1
|
Li L, Shu L, Li Y, Zhang F, Meng Y, Wang H, Cao Y, Jiang YQ, Yan J. Ectopic Overexpression of Rapeseed BnaNTL1 Transcription Factor Positively Regulates Plant Resistance to Sclerotinia sclerotiorum through Modulating JA Synthesis and ROS Accumulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5042-5053. [PMID: 39979321 DOI: 10.1021/acs.jafc.4c10185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Oilseed rape is one of the most important oil crops worldwide. Stem rot disease of rapeseed is caused by Sclerotinia sclerotiorum, posing a threat to oil crop yield. NTL is a small class of membrane-tethered NAC transcription factors, which are stored on the membrane in dormant form, released upon stimuli, and then transported to the nucleus. Here, we identified BnaNTL1 from oilseed rape, and its relocation from the ER to the nucleus is induced by S. sclerotiorum. Plants overexpressing BnaNTL1-ΔTM (a truncated form without the transmembrane domain) are resistant to S. sclerotiorum infection and are accumulated with more JA and ROS. Genes related to the JA pathway and ROS signal were significantly induced by BnaNTL1. Furthermore, the dual-luciferase and EMSA results showed that BnaNTL1-ΔTM directly binds to the promoter regions of AOC3, LOX2, OPCL1, and PDF1.2, and it activates their expression. In summary, we identified that BnaNTL1 positively regulates plant resistance to S. sclerotiorum infection by modulating JA synthesis and ROS production.
Collapse
Affiliation(s)
- Longhui Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Lin Shu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Yanfei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, and College of Life Sciences, Northwest A & F University, Yangling 712100, Shaanxi Province, China
| | - Fuyan Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Yan Meng
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Hongwei Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Yanan Cao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and College of Life Sciences, Northwest A & F University, Yangling 712100, Shaanxi Province, China
| | - Jingli Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| |
Collapse
|
2
|
Zheng T, Yang J, Chen Q, Huang X, Xue Y, Tang Q, Wang G, Li Y, Hu Z, Zeng HT. Analysis of lipidomics profile of Brassica napus hybrid 'Fangyou 777' and its parents during ripening stages based on UPLC-MS/MS. BMC PLANT BIOLOGY 2025; 25:197. [PMID: 39953462 PMCID: PMC11827199 DOI: 10.1186/s12870-025-06220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Lipids in rapeseed is of great significance to human health, and 'Fangyou 777' (No. GPD-2019-510073) has been identified as an excellent cultivar with high oil content. However, the change of lipid profile at different ripening stages remain unclear. Herein, UPLC-MS/MS was utilized for comprehensive lipidomics analysis of 'Fangyou 777' and its parents at four ripening stages. RESULTS 778 lipids components across 25 subclasses were identified, and triglycerides (TGs), diglycerides (DGs), phosphatidylserines (PSs), phosphatidylinositols (PIs), phosphatidylglycerols (PGs), phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and free fatty acids (FFAs) were identified as the dominant lipid subclass. Due to heterotic vigor, the total lipids, TGs, FFAs, lysophosphatidylglycerol (LPGs) and PSs contents in 'Fangyou 777' were significantly higher than its parents. The PCA and OPLS-DA results elucidated that lipids in 'Fangyou 777' differed obviously from its parents at S1 (17 April, 2023; 28 days before ripening, 28 DBR), S2 (1 May, 2023; 14 DBR), and S3 (15 May, 2023; ripening day). TG(18:1_18:3_22:1), TG(18:1_22:1_18:2), TG(16:0_18:1_20:1), TG(16:0_18:1_22:1), TG(20:1_18:2_20:2), TG(18:1_18:1_20:1), and FFA(24:4) were recognized as key differential lipids. The glycerolipid metabolism and unsaturated fatty acid biosynthesis were the differential metabolic pathways at S1 and S3, while glycosylphosphatidylinositol (GPI)-anchor biosynthesis and glycerophospholipid metabolism were the differential metabolic pathways at S2 and S4 (7 days after ripening/physiologically ripened for one week). CONCLUSION This study provided a comprehensive profile to facilitate the understanding lipids accumulation in 'Fangyou 777' and its parents during ripening stages, and offered a foundation to comprehend lipid metabolism.
