate and adjacent plate-like granules that partially cover the condensate, but without modifying the total amount of chloroplastic starch accrued. Additional expression of SAGA2 further increases the proportion of starch synthesized as adjacent plate-like granules that fully encircle the proto-pyrenoid. Our findings pave the way to assembling a diffusion barrier as part of a functional pCCM in vascular plants, while also advancing our understanding of the roles of SAGA1 and SAGA2 in starch sheath formation and broadening the avenues for engineering starch morphology.
Collapse
Affiliation(s)
- Nicky Atkinson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
- Centre of Engineering Biology, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| | - Rhea Stringer
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| | - Stephen R. Mitchell
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| | - David Seung
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| | - Alistair J. McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
- Centre of Engineering Biology, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| |
Collapse
|
9
|
Terentyev VV, Shukshina AK. CAH3 from Chlamydomonas reinhardtii: Unique Carbonic Anhydrase of the Thylakoid Lumen. Cells 2024; 13:109. [PMID: 38247801 PMCID: PMC10814762 DOI: 10.3390/cells13020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
CAH3 is the only carbonic anhydrase (CA) present in the thylakoid lumen of the green algae Chlamydomonas reinhardtii. The monomer of the enzyme has a molecular weight of ~29.5 kDa with high CA activity. Through its dehydration activity, CAH3 can be involved either in the carbon-concentrating mechanism supplying CO2 for RuBisCO in the pyrenoid or in supporting the maximal photosynthetic activity of photosystem II (PSII) by accelerating the removal of protons from the active center of the water-oxidizing complex. Both proposed roles are considered in this review, together with a description of the enzymatic parameters of native and recombinant CAH3, the crystal structure of the protein, and the possible use of lumenal CA as a tool for increasing biomass production in higher plants. The identified involvement of lumenal CAH3 in the function of PSII is still unique among green algae and higher plants and can be used to understand the mechanism(s) of the functional interconnection between PSII and the proposed CA(s) of the thylakoid lumen in other organisms.
Collapse
Affiliation(s)
- Vasily V. Terentyev
- Institute of Basic Biological Problems, FRC PSCBR RAS, 142290 Pushchino, Russia
| | | |
Collapse
|
10
|
Mutale-Joan C, El Arroussi H. Biotechnological strategies overcoming limitations to H. pluvialis-derived astaxanthin production and Morocco's potential. Crit Rev Food Sci Nutr 2023; 65:1404-1419. [PMID: 38145395 DOI: 10.1080/10408398.2023.2294163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Haematococcus pluvialis is the richest source of natural astaxanthin, but the production of H. pluvialis-derived astaxanthin is usually limited by its slow cell proliferation and astaxanthin accumulation. Efforts to enhance biomass productivity, astaxanthin accumulation, and extraction are ongoing. This review highlights different approaches that have previously been studied in microalgal species for enhanced biomass productivity, as well as optimized methods for astaxanthin accumulation and extraction, and how these methods could be combined to bypass the challenges limiting natural astaxanthin production, particularly in H. pluvialis, at all stages (biomass production, and astaxanthin accumulation and extraction). Biotechnological approaches, such as overexpressing low CO2 inducible genes, utilizing complementary carbon sources, CRISPR-Cas9 bioengineering, and the use of active compounds, for biomass productivity are outlined. Direct astaxanthin extraction from H. pluvialis zoospores and Morocco's potential for microalgal-based astaxanthin production are equally discussed. This review emphasizes the need to engineer an optimized H. pluvialis-derived astaxanthin production system combining two or more of these strategies for increased growth, and astaxanthin productivity, to compete in the larger, lower-priced market in aquaculture and nutraceutical sectors.
Collapse
Affiliation(s)
- Chanda Mutale-Joan
- Algal Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR), Rabat, Morocco
| | - Hicham El Arroussi
- Algal Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR), Rabat, Morocco
- AgroBioSciences (AgBS) program, Mohammed VI Polytechnic University, Benguerir, Morocco
| |
Collapse
|
11
|
Adler L, Lau CS, Shaikh KM, van Maldegem KA, Payne-Dwyer AL, Lefoulon C, Girr P, Atkinson N, Barrett J, Emrich-Mills TZ, Dukic E, Blatt MR, Leake MC, Peltier G, Spetea C, Burlacot A, McCormick AJ, Mackinder LCM, Walker CE. The role of BST4 in the pyrenoid of Chlamydomonas reinhardtii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545204. [PMID: 38014171 PMCID: PMC10680556 DOI: 10.1101/2023.06.15.545204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In many eukaryotic algae, CO2 fixation by Rubisco is enhanced by a CO2-concentrating mechanism, which utilizes a Rubisco-rich organelle called the pyrenoid. The pyrenoid is traversed by a network of thylakoid-membranes called pyrenoid tubules, proposed to deliver CO2. In the model alga Chlamydomonas reinhardtii (Chlamydomonas), the pyrenoid tubules have been proposed to be tethered to the Rubisco matrix by a bestrophin-like transmembrane protein, BST4. Here, we show that BST4 forms a complex that localizes to the pyrenoid tubules. A Chlamydomonas mutant impaired in the accumulation of BST4 (bst4) formed normal pyrenoid tubules and heterologous expression of BST4 in Arabidopsis thaliana did not lead to the incorporation of thylakoids into a reconstituted Rubisco condensate. Chlamydomonas bst4 mutant did not show impaired growth at air level CO2. By quantifying the non-photochemical quenching (NPQ) of chlorophyll fluorescence, we show that bst4 displays a transiently lower thylakoid lumenal pH during dark to light transition compared to control strains. When acclimated to high light, bst4 had sustained higher NPQ and elevated levels of light-induced H2O2 production. We conclude that BST4 is not a tethering protein, but rather is an ion channel involved in lumenal pH regulation possibly by mediating bicarbonate transport across the pyrenoid tubules.
Collapse
Affiliation(s)
- Liat Adler
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EH9 3BF, United Kingdom
- Centre for Engineering Biology, University of Edinburgh, EH9 3BF, United Kingdom
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, 94305 USA
| | - Chun Sing Lau
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Kashif M Shaikh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Kim A van Maldegem
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Alex L Payne-Dwyer
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
- School of Physics, Engineering and Technology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Cecile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, United Kingdom
| | - Philipp Girr
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Nicky Atkinson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EH9 3BF, United Kingdom
- Centre for Engineering Biology, University of Edinburgh, EH9 3BF, United Kingdom
| | - James Barrett
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Tom Z Emrich-Mills
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Emilija Dukic
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, United Kingdom
| | - Mark C Leake
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
- School of Physics, Engineering and Technology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Gilles Peltier
- Aix-Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Adrien Burlacot
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, 94305 USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EH9 3BF, United Kingdom
- Centre for Engineering Biology, University of Edinburgh, EH9 3BF, United Kingdom
| | - Luke C M Mackinder
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Charlotte E Walker
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
12
|
An Y, Wang D, Du J, Wang X, Xiao J. Pyrenoid: Organelle with efficient CO 2-Concentrating mechanism in algae. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154044. [PMID: 37392525 DOI: 10.1016/j.jplph.2023.154044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
The carbon dioxide emitted by human accounts for only a small fraction of global photosynthesis consumption, half of which is due to microalgae. The high efficiency of algae photosynthesis is attributed to the pyrenoid-based CO2-concentrating mechanism (CCM). The formation of pyrenoid which has a variety of Rubisco-binding proteins mainly depends on liquid-liquid phase separation (LLPS) of Rubisco, a CO2 fixing enzyme. At present, our understanding of pyrenoid at the molecular level mainly stems from studies of the model algae Chlamydomonas reinhardtii. In this article, we summarize the current research on the structure, assembly and application of Chlamydomonas reinhardtii pyrenoids, providing new ideas for improving crop photosynthetic performance and yield.