Collapse
Affiliation(s)
- Tao Zheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Jianmei Yang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Qiao Chen
- Hanzhong Vocational and Technical College, Hanzhong, Shaanxi, 723001, China
| | - Xinxin Huang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Yan Xue
- Hanzhong Institute of Agricultural Sciences, Hanzhong, Shaanxi, 723001, China
| | - Qi Tang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Guodong Wang
- College of Life Sciences, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Ying Li
- Hanzhong Institute of Agricultural Sciences, Hanzhong, Shaanxi, 723001, China
| | - Zhubing Hu
- Henan University, Kaifeng, Henan, 475001, China.
| | - Haitao T Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China.
| |
Collapse
|
3
|
Tan C, Zhang Q, Shen W, Liu Y, Zhang D, Chen L, Chen D. Expression profiles of microRNA-mRNA and their potential impact on anthocyanin accumulation in purple petals of Brassica napus. BMC PLANT BIOLOGY 2024; 24:1223. [PMID: 39707179 DOI: 10.1186/s12870-024-05922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
Rapeseed (Brassica napus L.) possesses substantial economic value as an oil, vegetable, and forage crop, while also exhibiting notable ornamental characteristics. Recent advances in flower colour breeding have significantly enhanced the visual appeal of rapeseed, with anthocyanins identified as the primary contributor to the development of red, purple, and pink flowers. However, the mechanisms underlying the synthesis and regulation of anthocyanins during petal coloration in rapeseed are still poorly understood. This research combined miRNA and mRNA expression data from four different color phases, along with degradome analysis, to discover important miRNA-mRNA modules responsible for controlling the accumulation of anthocyanin in purple-flowered rapeseed. In the process of petal development, a grand sum of 247 miRNAs (including 223 known and 24 novel miRNAs) were effectively detected, with 64 of them displaying differential expression patterns. Degradome sequencing was used to conduct a comprehensive analysis of 152 targets for the differential expression miRNAs. Out of these, 108 miRNA-mRNA modules exhibit contrasting expression patterns. Some miRNAs and their corresponding targets have additionally been discovered, potentially playing a role in governing the buildup of anthocyanin in purple-flowered rapeseed. The regulatory modules miR156-SPL9 and miR828-PAP2 composed of miR156b and miR828 and their targets may play a key role in this process. The results offer a thorough analysis of miRNAs linked to the regulation of anthocyanin in B. napus, offering valuable understanding into the regulatory processes that govern miRNA-mediated anthocyanin production in Brassica crops.
Collapse
Affiliation(s)
- Chen Tan
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Qi Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Wenjie Shen
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Yi Liu
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Dawei Zhang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, 411100, China
| | - Lunlin Chen
- Nanchang Branch of National Center of Oilcrops Improvement, Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Daozong Chen
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
4
|
Yi K, Ren Y, Zhang H, Lin B, Hao P, Hua S. Can Rice Growth Substrate Substitute Rapeseed Growth Substrate in Rapeseed Blanket Seedling Technology? Lesson from Reactive Oxygen Species Production and Scavenging Analysis. Antioxidants (Basel) 2024; 13:1022. [PMID: 39199266 PMCID: PMC11351573 DOI: 10.3390/antiox13081022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Rapeseed (Brassica napus L.) seedlings suffering from inappropriate growth substrate stress will present poor seedling quality. However, the regulatory mechanism for the production and scavenging of reactive oxygen species (ROS) caused by this type of stress remains unclear. In the current study, a split plot experiment design was implemented with two crop growth substrates-a rice growth substrate (RIS) and rapeseed growth substrate (RAS)-as the main plot and two genotypes-a hybrid and an open-pollinated variety (Zheyouza 1510 and Zheyou 51, respectively)-as the sub-plot. The seedling quality was assessed, and the ROS production/scavenging capacity was evaluated. Enzymatic and non-enzymatic systems, including ascorbic acid and glutathione metabolism, and RNA-seq data were analyzed under the two growth substrate treatments. The results revealed that rapeseed seedling quality decreased under RIS, with the plant height, maximum leaf length and width, and aboveground dry matter being reduced by 187.7%, 64.6%, 73.2%, and 63.8% on average, respectively, as compared to RAS. The main type of ROS accumulated in rapeseed plants was hydrogen peroxide, which was 47.8% and 14.1% higher under RIS than under RAS in the two genotypes, respectively. The scavenging of hydrogen peroxide in Zheyouza 1510 was the result of a combination of enzymatic systems, with significantly higher peroxidase (POD) and catalase (CAT) activity as well as glutathione metabolism, with significantly higher reduced glutathione (GSH) content, under RAS, while higher oxidized glutathione (GSSH) was observed under RIS. However, the scavenging of hydrogen peroxide in Zheyou 51 was the result of a combination of elevated oxidized ascorbic acid (DHA) under RIS and higher GSH content under RAS. The identified gene expression levels were in accordance with the observed enzyme expression levels. The results suggest that the cost of substituting RAS with RIS is a reduction in rapeseed seedling quality contributing to excessive ROS production and a reduction in ROS scavenging capacity.