Collapse
Affiliation(s)
- Yaqi An
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Dong Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Jingxia Du
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Xinwei Wang
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou, China.
| | - Jianwei Xiao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
13
|
Burlacot A, Peltier G. Energy crosstalk between photosynthesis and the algal CO 2-concentrating mechanisms. TRENDS IN PLANT SCIENCE 2023; 28:795-807. [PMID: 37087359 DOI: 10.1016/j.tplants.2023.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Microalgal photosynthesis is responsible for nearly half of the CO2 annually captured by Earth's ecosystems. In aquatic environments where the CO2 availability is low, the CO2-fixing efficiency of microalgae greatly relies on mechanisms - called CO2-concentrating mechanisms (CCMs) - for concentrating CO2 at the catalytic site of the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). While the transport of inorganic carbon (Ci) across membrane bilayers against a concentration gradient consumes part of the chemical energy generated by photosynthesis, the bioenergetics and cellular mechanisms involved are only beginning to be elucidated. Here, we review the current knowledge relating to the energy requirement of CCMs in the light of recent advances in photosynthesis regulatory mechanisms and the spatial organization of CCM components.
Collapse
Affiliation(s)
- Adrien Burlacot
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Gilles Peltier
- Aix-Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
14
|
Steensma AK, Shachar-Hill Y, Walker BJ. The carbon-concentrating mechanism of the extremophilic red microalga Cyanidioschyzon merolae. PHOTOSYNTHESIS RESEARCH 2023; 156:247-264. [PMID: 36780115 PMCID: PMC10154280 DOI: 10.1007/s11120-023-01000-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/27/2023] [Indexed: 05/03/2023]
Abstract
Cyanidioschyzon merolae is an extremophilic red microalga which grows in low-pH, high-temperature environments. The basis of C. merolae's environmental resilience is not fully characterized, including whether this alga uses a carbon-concentrating mechanism (CCM). To determine if C. merolae uses a CCM, we measured CO2 uptake parameters using an open-path infra-red gas analyzer and compared them to values expected in the absence of a CCM. These measurements and analysis indicated that C. merolae had the gas-exchange characteristics of a CCM-operating organism: low CO2 compensation point, high affinity for external CO2, and minimized rubisco oxygenation. The biomass δ13C of C. merolae was also consistent with a CCM. The apparent presence of a CCM in C. merolae suggests the use of an unusual mechanism for carbon concentration, as C. merolae is thought to lack a pyrenoid and gas-exchange measurements indicated that C. merolae primarily takes up inorganic carbon as carbon dioxide, rather than bicarbonate. We use homology to known CCM components to propose a model of a pH-gradient-based CCM, and we discuss how this CCM can be further investigated.
Collapse
Affiliation(s)
- Anne K Steensma
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Michigan State University - Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Berkley J Walker
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Michigan State University - Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
15
|
Shimamura D, Yamano T, Niikawa Y, Hu D, Fukuzawa H. A pyrenoid-localized protein SAGA1 is necessary for Ca 2+-binding protein CAS-dependent expression of nuclear genes encoding inorganic carbon transporters in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2023; 156:181-192. [PMID: 36656499 DOI: 10.1007/s11120-022-00996-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/14/2022] [Indexed: 05/03/2023]
Abstract
Microalgae induce a CO2-concentrating mechanism (CCM) to maintain photosynthetic affinity for dissolved inorganic carbon (Ci) under CO2-limiting conditions. In the model alga Chlamydomonas reinhardtii, the pyrenoid-localized Ca2+-binding protein CAS is required to express genes encoding the Ci-transporters, high-light activated 3 (HLA3), and low-CO2-inducible protein A (LCIA). To identify new factors related to the regulation or components of the CCM, we isolated CO2-requiring mutants KO-60 and KO-62. These mutants had insertions of a hygromycin-resistant cartridge in the StArch Granules Abnormal 1 (SAGA1) gene, which is necessary to maintain the number of pyrenoids and the structure of pyrenoid tubules in the chloroplast. In both KO-60 and the previously identified saga1 mutant, expression levels of 532 genes were significantly reduced. Among them, 10 CAS-dependent genes, including HLA3 and LCIA, were not expressed in the saga1 mutants. While CAS was expressed normally at the protein levels, the localization of CAS was dispersed through the chloroplast rather than in the pyrenoid, even under CO2-limiting conditions. These results suggest that SAGA1 is necessary not only for maintenance of the pyrenoid structure but also for regulation of the nuclear genes encoding Ci-transporters through CAS-dependent retrograde signaling under CO2-limiting stress.
Collapse
Affiliation(s)
- Daisuke Shimamura
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| | - Yuki Niikawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Donghui Hu
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
16
|
Kupriyanova EV, Pronina NA, Los DA. Adapting from Low to High: An Update to CO 2-Concentrating Mechanisms of Cyanobacteria and Microalgae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1569. [PMID: 37050194 PMCID: PMC10096703 DOI: 10.3390/plants12071569] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The intracellular accumulation of inorganic carbon (Ci) by microalgae and cyanobacteria under ambient atmospheric CO2 levels was first documented in the 80s of the 20th Century. Hence, a third variety of the CO2-concentrating mechanism (CCM), acting in aquatic photoautotrophs with the C3 photosynthetic pathway, was revealed in addition to the then-known schemes of CCM, functioning in CAM and C4 higher plants. Despite the low affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) of microalgae and cyanobacteria for the CO2 substrate and low CO2/O2 specificity, CCM allows them to perform efficient CO2 fixation in the reductive pentose phosphate (RPP) cycle. CCM is based on the coordinated operation of strategically located carbonic anhydrases and CO2/HCO3- uptake systems. This cooperation enables the intracellular accumulation of HCO3-, which is then employed to generate a high concentration of CO2 molecules in the vicinity of Rubisco's active centers compensating up for the shortcomings of enzyme features. CCM functions as an add-on to the RPP cycle while also acting as an important regulatory link in the interaction of dark and light reactions of photosynthesis. This review summarizes recent advances in the study of CCM molecular and cellular organization in microalgae and cyanobacteria, as well as the fundamental principles of its functioning and regulation.
Collapse
|
17
|
Förster B, Rourke LM, Weerasooriya HN, Pabuayon ICM, Rolland V, Au EK, Bala S, Bajsa-Hirschel J, Kaines S, Kasili R, LaPlace L, Machingura MC, Massey B, Rosati VC, Stuart-Williams H, Badger MR, Price GD, Moroney JV. The Chlamydomonas reinhardtii chloroplast envelope protein LCIA transports bicarbonate in planta. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad116. [PMID: 36987927 DOI: 10.1093/jxb/erad116] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 06/19/2023]
Abstract
LCIA is a chloroplast envelope protein associated with the CO2 concentrating mechanism of the green alga Chlamydomonas reinhardtii. LCIA is postulated to be a HCO3- channel, but previous studies were unable to show that LCIA was actively transporting bicarbonate in planta. Therefore, LCIA activity was investigated more directly in two heterologous systems: an E. coli mutant (DCAKO) lacking both native carbonic anhydrases and an Arabidopsis mutant (βca5) missing the plastid carbonic anhydrase βCA5. Both DCAKO and βca5 cannot grow in ambient CO2 conditions, as they lack carbonic anhydrase-catalyzed production of the necessary HCO3- concentration for lipid and nucleic acid biosynthesis. Expression of LCIA restored growth in both systems in ambient CO2 conditions, which strongly suggests that LCIA is facilitating HCO3- uptake in each system. To our knowledge, this is the first direct evidence that LCIA moves HCO3- across membranes in bacteria and plants. Furthermore, the βca5 plant bioassay used in this study is the first system for testing HCO3- transport activity in planta, an experimental breakthrough that will be valuable for future studies aimed at improving the photosynthetic efficiency of crop plants using components from algal CO2 concentrating mechanisms.
Collapse
Affiliation(s)
- Britta Förster
- The Australian National University, Canberra, ACT 2600, Australia
| | - Loraine M Rourke
- The Australian National University, Canberra, ACT 2600, Australia
| | - Hiruni N Weerasooriya
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Isaiah C M Pabuayon
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Vivien Rolland
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Eng Kee Au
- The Australian National University, Canberra, ACT 2600, Australia
| | - Soumi Bala
- The Australian National University, Canberra, ACT 2600, Australia
| | - Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, United States Department of Agriculture, University, MS 38677, USA
| | - Sarah Kaines
- The Australian National University, Canberra, ACT 2600, Australia
| | - Remmy Kasili
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Lillian LaPlace
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Baxter Massey
- The Australian National University, Canberra, ACT 2600, Australia
| | - Viviana C Rosati
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York YO10 5DD, UK
| | | | - Murray R Badger
- The Australian National University, Canberra, ACT 2600, Australia
| | - G Dean Price
- The Australian National University, Canberra, ACT 2600, Australia
| | - James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
18
|
Rosado-Souza L, Yokoyama R, Sonnewald U, Fernie AR. Understanding source-sink interactions: Progress in model plants and translational research to crops. MOLECULAR PLANT 2023; 16:96-121. [PMID: 36447435 DOI: 10.1016/j.molp.2022.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
Agriculture is facing a massive increase in demand per hectare as a result of an ever-expanding population and environmental deterioration. While we have learned much about how environmental conditions and diseases impact crop yield, until recently considerably less was known concerning endogenous factors, including within-plant nutrient allocation. In this review, we discuss studies of source-sink interactions covering both fundamental research in model systems under controlled growth conditions and how the findings are being translated to crop plants in the field. In this respect we detail efforts aimed at improving and/or combining C3, C4, and CAM modes of photosynthesis, altering the chloroplastic electron transport chain, modulating photorespiration, adopting bacterial/algal carbon-concentrating mechanisms, and enhancing nitrogen- and water-use efficiencies. Moreover, we discuss how modulating TCA cycle activities and primary metabolism can result in increased rates of photosynthesis and outline the opportunities that evaluating natural variation in photosynthesis may afford. Although source, transport, and sink functions are all covered in this review, we focus on discussing source functions because the majority of research has been conducted in this field. Nevertheless, considerable recent evidence, alongside the evidence from classical studies, demonstrates that both transport and sink functions are also incredibly important determinants of yield. We thus describe recent evidence supporting this notion and suggest that future strategies for yield improvement should focus on combining improvements in each of these steps to approach yield optimization.
Collapse
Affiliation(s)
- Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Ryo Yokoyama
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Uwe Sonnewald
- Department of Biochemistry, University of Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
19
|
Liang D, Xiang H, Xia J. Inhibitory effects of Ipomoea cairica extracts on the harmful algae Phaeocystis globosa. MARINE POLLUTION BULLETIN 2022; 185:114228. [PMID: 36274557 DOI: 10.1016/j.marpolbul.2022.114228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Ipomoea cairica (L.) Sweet is an invasive plant that cause serious invasion and damage in South China. Phaeocystis globosa is a common harmful algal bloom species on the southeast coast of China. Both species cause great environmental disturbances and serious economic damage to the localregion. This study explored the potential inhibitory effects of I. cairica leaf extracts on P. globosa. The results showed that solitary cells growth was inhibited at extract concentrations higher than 0.25 % (v/v). Although the colony diameter did not change, and the colony number increased rapidly in the first 36 h, we found that cells in the colonies had been damaged using scanning electron microscope and SYTOX-Green staining at 48 h. In addition, the rapid light-response curve of cells treated with extracts decreased, along with down-regulation of photosynthesis-related genes (psbA, psbD, and rbcL), suggesting damage to the photosynthetic system. Finally, the activities of antioxidant enzymes including superoxide dismutase, peroxidase, and catalase increased with increasing treatment time, indicating that cells activate antioxidant enzyme defense systems to alleviate the production of reactive oxygen species (ROS). Increased ROS levels disrupt cell membranes, alter cellular ultrastructures, and ultimately lead to cell death. This study not only achieved the reuse of invasive plant resources, but also demonstrated that I. cairica leaf extract has potential value as an algaecide.
Collapse
Affiliation(s)
- Dayong Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hua Xiang
- State key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Harmon J, Findinier J, Ishii NT, Herbig M, Isozaki A, Grossman A, Goda K. Intelligent image-activated sorting of Chlamydomonas reinhardtii by mitochondrial localization. Cytometry A 2022; 101:1027-1034. [PMID: 35643943 DOI: 10.1002/cyto.a.24661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023]
Abstract
Organelle positioning in cells is associated with various metabolic functions and signaling in unicellular organisms. Specifically, the microalga Chlamydomonas reinhardtii repositions its mitochondria, depending on the levels of inorganic carbon. Mitochondria are typically randomly distributed in the Chlamydomonas cytoplasm, but relocate toward the cell periphery at low inorganic carbon levels. This mitochondrial relocation is linked with the carbon-concentrating mechanism, but its significance is not yet thoroughly understood. A genotypic understanding of this relocation would require a high-throughput method to isolate rare mutant cells not exhibiting this relocation. However, this task is technically challenging due to the complex intracellular morphological difference between mutant and wild-type cells, rendering conventional non-image-based high-event-rate methods unsuitable. Here, we report our demonstration of intelligent image-activated cell sorting by mitochondrial localization. Specifically, we applied an intelligent image-activated cell sorting system to sort for C. reinhardtii cells displaying no mitochondrial relocation. We trained a convolutional neural network (CNN) to distinguish the cell types based on the complex morphology of their mitochondria. The CNN was employed to perform image-activated sorting for the mutant cell type at 180 events per second, which is 1-2 orders of magnitude faster than automated microscopy with robotic pipetting, resulting in an enhancement of the concentration from 5% to 56.5% corresponding to an enrichment factor of 11.3. These results show the potential of image-activated cell sorting for connecting genotype-phenotype relations for rare-cell populations, which require a high throughput and could lead to a better understanding of metabolic functions in cells.
Collapse
Affiliation(s)
- Jeffrey Harmon
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Justin Findinier
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | | | - Maik Herbig
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Akihiro Isozaki
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Arthur Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA.,Department of Biology, Stanford University, Stanford, California, USA
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo, Japan.,Department of Bioengineering, University of California, California, Los Angeles, USA.,Institute of Technological Sciences, Wuhan University, Hubei, China
| |
Collapse
|
21
|
Adler L, Díaz-Ramos A, Mao Y, Pukacz KR, Fei C, McCormick AJ. New horizons for building pyrenoid-based CO2-concentrating mechanisms in plants to improve yields. PLANT PHYSIOLOGY 2022; 190:1609-1627. [PMID: 35961043 PMCID: PMC9614477 DOI: 10.1093/plphys/kiac373] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/06/2022] [Indexed: 05/06/2023]
Abstract
Many photosynthetic species have evolved CO2-concentrating mechanisms (CCMs) to improve the efficiency of CO2 assimilation by Rubisco and reduce the negative impacts of photorespiration. However, the majority of plants (i.e. C3 plants) lack an active CCM. Thus, engineering a functional heterologous CCM into important C3 crops, such as rice (Oryza sativa) and wheat (Triticum aestivum), has become a key strategic ambition to enhance yield potential. Here, we review recent advances in our understanding of the pyrenoid-based CCM in the model green alga Chlamydomonas reinhardtii and engineering progress in C3 plants. We also discuss recent modeling work that has provided insights into the potential advantages of Rubisco condensation within the pyrenoid and the energetic costs of the Chlamydomonas CCM, which, together, will help to better guide future engineering approaches. Key findings include the potential benefits of Rubisco condensation for carboxylation efficiency and the need for a diffusional barrier around the pyrenoid matrix. We discuss a minimal set of components for the CCM to function and that active bicarbonate import into the chloroplast stroma may not be necessary for a functional pyrenoid-based CCM in planta. Thus, the roadmap for building a pyrenoid-based CCM into plant chloroplasts to enhance the efficiency of photosynthesis now appears clearer with new challenges and opportunities.
Collapse
Affiliation(s)
- Liat Adler
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Aranzazú Díaz-Ramos
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Yuwei Mao
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krzysztof Robin Pukacz
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Chenyi Fei
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
22
|
Shen Q, Xie Y, Qiu X, Yu J. The era of cultivating smart rice with high light efficiency and heat tolerance has come of age. FRONTIERS IN PLANT SCIENCE 2022; 13:1021203. [PMID: 36275525 PMCID: PMC9585279 DOI: 10.3389/fpls.2022.1021203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
How to improve the yield of crops has always been the focus of breeding research. Due to the population growth and global climate change, the demand for food has increased sharply, which has brought great challenges to agricultural production. In order to make up for the limitation of global cultivated land area, it is necessary to further improve the output of crops. Photosynthesis is the main source of plant assimilate accumulation, which has a profound impact on the formation of its yield. This review focuses on the cultivation of high light efficiency plants, introduces the main technical means and research progress in improving the photosynthetic efficiency of plants, and discusses the main problems and difficulties faced by the cultivation of high light efficiency plants. At the same time, in view of the frequent occurrence of high-temperature disasters caused by global warming, which seriously threatened plant normal production, we reviewed the response mechanism of plants to heat stress, introduced the methods and strategies of how to cultivate heat tolerant crops, especially rice, and briefly reviewed the progress of heat tolerant research at present. Given big progress in these area, the era of cultivating smart rice with high light efficiency and heat tolerance has come of age.