Collapse
Affiliation(s)
- Kaige Yi
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (B.L.); (P.H.)
| | - Yun Ren
- Institute of Crop, Huzhou Academy of Agricultural Sciences, Huzhou 313000, China;
| | - Hui Zhang
- Zhejiang Agri-Tech Extension and Service Center, Hangzhou 310020, China;
| | - Baogang Lin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (B.L.); (P.H.)
| | - Pengfei Hao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (B.L.); (P.H.)
| | - Shuijin Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (B.L.); (P.H.)
| |
Collapse
|
5
|
Zhang D, Zhou H, Zhou D, Wu J, Liu L, Guo Y, Wang T, Tan C, Chen D, Ge X, Yan M. The introgression of BjMYB113 from Brassica juncea leads to purple leaf trait in Brassica napus. BMC PLANT BIOLOGY 2024; 24:735. [PMID: 39090544 PMCID: PMC11295638 DOI: 10.1186/s12870-024-05418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
The purple leaves of Brassica napus are abundant in anthocyanins, which are renowned for their role in conferring distinct colors, stress tolerance, and health benefits, however the genetic basis of this trait in B. napus remains largely unelucidated. Herein, the purple leaf B. napus (PL) exhibited purple pigments in the upper epidermis and a substantial increase in anthocyanin accumulation, particularly of cyanidin, compared to green leaf B. napus (GL). The genetic control of the purple leaf trait was attributed to a semi-dominant gene, pl, which was mapped to the end of chromosome A03. However, sequencing of the fragments amplified by the markers linked to pl indicated that they were all mapped to chromosome B05 from B. juncea. Within this B05 chromosomal segment, the BjMYB113 gene-specific marker showed perfect co-segregation with the purple leaf trait in the F2 population, suggesting that the BjMYB113 introgression from B. juncea was the candidate gene for the purple leaf trait in B. napus. To further verify the function of candidate gene, CRISPR/Cas9 was performed to knock out the BjMYB113 gene in PL. The three myb113 mutants exhibited evident green leaf phenotype, absence of purple pigments in the adaxial epidermis, and a significantly reduced accumulation of anthocyanin compared to PL. Additionally, the genes involved in positive regulatory (TT8), late anthocyanin biosynthesis (DFR, ANS, UFGT), as well as transport genes (TT19) were significantly suppressed in the myb113 mutants, further confirming that BjMYB113 was response for the anthocyanin accumulation in purple leaf B. napus. This study contributes to an advanced understanding of the regulation mechanism of anthocyanin accumulation in B. napus.
Collapse
Affiliation(s)
- Dawei Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Changsha, 410128, China
- Hunan Research Center of Heterosis Utilization in Rapeseed, Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Hongfeng Zhou
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Dinggang Zhou
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jinfeng Wu
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Lili Liu
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Yiming Guo
- Yuelushan Laboratory, Changsha, 410128, China
- Hunan Research Center of Heterosis Utilization in Rapeseed, Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Tonghua Wang
- Yuelushan Laboratory, Changsha, 410128, China
- Hunan Research Center of Heterosis Utilization in Rapeseed, Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Xianhong Ge
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingli Yan
- Yuelushan Laboratory, Changsha, 410128, China.