Collapse
Affiliation(s)
- Qiuping Shen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Yujun Xie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Xinzhe Qiu
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Jinsheng Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
23
|
Raba DA, Kerfeld CA. The potential of bacterial microcompartment architectures for phytonanotechnology. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:700-710. [PMID: 35855583 DOI: 10.1111/1758-2229.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The application of nanotechnology to plants, termed phytonanotechnology, has the potential to revolutionize plant research and agricultural production. Advancements in phytonanotechnology will allow for the time-controlled and target-specific release of bioactive compounds and agrochemicals to alter and optimize conventional plant production systems. A diverse range of engineered nanoparticles with unique physiochemical properties is currently being investigated to determine their suitability for plants. Improvements in crop yield, disease resistance and nutrient and pesticide management are all possible using designed nanocarriers. However, despite these prospective benefits, research to thoroughly understand the precise activity, localization and potential phytotoxicity of these nanoparticles within plant systems is required. Protein-based bacterial microcompartment shell proteins that self-assemble into spherical shells, nanotubes and sheets could be of immense value for phytonanotechnology due to their ease of manipulation, multifunctionality, rapid and efficient producibility and biodegradability. In this review, we explore bacterial microcompartment-based architectures within the scope of phytonanotechnology.
Collapse
Affiliation(s)
- Daniel A Raba
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
24
|
Burlacot A, Dao O, Auroy P, Cuiné S, Li-Beisson Y, Peltier G. Alternative photosynthesis pathways drive the algal CO 2-concentrating mechanism. Nature 2022; 605:366-371. [PMID: 35477755 DOI: 10.1038/s41586-022-04662-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/18/2022] [Indexed: 12/13/2022]
Abstract
Global photosynthesis consumes ten times more CO2 than net anthropogenic emissions, and microalgae account for nearly half of this consumption1. The high efficiency of algal photosynthesis relies on a mechanism concentrating CO2 (CCM) at the catalytic site of the carboxylating enzyme RuBisCO, which enhances CO2 fixation2. Although many cellular components involved in the transport and sequestration of inorganic carbon have been identified3,4, how microalgae supply energy to concentrate CO2 against a thermodynamic gradient remains unknown4-6. Here we show that in the green alga Chlamydomonas reinhardtii, the combined action of cyclic electron flow and O2 photoreduction-which depend on PGRL1 and flavodiiron proteins, respectively-generate a low luminal pH that is essential for CCM function. We suggest that luminal protons are used downstream of thylakoid bestrophin-like transporters, probably for the conversion of bicarbonate to CO2. We further establish that an electron flow from chloroplast to mitochondria contributes to energizing non-thylakoid inorganic carbon transporters, probably by supplying ATP. We propose an integrated view of the network supplying energy to the CCM, and describe how algal cells distribute energy from photosynthesis to power different CCM processes. These results suggest a route for the transfer of a functional algal CCM to plants to improve crop productivity.
Collapse
Affiliation(s)
- Adrien Burlacot
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France.,Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Ousmane Dao
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Pascaline Auroy
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Stephan Cuiné
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France
| | - Gilles Peltier
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France.
| |
Collapse
|
25
|
Fei C, Wilson AT, Mangan NM, Wingreen NS, Jonikas MC. Modelling the pyrenoid-based CO 2-concentrating mechanism provides insights into its operating principles and a roadmap for its engineering into crops. NATURE PLANTS 2022; 8:583-595. [PMID: 35596080 PMCID: PMC9122830 DOI: 10.1038/s41477-022-01153-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/11/2022] [Indexed: 05/19/2023]
Abstract
Many eukaryotic photosynthetic organisms enhance their carbon uptake by supplying concentrated CO2 to the CO2-fixing enzyme Rubisco in an organelle called the pyrenoid. Ongoing efforts seek to engineer this pyrenoid-based CO2-concentrating mechanism (PCCM) into crops to increase yields. Here we develop a computational model for a PCCM on the basis of the postulated mechanism in the green alga Chlamydomonas reinhardtii. Our model recapitulates all Chlamydomonas PCCM-deficient mutant phenotypes and yields general biophysical principles underlying the PCCM. We show that an effective and energetically efficient PCCM requires a physical barrier to reduce pyrenoid CO2 leakage, as well as proper enzyme localization to reduce futile cycling between CO2 and HCO3-. Importantly, our model demonstrates the feasibility of a purely passive CO2 uptake strategy at air-level CO2, while active HCO3- uptake proves advantageous at lower CO2 levels. We propose a four-step engineering path to increase the rate of CO2 fixation in the plant chloroplast up to threefold at a theoretical cost of only 1.3 ATP per CO2 fixed, thereby offering a framework to guide the engineering of a PCCM into land plants.
Collapse
Affiliation(s)
- Chenyi Fei
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Niall M Mangan
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA.
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
26
|
Hou Z, Ma X, Shi X, Li X, Yang L, Xiao S, De Clerck O, Leliaert F, Zhong B. Phylotranscriptomic insights into a Mesoproterozoic-Neoproterozoic origin and early radiation of green seaweeds (Ulvophyceae). Nat Commun 2022; 13:1610. [PMID: 35318329 PMCID: PMC8941102 DOI: 10.1038/s41467-022-29282-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/09/2022] [Indexed: 01/09/2023] Open
Abstract
The Ulvophyceae, a major group of green algae, is of particular evolutionary interest because of its remarkable morphological and ecological diversity. Its phylogenetic relationships and diversification timeline, however, are still not fully resolved. In this study, using an extensive nuclear gene dataset, we apply coalescent- and concatenation-based approaches to reconstruct the phylogeny of the Ulvophyceae and to explore the sources of conflict in previous phylogenomic studies. The Ulvophyceae is recovered as a paraphyletic group, with the Bryopsidales being a sister group to the Chlorophyceae, and the remaining taxa forming a clade (Ulvophyceae sensu stricto). Molecular clock analyses with different calibration strategies emphasize the large impact of fossil calibrations, and indicate a Meso-Neoproterozoic origin of the Ulvophyceae (sensu stricto), earlier than previous estimates. The results imply that ulvophyceans may have had a profound influence on oceanic redox structures and global biogeochemical cycles at the Mesoproterozoic-Neoproterozoic transition. “Ulvophyceae is a remarkably morphologically and ecologically diverse clade of green algae. Here, the authors reconstruct the Ulvophyceae phylogeny, showing that these algae originated earlier than expected and may have influenced biogeochemical cycles at the Mesoproterozoic-Neoproterozoic transition.”