- Hunan Research Center of Heterosis Utilization in Rapeseed, Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
6
|
Cui C, Zhang K, Chai L, Zheng B, Zhang J, Jiang J, Tan C, Li H, Chen D, Jiang L. Unraveling the mechanism of flower color variation in Brassica napus by integrated metabolome and transcriptome analyses. FRONTIERS IN PLANT SCIENCE 2024; 15:1419508. [PMID: 38933465 PMCID: PMC11199733 DOI: 10.3389/fpls.2024.1419508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Brassica napus is one of the most important oil crops in the world. Breeding oilseed rape with colorful flowers can greatly enhance the ornamental value of B. napus and thus improve the economic benefits of planting. As water-soluble flavonoid secondary metabolites, anthocyanins are very important for the synthesis and accumulation of pigments in the petals of plants, giving them a wide range of bright colors. Despite the documentation of over 60 distinct flower shades in B. napus, the intricacies underlying flower color variation remain elusive. Particularly, the mechanisms driving color development across varying flower color backgrounds necessitate further comprehensive investigation. This research undertook a comprehensive exploration through the integration of transcriptome and metabolome analyses to pinpoint pivotal genes and metabolites underpinning an array of flower colors, including beige, beige-red, yellow, orange-red, deep orange-red, white, light-purple, and purple. First, we used a two-way BLAST search to find 275 genes in the reference genome of B. napus Darmor v10 that were involved in making anthocyanins. The subsequent scrutiny of RNA-seq outcomes underscored notable upregulation in the structural genes F3H and UGT, alongside the MYB75, GL3, and TTG1 transcriptional regulators within petals, showing anthocyanin accumulation. By synergizing this data with a weighted gene co-expression network analysis, we identified CHS, F3H, MYB75, MYB12, and MYB111 as the key players driving anthocyanin synthesis in beige-red, orange-red, deep orange-red, light-purple, and purple petals. By integrating transcriptome and weighted gene co-expression network analysis findings with anthocyanin metabolism data, it is hypothesized that the upregulation of MYB75, which, in turn, enhances F3H expression, plays a pivotal role in the development of pigmented oilseed rape flowers. These findings help to understand the transcriptional regulation of anthocyanin biosynthesis in B. napus and provide valuable genetic resources for breeding B. napus varieties with novel flower colors.
Collapse
Affiliation(s)
- Cheng Cui
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ka Zhang
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Liang Chai
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Benchuan Zheng
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jinfang Zhang
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jun Jiang
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China
| | - Haojie Li
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, China
| | - Liangcai Jiang
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
7
|
Li X, Zheng M, Gan Q, Long J, Fan H, Wang X, Guan Z. The formation and evolution of flower coloration in Brassica crops. Front Genet 2024; 15:1396875. [PMID: 38881796 PMCID: PMC11177764 DOI: 10.3389/fgene.2024.1396875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
The flower coloration of Brassica crops possesses significant application and economic value, making it a research hotspot in the field of genetics and breeding. In recent years, great progress has been made in the research on color variation and creation of Brassica crops. However, the underlying molecular mechanisms and evolutional processes of flower colors are poorly understood. In this paper, we present a comprehensive overview of the mechanism of flower color formation in plants, emphasizing the molecular basis and regulation mechanism of flavonoids and carotenoids. By summarizing the recent advances on the genetic mechanism of flower color formation and regulation in Brassica crops, it is clearly found that carotenoids and anthocyanins are major pigments for flower color diversity of Brassica crops. Meantime, we also explore the relationship between the emergence of white flowers and the genetic evolution of Brassica chromosomes, and analyze the innovation and multiple utilization of Brassica crops with colorful flowers. This review aims to provide theoretical support for genetic improvements in flower color, enhancing the economic value and aesthetic appeal of Brassica crops.
Collapse
Affiliation(s)
- Xuewei Li
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Jiangxi Research Center for Protection and Development of Traditional Chinese Medicine Resources, Key Laboratory of Germplasm Selection and Breeding of Chinese Medicinal Materials, Nanchang, Jiangxi, China
| | - Mingmin Zheng
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Jiangxi Research Center for Protection and Development of Traditional Chinese Medicine Resources, Key Laboratory of Germplasm Selection and Breeding of Chinese Medicinal Materials, Nanchang, Jiangxi, China
| | - Qingqin Gan
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Jiangxi Research Center for Protection and Development of Traditional Chinese Medicine Resources, Key Laboratory of Germplasm Selection and Breeding of Chinese Medicinal Materials, Nanchang, Jiangxi, China
| | - Jiang Long
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Jiangxi Research Center for Protection and Development of Traditional Chinese Medicine Resources, Key Laboratory of Germplasm Selection and Breeding of Chinese Medicinal Materials, Nanchang, Jiangxi, China
| | - Haiyan Fan
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xiaoqing Wang
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Jiangxi Research Center for Protection and Development of Traditional Chinese Medicine Resources, Key Laboratory of Germplasm Selection and Breeding of Chinese Medicinal Materials, Nanchang, Jiangxi, China
| | - Zhilin Guan
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
8
|
Tan Z, Han X, Dai C, Lu S, He H, Yao X, Chen P, Yang C, Zhao L, Yang QY, Zou J, Wen J, Hong D, Liu C, Ge X, Fan C, Yi B, Zhang C, Ma C, Liu K, Shen J, Tu J, Yang G, Fu T, Guo L, Zhao H. Functional genomics of Brassica napus: Progresses, challenges, and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:484-509. [PMID: 38456625 DOI: 10.1111/jipb.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.