Collapse
Affiliation(s)
- Zheng Hou
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoya Ma
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xuan Shi
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xi Li
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lingxiao Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuhai Xiao
- Department of Geosciences and Global Change Center, Virginia Tech, Blacksburg, VA, USA
| | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | - Frederik Leliaert
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium.,Meise Botanic Garden, Meise, Belgium
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
27
|
Muthukrishnan L. Bio‐engineering of microalgae: Challenges and future prospects toward industrial and environmental applications. J Basic Microbiol 2022; 62:310-329. [DOI: 10.1002/jobm.202100417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/28/2021] [Accepted: 01/08/2022] [Indexed: 01/29/2023]
Affiliation(s)
- Lakshmipathy Muthukrishnan
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| |
Collapse
|
28
|
Rottet S, Förster B, Hee WY, Rourke LM, Price GD, Long BM. Engineered Accumulation of Bicarbonate in Plant Chloroplasts: Known Knowns and Known Unknowns. FRONTIERS IN PLANT SCIENCE 2021; 12:727118. [PMID: 34531888 PMCID: PMC8438413 DOI: 10.3389/fpls.2021.727118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/06/2021] [Indexed: 05/10/2023]
Abstract
Heterologous synthesis of a biophysical CO2-concentrating mechanism (CCM) in plant chloroplasts offers significant potential to improve the photosynthetic efficiency of C3 plants and could translate into substantial increases in crop yield. In organisms utilizing a biophysical CCM, this mechanism efficiently surrounds a high turnover rate Rubisco with elevated CO2 concentrations to maximize carboxylation rates. A critical feature of both native biophysical CCMs and one engineered into a C3 plant chloroplast is functional bicarbonate (HCO3 -) transporters and vectorial CO2-to-HCO3 - converters. Engineering strategies aim to locate these transporters and conversion systems to the C3 chloroplast, enabling elevation of HCO3 - concentrations within the chloroplast stroma. Several CCM components have been identified in proteobacteria, cyanobacteria, and microalgae as likely candidates for this approach, yet their successful functional expression in C3 plant chloroplasts remains elusive. Here, we discuss the challenges in expressing and regulating functional HCO3 - transporter, and CO2-to-HCO3 - converter candidates in chloroplast membranes as an essential step in engineering a biophysical CCM within plant chloroplasts. We highlight the broad technical and physiological concerns which must be considered in proposed engineering strategies, and present our current status of both knowledge and knowledge-gaps which will affect successful engineering outcomes.
Collapse
Affiliation(s)
- Sarah Rottet
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
| | - Britta Förster
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Wei Yih Hee
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
| | - Loraine M. Rourke
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
| | - G. Dean Price
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Benedict M. Long
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
29
|
Hines KM, Chaudhari V, Edgeworth KN, Owens TG, Hanson MR. Absence of carbonic anhydrase in chloroplasts affects C 3 plant development but not photosynthesis. Proc Natl Acad Sci U S A 2021; 118:e2107425118. [PMID: 34380739 PMCID: PMC8379964 DOI: 10.1073/pnas.2107425118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The enzyme carbonic anhydrase (CA), which catalyzes the interconversion of bicarbonate with carbon dioxide (CO2) and water, has been hypothesized to play a role in C3 photosynthesis. We identified two tobacco stromal CAs, β-CA1 and β-CA5, and produced CRISPR/Cas9 mutants affecting their encoding genes. While single knockout lines Δβ-ca1 and Δβ-ca5 had no striking phenotypic differences compared to wild type (WT) plants, Δβ-ca1ca5 leaves developed abnormally and exhibited large necrotic lesions even when supplied with sucrose. Leaf development of Δβ-ca1ca5 plants normalized at 9,000 ppm CO2 Leaves of Δβ-ca1ca5 mutants and WT that had matured in high CO2 had identical CO2 fixation rates and photosystem II efficiency. Fatty acids, which are formed through reactions with bicarbonate substrates, exhibited abnormal profiles in the chloroplast CA-less mutant. Emerging Δβ-ca1ca5 leaves produce reactive oxygen species in chloroplasts, perhaps due to lower nonphotochemical quenching efficiency compared to WT. Δβ-ca1ca5 seedling germination and development is negatively affected at ambient CO2 Transgenes expressing full-length β-CA1 and β-CA5 proteins complemented the Δβ-ca1ca5 mutation but inactivated (ΔZn-βCA1) and cytoplasm-localized (Δ62-βCA1) forms of β-CA1 did not reverse the growth phenotype. Nevertheless, expression of the inactivated ΔZn-βCA1 protein was able to restore the hypersensitive response to tobacco mosaic virus, while Δβ-ca1 and Δβ-ca1ca5 plants failed to show a hypersensitive response. We conclude that stromal CA plays a role in plant development, likely through providing bicarbonate for biosynthetic reactions, but stromal CA is not needed for maximal rates of photosynthesis in the C3 plant tobacco.
Collapse
Affiliation(s)
- Kevin M Hines
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | | | - Kristen N Edgeworth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Thomas G Owens
- Section of Plant Biology, Cornell University, Ithaca, NY 14853
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
30
|
Hines KM, Chaudhari V, Edgeworth KN, Owens TG, Hanson MR. Absence of carbonic anhydrase in chloroplasts affects C 3 plant development but not photosynthesis. Proc Natl Acad Sci U S A 2021. [PMID: 34380739 DOI: 10.1073/pnas.210742511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
The enzyme carbonic anhydrase (CA), which catalyzes the interconversion of bicarbonate with carbon dioxide (CO2) and water, has been hypothesized to play a role in C3 photosynthesis. We identified two tobacco stromal CAs, β-CA1 and β-CA5, and produced CRISPR/Cas9 mutants affecting their encoding genes. While single knockout lines Δβ-ca1 and Δβ-ca5 had no striking phenotypic differences compared to wild type (WT) plants, Δβ-ca1ca5 leaves developed abnormally and exhibited large necrotic lesions even when supplied with sucrose. Leaf development of Δβ-ca1ca5 plants normalized at 9,000 ppm CO2 Leaves of Δβ-ca1ca5 mutants and WT that had matured in high CO2 had identical CO2 fixation rates and photosystem II efficiency. Fatty acids, which are formed through reactions with bicarbonate substrates, exhibited abnormal profiles in the chloroplast CA-less mutant. Emerging Δβ-ca1ca5 leaves produce reactive oxygen species in chloroplasts, perhaps due to lower nonphotochemical quenching efficiency compared to WT. Δβ-ca1ca5 seedling germination and development is negatively affected at ambient CO2 Transgenes expressing full-length β-CA1 and β-CA5 proteins complemented the Δβ-ca1ca5 mutation but inactivated (ΔZn-βCA1) and cytoplasm-localized (Δ62-βCA1) forms of β-CA1 did not reverse the growth phenotype. Nevertheless, expression of the inactivated ΔZn-βCA1 protein was able to restore the hypersensitive response to tobacco mosaic virus, while Δβ-ca1 and Δβ-ca1ca5 plants failed to show a hypersensitive response. We conclude that stromal CA plays a role in plant development, likely through providing bicarbonate for biosynthetic reactions, but stromal CA is not needed for maximal rates of photosynthesis in the C3 plant tobacco.
Collapse
Affiliation(s)
- Kevin M Hines
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | | | - Kristen N Edgeworth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Thomas G Owens
- Section of Plant Biology, Cornell University, Ithaca, NY 14853
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
31
|
Abstract
Wang and Jonikas take a look at an unconventional organelle, the pyrenoid.
Collapse
Affiliation(s)
- Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA.
| |
Collapse
|
32
|
Santhanagopalan I, Wong R, Mathur T, Griffiths H. Orchestral manoeuvres in the light: crosstalk needed for regulation of the Chlamydomonas carbon concentration mechanism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4604-4624. [PMID: 33893473 PMCID: PMC8320531 DOI: 10.1093/jxb/erab169] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/19/2021] [Indexed: 05/19/2023]
Abstract
The inducible carbon concentration mechanism (CCM) in Chlamydomonas reinhardtii has been well defined from a molecular and ultrastructural perspective. Inorganic carbon transport proteins, and strategically located carbonic anhydrases deliver CO2 within the chloroplast pyrenoid matrix where Rubisco is packaged. However, there is little understanding of the fundamental signalling and sensing processes leading to CCM induction. While external CO2 limitation has been believed to be the primary cue, the coupling between energetic supply and inorganic carbon demand through regulatory feedback from light harvesting and photorespiration signals could provide the original CCM trigger. Key questions regarding the integration of these processes are addressed in this review. We consider how the chloroplast functions as a crucible for photosynthesis, importing and integrating nuclear-encoded components from the cytoplasm, and sending retrograde signals to the nucleus to regulate CCM induction. We hypothesize that induction of the CCM is associated with retrograde signals associated with photorespiration and/or light stress. We have also examined the significance of common evolutionary pressures for origins of two co-regulated processes, namely the CCM and photorespiration, in addition to identifying genes of interest involved in transcription, protein folding, and regulatory processes which are needed to fully understand the processes leading to CCM induction.