Collapse
Affiliation(s)
- Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Xu Han
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanzi He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Chao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing Yi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
9
|
Huang L, Lin B, Hao P, Yi K, Li X, Hua S. Multi-Omics Analysis Reveals That Anthocyanin Degradation and Phytohormone Changes Regulate Red Color Fading in Rapeseed ( Brassica napus L.) Petals. Int J Mol Sci 2024; 25:2577. [PMID: 38473825 DOI: 10.3390/ijms25052577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Flower color is an important trait for the ornamental value of colored rapeseed (Brassica napus L.), as the plant is becoming more popular. However, the color fading of red petals of rapeseed is a problem for its utilization. Unfortunately, the mechanism for the process of color fading in rapeseed is unknown. In the current study, a red flower line, Zhehuhong, was used as plant material to analyze the alterations in its morphological and physiological characteristics, including pigment and phytohormone content, 2 d before flowering (T1), at flowering (T2), and 2 d after flowering (T3). Further, metabolomics and transcriptomics analyses were also performed to reveal the molecular regulation of petal fading. The results show that epidermal cells changed from spherical and tightly arranged to totally collapsed from T1 to T3, according to both paraffin section and scanning electron microscope observation. The pH value and all pigment content except flavonoids decreased significantly during petal fading. The anthocyanin content was reduced by 60.3% at T3 compared to T1. The content of three phytohormones, 1-aminocyclopropanecarboxylic acid, melatonin, and salicylic acid, increased significantly by 2.2, 1.1, and 30.3 times, respectively, from T1 to T3. However, auxin, abscisic acid, and jasmonic acid content decreased from T1 to T3. The result of metabolomics analysis shows that the content of six detected anthocyanin components (cyanidin, peonidin, pelargonidin, delphinidin, petunidin, and malvidin) and their derivatives mainly exhibited a decreasing trend, which was in accordance with the trend of decreasing anthocyanin. Transcriptomics analysis showed downregulation of genes involved in flavonol, flavonoid, and anthocyanin biosynthesis. Furthermore, genes regulating anthocyanin biosynthesis were preferentially expressed at early stages, indicating that the degradation of anthocyanin is the main issue during color fading. The corresponding gene-encoding phytohormone biosynthesis and signaling, JASMONATE-ZIM-DOMAIN PROTEIN, was deactivated to repress anthocyanin biosynthesis, resulting in fading petal color. The results clearly suggest that anthocyanin degradation and phytohormone regulation play essential roles in petal color fading in rapeseed, which is a useful insight for the breeding of colored rapeseed.
Collapse
Affiliation(s)
- Lan Huang
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Baogang Lin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Pengfei Hao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Kaige Yi
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xi Li
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shuijin Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
10
|
Ding Y, Li H, Liu X, Cheng X, Chen W, Wu M, Chen L, He J, Chao H, Jia H, Fu C, Li M. Multi-Omics Analysis Revealed the AGR-FC.C3 Locus of Brassica napus as a Novel Candidate for Controlling Petal Color. PLANTS (BASEL, SWITZERLAND) 2024; 13:507. [PMID: 38498487 PMCID: PMC10892695 DOI: 10.3390/plants13040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/20/2024]
Abstract
Variations in the petal color of Brassica napus are crucial for ornamental value, but the controlled loci for breeding remain to be unraveled. Here, we report a candidate locus, AGR-FC.C3, having conducted a bulked segregant analysis on a segregating population with different petal colors. Our results showed that the locus covers 9.46 Mb of the genome, harboring 951 genes. BnaC03.MYB4, BnaC03.MYB85, BnaC03.MYB73, BnaC03.MYB98, and BnaC03.MYB102 belonging to MYB TFs families that might regulate the petal color were observed. Next, a bulk RNA sequencing of white and orange-yellow petals on three development stages was performed to further identify the possible governed genes. The results revealed a total of 51 genes by overlapping the transcriptome data and the bulked segregant analysis data, and it was found that the expression of BnaC03.CCD4 was significantly up-regulated in the white petals at three development stages. Then, several novel candidate genes such as BnaC03.ENDO3, BnaC03.T22F8.180, BnaC03.F15C21.8, BnaC03.Q8GSI6, BnaC03.LSD1, BnaC03.MAP1Da, BnaC03.MAP1Db, and BnaC03G0739700ZS putative to controlling the petal color were identified through deeper analysis. Furthermo re, we have developed two molecular markers for the reported functional gene BnaC03.CCD4 to discriminate the white and orange-yellow petal colors. Our results provided a novel locus for breeding rapeseed with multi-color petals.