Collapse
Affiliation(s)
- Indu Santhanagopalan
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | - Rachel Wong
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | - Tanya Mathur
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
33
|
Del Prete S, Bua S, Supuran CT, Capasso C. Escherichia coli γ-carbonic anhydrase: characterisation and effects of simple aromatic/heterocyclic sulphonamide inhibitors. J Enzyme Inhib Med Chem 2021; 35:1545-1554. [PMID: 32746656 PMCID: PMC7470111 DOI: 10.1080/14756366.2020.1800670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous metalloenzymes involved in biosynthetic processes, transport, supply, and balance of CO2/HCO3- into the cell. In Bacteria, CAs avoid the depletion of the dissolved CO2/HCO3- from the cell, providing them to the central metabolism that is compromised without the CA activity. The involvement of CAs in the survival, pathogenicity, and virulence of several bacterial pathogenic species is recent. Here, we report the kinetic properties of the recombinant γ-CA (EcoCAγ) encoded in the genome of Escherichia coli. EcoCAγ is an excellent catalyst for the physiological CO2 hydration reaction to bicarbonate and protons, with a kcat of 5.7 × 105 s−1 and kcat/KM of 6.9 × 106 M−1 s−1. The EcoCAγ inhibition profile with a broad series of known CA inhibitors, the substituted benzene-sulphonamides, and clinically licenced drugs was explored. Benzolamide showed a KI lower than 100 nM. Our study reinforces the hypothesis that the synthesis of new drugs capable of interfering selectively with the bacterial CA activity, avoiding the inhibition of the human α -CAs, is achievable and may lead to novel antibacterials.
Collapse
Affiliation(s)
- Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Silvia Bua
- Section of Pharmaceutical and Nutraceutical Sciences, Department of NEUROFARBA, University of Florence, Firenze, Italy
| | - Claudiu T Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of NEUROFARBA, University of Florence, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| |
Collapse
|
34
|
Barrett J, Girr P, Mackinder LCM. Pyrenoids: CO 2-fixing phase separated liquid organelles. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118949. [PMID: 33421532 DOI: 10.1016/j.bbamcr.2021.118949] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
Pyrenoids are non-membrane bound organelles found in chloroplasts of algae and hornwort plants that can be seen by light-microscopy. Pyrenoids are formed by liquid-liquid phase separation (LLPS) of Rubisco, the primary CO2 fixing enzyme, with an intrinsically disordered multivalent Rubisco-binding protein. Pyrenoids are the heart of algal and hornwort biophysical CO2 concentrating mechanisms, which accelerate photosynthesis and mediate about 30% of global carbon fixation. Even though LLPS may underlie the apparent convergent evolution of pyrenoids, our current molecular understanding of pyrenoid formation comes from a single example, the model alga Chlamydomonas reinhardtii. In this review, we summarise current knowledge about pyrenoid assembly, regulation and structural organization in Chlamydomonas and highlight evidence that LLPS is the general principle underlying pyrenoid formation across algal lineages and hornworts. Detailed understanding of the principles behind pyrenoid assembly, regulation and structural organization within diverse lineages will provide a fundamental understanding of this biogeochemically important organelle and help guide ongoing efforts to engineer pyrenoids into crops to increase photosynthetic performance and yields.2.
Collapse
Affiliation(s)
- James Barrett
- Department of Biology, University of York, York YO10 5DD, UK
| | - Philipp Girr
- Department of Biology, University of York, York YO10 5DD, UK
| | | |
Collapse
|
35
|
|
36
|
Cooney LJ, Beechey-Gradwell Z, Winichayakul S, Richardson KA, Crowther T, Anderson P, Scott RW, Bryan G, Roberts NJ. Changes in Leaf-Level Nitrogen Partitioning and Mesophyll Conductance Deliver Increased Photosynthesis for Lolium perenne Leaves Engineered to Accumulate Lipid Carbon Sinks. FRONTIERS IN PLANT SCIENCE 2021; 12:641822. [PMID: 33897730 PMCID: PMC8063613 DOI: 10.3389/fpls.2021.641822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Diacylglycerol acyl-transferase (DGAT) and cysteine oleosin (CO) expression confers a novel carbon sink (of encapsulated lipid droplets) in leaves of Lolium perenne and has been shown to increase photosynthesis and biomass. However, the physiological mechanism by which DGAT + CO increases photosynthesis remains unresolved. To evaluate the relationship between sink strength and photosynthesis, we examined fatty acids (FA), water-soluble carbohydrates (WSC), gas exchange parameters and leaf nitrogen for multiple DGAT + CO lines varying in transgene accumulation. To identify the physiological traits which deliver increased photosynthesis, we assessed two important determinants of photosynthetic efficiency, CO2 conductance from atmosphere to chloroplast, and nitrogen partitioning between different photosynthetic and non-photosynthetic pools. We found that DGAT + CO accumulation increased FA at the expense of WSC in leaves of L. perenne and for those lines with a significant reduction in WSC, we also observed an increase in photosynthesis and photosynthetic nitrogen use efficiency. DGAT + CO L. perenne displayed no change in rubisco content or Vcmax but did exhibit a significant increase in specific leaf area (SLA), stomatal and mesophyll conductance, and leaf nitrogen allocated to photosynthetic electron transport. Collectively, we showed that increased carbon demand via DGAT+CO lipid sink accumulation can induce leaf-level changes in L. perenne which deliver increased rates of photosynthesis and growth. Carbon sinks engineered within photosynthetic cells provide a promising new strategy for increasing photosynthesis and crop productivity.
Collapse
|
37
|
Salbitani G, Del Prete S, Bolinesi F, Mangoni O, De Luca V, Carginale V, Donald WA, Supuran CT, Carfagna S, Capasso C. Use of an immobilised thermostable α-CA (SspCA) for enhancing the metabolic efficiency of the freshwater green microalga Chlorella sorokiniana. J Enzyme Inhib Med Chem 2020; 35:913-920. [PMID: 32223467 PMCID: PMC7170359 DOI: 10.1080/14756366.2020.1746785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is significant interest in increasing the microalgal efficiency for producing high-quality products that are commonly used as food additives in nutraceuticals. Some natural substances that can be extracted from algae include lipids, carbohydrates, proteins, carotenoids, long-chain polyunsaturated fatty acids, and vitamins. Generally, microalgal photoautotrophic growth can be maximised by optimising CO2 biofixation, and by adding sodium bicarbonate and specific bacteria to the microalgal culture. Recently, to enhance CO2 biofixation, a thermostable carbonic anhydrase (SspCA) encoded by the genome of the bacterium Sulfurihydrogenibium yellowstonense has been heterologously expressed and immobilised on the surfaces of bacteria. Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous metalloenzymes, which catalyse the physiologically reversible reaction of carbon dioxide hydration to bicarbonate and protons: CO2 + H2O ⇄ HCO3− + H+. Herein, we demonstrate for the first time that the fragments of bacterial membranes containing immobilised SspCA (M-SspCA) on their surfaces can be doped into the microalgal culture of the green unicellular alga, Chlorella sorokiniana, to significantly enhance the biomass, photosynthetic activity, carotenoids production, and CA activity by this alga. These results are of biotechnological interest because C. sorokiniana is widely used in many different areas, including photosynthesis research, human pharmaceutical production, aquaculture-based food production, and wastewater treatment.
Collapse
Affiliation(s)
| | - Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | | | - Olga Mangoni
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Vincenzo Carginale
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Claudiu T Supuran
- School of Chemistry, University of New South Wales, Sydney, Australia.,Department of NEUROFARB, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Simona Carfagna
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| |
Collapse
|
38
|
Atkinson N, Mao Y, Chan KX, McCormick AJ. Condensation of Rubisco into a proto-pyrenoid in higher plant chloroplasts. Nat Commun 2020; 11:6303. [PMID: 33298923 PMCID: PMC7726157 DOI: 10.1038/s41467-020-20132-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Photosynthetic CO2 fixation in plants is limited by the inefficiency of the CO2-assimilating enzyme Rubisco. In most eukaryotic algae, Rubisco aggregates within a microcompartment known as the pyrenoid, in association with a CO2-concentrating mechanism that improves photosynthetic operating efficiency under conditions of low inorganic carbon. Recent work has shown that the pyrenoid matrix is a phase-separated, liquid-like condensate. In the alga Chlamydomonas reinhardtii, condensation is mediated by two components: Rubisco and the linker protein EPYC1 (Essential Pyrenoid Component 1). Here, we show that expression of mature EPYC1 and a plant-algal hybrid Rubisco leads to spontaneous condensation of Rubisco into a single phase-separated compartment in Arabidopsis chloroplasts, with liquid-like properties similar to a pyrenoid matrix. This work represents a significant initial step towards enhancing photosynthesis in higher plants by introducing an algal CO2-concentrating mechanism, which is predicted to significantly increase the efficiency of photosynthetic CO2 uptake.