Collapse
Affiliation(s)
- Yiran Ding
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Xinmin Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Xin Cheng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Wang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Mingli Wu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Liurong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Haibo Jia
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Chunhua Fu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.D.); (H.L.); (X.L.); (X.C.); (W.C.); (M.W.); (L.C.); (J.H.); (H.J.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| |
Collapse
|
11
|
Jia C, Lai Q, Zhu Y, Feng J, Dan X, Zhang Y, Long Z, Wu J, Wang Z, Qumu X, Wang R, Wang J. Intergrative metabolomic and transcriptomic analyses reveal the potential regulatory mechanism of unique dihydroxy fatty acid biosynthesis in the seeds of an industrial oilseed crop Orychophragmus violaceus. BMC Genomics 2024; 25:29. [PMID: 38172664 PMCID: PMC10765717 DOI: 10.1186/s12864-023-09906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Orychophragmus violaceus is a potentially important industrial oilseed crop due to the two 24-carbon dihydroxy fatty acids (diOH-FA) that was newly identified from its seed oil via a 'discontinuous elongation' process. Although many research efforts have focused on the diOH-FA biosynthesis mechanism and identified the potential co-expressed diacylglycerol acyltranferase (DGAT) gene associated with triacylglycerol (TAG)-polyestolides biosynthesis, the dynamics of metabolic changes during seed development of O. violaceus as well as its associated regulatory network changes are poorly understood. RESULTS In this study, by combining metabolome and transcriptome analysis, we identified that 1,003 metabolites and 22,479 genes were active across four stages of seed development, which were further divided into three main clusters based on the patterns of metabolite accumulation and/or gene expression. Among which, cluster2 was mostly related to diOH-FA biosynthesis pathway. We thus further constructed transcription factor (TF)-structural genes regulatory map for the genes associated with the flavonoids, fatty acids and diOH-FA biosynthesis pathway in this cluster. In particular, several TF families such as bHLH, B3, HD-ZIP, MYB were found to potentially regulate the metabolism associated with the diOH-FA pathway. Among which, multiple candidate TFs with promising potential for increasing the diOH-FA content were identified, and we further traced the evolutionary history of these key genes among species of Brassicaceae. CONCLUSION Taken together, our study provides new insight into the gene resources and potential relevant regulatory mechanisms of diOH-FA biosynthesis uniquely in seeds of O. violaceus, which will help to promote the downstream breeding efforts of this potential oilseed crop and advance the bio-lubricant industry.
Collapse
Affiliation(s)
- Changfu Jia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qiang Lai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiman Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiajun Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuming Dan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yulin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhiqin Long
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiali Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zeng Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiner Qumu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Rui Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Jing Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Wang Y, Yu H, Xu Y, Wu M, Zhang J, Tsuda K, Liu S, Jiang D, Chen W, Wei Y, Li G, Yang L. Expression of a mycoparasite protease in plant petals suppresses the petal-mediated infection by necrotrophic pathogens. Cell Rep 2023; 42:113290. [PMID: 37874677 DOI: 10.1016/j.celrep.2023.113290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/14/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
Sclerotinia sclerotiorum and Botrytis cinerea are necrotrophic plant-pathogenic fungi, causing substantial economic losses on many crops. So far, resistant cultivars against these pathogens are unavailable in most crops. Here, we show that the serine protease CmSp1 of Coniothyrium minitans, a well-characterized mycoparasite of S. sclerotiorum, contributed to suppressing the petal-mediated infection by S. sclerotiorum in rapeseed. Application of recombinant CmSp1 proteins facilitates the bulk degradation of S. sclerotiorum proteins and inhibits spore germination and hyphal growth of S. sclerotiorum and B. cinerea, thereby preventing the development of both diseases. Stable transgenic rapeseed plants with tissue-specific expression of CmSp1 in flower petals inhibit the petal-mediated infection by both S. sclerotiorum and B. cinerea, and resulting transgenic plants have no adverse effect on other agronomic traits. Thus, our findings provide a novel mechanism by which a mycoparasite inhibits fungal pathogens and an environmentally friendly disease management strategy.