Collapse
Affiliation(s)
- Nicky Atkinson
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King's Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Yuwei Mao
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King's Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Kher Xing Chan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 Gregory Drive, Urbana, IL, 61801, USA
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King's Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
39
|
Yang X, Medford JI, Markel K, Shih PM, De Paoli HC, Trinh CT, McCormick AJ, Ployet R, Hussey SG, Myburg AA, Jensen PE, Hassan MM, Zhang J, Muchero W, Kalluri UC, Yin H, Zhuo R, Abraham PE, Chen JG, Weston DJ, Yang Y, Liu D, Li Y, Labbe J, Yang B, Lee JH, Cottingham RW, Martin S, Lu M, Tschaplinski TJ, Yuan G, Lu H, Ranjan P, Mitchell JC, Wullschleger SD, Tuskan GA. Plant Biosystems Design Research Roadmap 1.0. BIODESIGN RESEARCH 2020; 2020:8051764. [PMID: 37849899 PMCID: PMC10521729 DOI: 10.34133/2020/8051764] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/30/2020] [Indexed: 10/19/2023] Open
Abstract
Human life intimately depends on plants for food, biomaterials, health, energy, and a sustainable environment. Various plants have been genetically improved mostly through breeding, along with limited modification via genetic engineering, yet they are still not able to meet the ever-increasing needs, in terms of both quantity and quality, resulting from the rapid increase in world population and expected standards of living. A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches. This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems. Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through de novo synthesis of plant genomes. From this perspective, we present a comprehensive roadmap of plant biosystems design covering theories, principles, and technical methods, along with potential applications in basic and applied plant biology research. We highlight current challenges, future opportunities, and research priorities, along with a framework for international collaboration, towards rapid advancement of this emerging interdisciplinary area of research. Finally, we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception, trust, and acceptance.
Collapse
Affiliation(s)
- Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - June I. Medford
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kasey Markel
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Patrick M. Shih
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Henrique C. De Paoli
- Department of Biodesign, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cong T. Trinh
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Alistair J. McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Raphael Ployet
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Steven G. Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1858, Frederiksberg, Copenhagen, Denmark
| | - Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Udaya C. Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology and the Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Degao Liu
- Department of Genetics, Cell Biology and Development, Center for Precision Plant Genomics and Center for Genome Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Jessy Labbe
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Jun Hyung Lee
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | - Stanton Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Priya Ranjan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Julie C. Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stan D. Wullschleger
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
40
|
He S, Chou HT, Matthies D, Wunder T, Meyer MT, Atkinson N, Martinez-Sanchez A, Jeffrey PD, Port SA, Patena W, He G, Chen VK, Hughson FM, McCormick AJ, Mueller-Cajar O, Engel BD, Yu Z, Jonikas MC. The structural basis of Rubisco phase separation in the pyrenoid. NATURE PLANTS 2020; 6:1480-1490. [PMID: 33230314 PMCID: PMC7736253 DOI: 10.1038/s41477-020-00811-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/21/2020] [Indexed: 05/04/2023]
Abstract
Approximately one-third of global CO2 fixation occurs in a phase-separated algal organelle called the pyrenoid. The existing data suggest that the pyrenoid forms by the phase separation of the CO2-fixing enzyme Rubisco with a linker protein; however, the molecular interactions underlying this phase separation remain unknown. Here we present the structural basis of the interactions between Rubisco and its intrinsically disordered linker protein Essential Pyrenoid Component 1 (EPYC1) in the model alga Chlamydomonas reinhardtii. We find that EPYC1 consists of five evenly spaced Rubisco-binding regions that share sequence similarity. Single-particle cryo-electron microscopy of these regions in complex with Rubisco indicates that each Rubisco holoenzyme has eight binding sites for EPYC1, one on each Rubisco small subunit. Interface mutations disrupt binding, phase separation and pyrenoid formation. Cryo-electron tomography supports a model in which EPYC1 and Rubisco form a codependent multivalent network of specific low-affinity bonds, giving the matrix liquid-like properties. Our results advance the structural and functional understanding of the phase separation underlying the pyrenoid, an organelle that plays a fundamental role in the global carbon cycle.
Collapse
Affiliation(s)
- Shan He
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Hui-Ting Chou
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Therapeutic Discovery, Amgen Discovery Research, Amgen Inc., South San Francisco, CA, USA
| | - Doreen Matthies
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tobias Wunder
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Moritz T Meyer
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Nicky Atkinson
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Antonio Martinez-Sanchez
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Neuropathology, University of Göttingen Medical Center, Göttingen, Germany
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sarah A Port
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Guanhua He
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Vivian K Chen
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Zhiheng Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
41
|
Changes in lipid and carotenoid metabolism in Chlamydomonas reinhardtii during induction of CO2-concentrating mechanism: Cellular response to low CO2 stress. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Elucidation and genetic intervention of CO2 concentration mechanism in Chlamydomonas reinhardtii for increased plant primary productivity. J Biosci 2020. [DOI: 10.1007/s12038-020-00080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Hennacy JH, Jonikas MC. Prospects for Engineering Biophysical CO 2 Concentrating Mechanisms into Land Plants to Enhance Yields. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:461-485. [PMID: 32151155 PMCID: PMC7845915 DOI: 10.1146/annurev-arplant-081519-040100] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although cyanobacteria and algae represent a small fraction of the biomass of all primary producers, their photosynthetic activity accounts for roughly half of the daily CO2 fixation that occurs on Earth. These microorganisms are able to accomplish this feat by enhancing the activity of the CO2-fixing enzyme Rubisco using biophysical CO2 concentrating mechanisms (CCMs). Biophysical CCMs operate by concentrating bicarbonate and converting it into CO2 in a compartment that houses Rubisco (in contrast with other CCMs that concentrate CO2 via an organic intermediate, such as malate in the case of C4 CCMs). This activity provides Rubisco with a high concentration of its substrate, thereby increasing its reaction rate. The genetic engineering of a biophysical CCM into land plants is being pursued as a strategy to increase crop yields. This review focuses on the progress toward understanding the molecular components of cyanobacterial and algal CCMs, as well as recent advances toward engineering these components into land plants.
Collapse
Affiliation(s)
- Jessica H Hennacy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA; ,
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA; ,
| |
Collapse
|
44
|
|
45
|
Li FW, Nishiyama T, Waller M, Frangedakis E, Keller J, Li Z, Fernandez-Pozo N, Barker MS, Bennett T, Blázquez MA, Cheng S, Cuming AC, de Vries J, de Vries S, Delaux PM, Diop IS, Harrison CJ, Hauser D, Hernández-García J, Kirbis A, Meeks JC, Monte I, Mutte SK, Neubauer A, Quandt D, Robison T, Shimamura M, Rensing SA, Villarreal JC, Weijers D, Wicke S, Wong GKS, Sakakibara K, Szövényi P. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. NATURE PLANTS 2020; 6:259-272. [PMID: 32170292 PMCID: PMC8075897 DOI: 10.1038/s41477-020-0618-2] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/11/2020] [Indexed: 05/12/2023]
Abstract
Hornworts comprise a bryophyte lineage that diverged from other extant land plants >400 million years ago and bears unique biological features, including a distinct sporophyte architecture, cyanobacterial symbiosis and a pyrenoid-based carbon-concentrating mechanism (CCM). Here, we provide three high-quality genomes of Anthoceros hornworts. Phylogenomic analyses place hornworts as a sister clade to liverworts plus mosses with high support. The Anthoceros genomes lack repeat-dense centromeres as well as whole-genome duplication, and contain a limited transcription factor repertoire. Several genes involved in angiosperm meristem and stomatal function are conserved in Anthoceros and upregulated during sporophyte development, suggesting possible homologies at the genetic level. We identified candidate genes involved in cyanobacterial symbiosis and found that LCIB, a Chlamydomonas CCM gene, is present in hornworts but absent in other plant lineages, implying a possible conserved role in CCM function. We anticipate that these hornwort genomes will serve as essential references for future hornwort research and comparative studies across land plants.
Collapse
Affiliation(s)
- Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA.
- Plant Biology Section, Cornell University, Ithaca, NY, USA.
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Ishikawa, Japan
| | - Manuel Waller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | | | - Jean Keller
- LRSV, Université de Toulouse, CNRS, UPS Castanet-Tolosan, Toulouse, France
| | - Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | | | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Tom Bennett
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Andrew C Cuming
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jan de Vries
- Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Georg-August University Göttingen, Göttingen, Germany
| | - Sophie de Vries
- Institute of Population Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Pierre-Marc Delaux
- LRSV, Université de Toulouse, CNRS, UPS Castanet-Tolosan, Toulouse, France
| | - Issa S Diop
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | - Jorge Hernández-García
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | - Alexander Kirbis
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - John C Meeks
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Isabel Monte
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Sumanth K Mutte
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Anna Neubauer
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Dietmar Quandt
- Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, Germany
| | - Tanner Robison
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Masaki Shimamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Stefan A Rensing
- Faculty of Biology, Philipps University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Marburg, Germany
| | - Juan Carlos Villarreal
- Department of Biology, Laval University, Quebec City, Quebec, Canada
- Smithsonian Tropical Research Institute, Balboa, Panamá
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Susann Wicke
- Institute for Evolution and Biodiversity, University of Muenster, Münster, Germany
| | - Gane K-S Wong
- Department of Biological Sciences, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- BGI-Shenzhen, Shenzhen, China
| | | | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland.
- Zurich-Basel Plant Science Center, Zurich, Switzerland.
| |
Collapse
|
46
|
Orr DJ, Worrall D, Lin MT, Carmo-Silva E, Hanson MR, Parry MAJ. Hybrid Cyanobacterial-Tobacco Rubisco Supports Autotrophic Growth and Procarboxysomal Aggregation. PLANT PHYSIOLOGY 2020; 182:807-818. [PMID: 31744936 PMCID: PMC6997680 DOI: 10.1104/pp.19.01193] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/05/2019] [Indexed: 05/22/2023]
Abstract
Much of the research aimed at improving photosynthesis and crop productivity attempts to overcome shortcomings of the primary CO2-fixing enzyme Rubisco. Cyanobacteria utilize a CO2-concentrating mechanism (CCM), which encapsulates Rubisco with poor specificity but a relatively fast catalytic rate within a carboxysome microcompartment. Alongside the active transport of bicarbonate into the cell and localization of carbonic anhydrase within the carboxysome shell with Rubisco, cyanobacteria are able to overcome the limitations of Rubisco via localization within a high-CO2 environment. As part of ongoing efforts to engineer a β-cyanobacterial CCM into land plants, we investigated the potential for Rubisco large subunits (LSU) from the β-cyanobacterium Synechococcus elongatus (Se) to form aggregated Rubisco complexes with the carboxysome linker protein CcmM35 within tobacco (Nicotiana tabacum) chloroplasts. Transplastomic plants were produced that lacked cognate Se Rubisco small subunits (SSU) and expressed the Se LSU in place of tobacco LSU, with and without CcmM35. Plants were able to form a hybrid enzyme utilizing tobacco SSU and the Se LSU, allowing slow autotrophic growth in high CO2 CcmM35 was able to form large Rubisco aggregates with the Se LSU, and these incorporated small amounts of native tobacco SSU. Plants lacking the Se SSU showed delayed growth, poor photosynthetic capacity, and significantly reduced Rubisco activity compared with both wild-type tobacco and lines expressing the Se SSU. These results demonstrate the ability of the Se LSU and CcmM35 to form large aggregates without the cognate Se SSU in planta, harboring active Rubisco that enables plant growth, albeit at a much slower pace than plants expressing the cognate Se SSU.
Collapse
Affiliation(s)
- Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Dawn Worrall
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Myat T Lin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850
| | - Elizabete Carmo-Silva
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850
| | - Martin A J Parry
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
47
|
Singer SD, Soolanayakanahally RY, Foroud NA, Kroebel R. Biotechnological strategies for improved photosynthesis in a future of elevated atmospheric CO 2. PLANTA 2019; 251:24. [PMID: 31784816 DOI: 10.1007/s00425-019-03301-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
The improvement of photosynthesis using biotechnological approaches has been the focus of much research. It is now vital that these strategies be assessed under future atmospheric conditions. The demand for crop products is expanding at an alarming rate due to population growth, enhanced affluence, increased per capita calorie consumption, and an escalating need for plant-based bioproducts. While solving this issue will undoubtedly involve a multifaceted approach, improving crop productivity will almost certainly provide one piece of the puzzle. The improvement of photosynthetic efficiency has been a long-standing goal of plant biotechnologists as possibly one of the last remaining means of achieving higher yielding crops. However, the vast majority of these studies have not taken into consideration possible outcomes when these plants are grown long-term under the elevated CO2 concentrations (e[CO2]) that will be evident in the not too distant future. Due to the considerable effect that CO2 levels have on the photosynthetic process, these assessments should become commonplace as a means of ensuring that research in this field focuses on the most effective approaches for our future climate scenarios. In this review, we discuss the main biotechnological research strategies that are currently underway with the aim of improving photosynthetic efficiency and biomass production/yields in the context of a future of e[CO2], as well as alternative approaches that may provide further photosynthetic benefits under these conditions.
Collapse
Affiliation(s)
- Stacy D Singer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.
| | - Raju Y Soolanayakanahally
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Roland Kroebel
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| |
Collapse
|
48
|
Atkinson N, Velanis CN, Wunder T, Clarke DJ, Mueller-Cajar O, McCormick AJ. The pyrenoidal linker protein EPYC1 phase separates with hybrid Arabidopsis-Chlamydomonas Rubisco through interactions with the algal Rubisco small subunit. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5271-5285. [PMID: 31504763 PMCID: PMC6793452 DOI: 10.1093/jxb/erz275] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/13/2019] [Indexed: 05/21/2023]
Abstract
Photosynthetic efficiencies in plants are restricted by the CO2-fixing enzyme Rubisco but could be enhanced by introducing a CO2-concentrating mechanism (CCM) from green algae, such as Chlamydomonas reinhardtii (hereafter Chlamydomonas). A key feature of the algal CCM is aggregation of Rubisco in the pyrenoid, a liquid-like organelle in the chloroplast. Here we have used a yeast two-hybrid system and higher plants to investigate the protein-protein interaction between Rubisco and essential pyrenoid component 1 (EPYC1), a linker protein required for Rubisco aggregation. We showed that EPYC1 interacts with the small subunit of Rubisco (SSU) from Chlamydomonas and that EPYC1 has at least five SSU interaction sites. Interaction is crucially dependent on the two surface-exposed α-helices of the Chlamydomonas SSU. EPYC1 could be localized to the chloroplast in higher plants and was not detrimental to growth when expressed stably in Arabidopsis with or without a Chlamydomonas SSU. Although EPYC1 interacted with Rubisco in planta, EPYC1 was a target for proteolytic degradation. Plants expressing EPYC1 did not show obvious evidence of Rubisco aggregation. Nevertheless, hybrid Arabidopsis Rubisco containing the Chlamydomonas SSU could phase separate into liquid droplets with purified EPYC1 in vitro, providing the first evidence of pyrenoid-like aggregation for Rubisco derived from a higher plant.
Collapse
Affiliation(s)
- Nicky Atkinson
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Christos N Velanis
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tobias Wunder
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - David J Clarke
- School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alistair J McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Correspondence:
| |
Collapse
|
49
|
Knockdown of carbonate anhydrase elevates Nannochloropsis productivity at high CO2 level. Metab Eng 2019; 54:96-108. [DOI: 10.1016/j.ymben.2019.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 01/07/2023]
|
50
|
Terentyev VV, Shukshina AK, Shitov AV. Carbonic anhydrase CAH3 supports the activity of photosystem II under increased pH. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:582-590. [DOI: 10.1016/j.bbabio.2019.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 11/24/2022]
|