Collapse
Affiliation(s)
- Yongchun Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Han Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuping Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Weidong Chen
- U.S. Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA, USA
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
13
|
Zeng H, Chen M, Zheng T, Tang Q, Xu H. Metabolomics Analysis Reveals the Accumulation Patterns of Flavonoids and Volatile Compounds in Camellia oleifera Petals with Different Color. Molecules 2023; 28:7248. [PMID: 37959668 PMCID: PMC10650325 DOI: 10.3390/molecules28217248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
To systematically and comprehensively investigate the metabolic characteristics of coloring substances and floral aroma substances in Camellia oleifera petals with different colors, ultrahigh-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) and headspace solid phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS) metabolomics methods were applied to determine the metabolic profiles of white, candy-pink and dark-red petals. The results revealed that 270 volatile organic compounds were detected, mainly terpenoids, heterocyclic, esters, hydrocarbons, aldehydes, and alcohols, in which phenylethyl alcohol, lilac alcohol, and butanoic acid, 1-methylhexyl ester, hotrienol, alpha-terpineol and 7-Octen-4-ol, 2-methyl-6-methylene-, (S)-, butanoic acid, 2-methyl-, 2-methylbutyl ester, 2,4-Octadienal, (E,E)- could act as the floral scent compounds. A total of 372 flavonoid compounds were identified, and luteolin, kaempferol, cyanidin and peonidin derivatives were considered as the main coloring substances for candy-pink and dark-red petal coloration. In conclusion, this study intuitively and quantitatively exhibited the variations in flower color and floral scent of C. oleifera petal with different colors caused by changes in variations of flavonoids and volatile organic compound composition, and provided useful data for improving the sensory quality and breeding of C. oleifera petals.
Collapse
Affiliation(s)
| | | | - Tao Zheng
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (H.Z.); (M.C.); (Q.T.); (H.X.)
| | | | | |
Collapse
|
14
|
Zeng H, Zheng T, Li Y, Chen Q, Xue Y, Tang Q, Xu H, Chen M. Characterization Variation of the Differential Coloring Substances in Rapeseed Petals with Different Colors Using UPLC-HESI-MS/MS. Molecules 2023; 28:5670. [PMID: 37570640 PMCID: PMC10419860 DOI: 10.3390/molecules28155670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Rapeseed's (Brassica napus L.) colorful petals have important ornamental values. However, the mechanisms of regulating petals coloration in rapeseed are still unknown. In our study, we investigated the key differential coloring substances in nine rapeseed cultivars with different petal colors, and 543 metabolites were detected and characterized through UPLC-HESI-MS/MS. Among them, the kinds and contents of flavonols, flavones, and anthocyanidins were the main contributors to petals' coloration. Tamarixetin-, quercetin-, butin-, naringenin- and luteolin-derivates were the main pigment bases in white and yellow petals. Peonidin-3,5-O-diglucoside, peonidin-3-O-(6″-O-caffeoyl)glucoside, and quercetin-derivatives were the main coloring substances in pink petals. Acylated cyanidin derivatives might lead to a series of different purple petal colors. Glycosylated anthocyanins were responsible for the coloration of rapeseed red petals, and peonidin-3-O-glucoside and kaempferol-derivatives were mainly detected from the red petals. These results provide comprehensive insights into the difference in flavonoid metabolites in rapeseed petals with different colors and supply theoretical supports for the breeding of novel colorful rapeseed cultivars.
Collapse
Affiliation(s)
- Haitao Zeng
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (H.Z.); (H.X.)
| | - Tao Zheng
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (H.Z.); (H.X.)
| | - Ying Li
- Hanzhong Institute of Agricultural Sciences, Hanzhong 723001, China
| | - Qiao Chen
- Hanzhong Vocational and Technical College, Hanzhong 723001, China
| | - Yan Xue
- Hanzhong Institute of Agricultural Sciences, Hanzhong 723001, China
| | - Qi Tang
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (H.Z.); (H.X.)
| | - Hao Xu
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (H.Z.); (H.X.)
| | - Mengjiao Chen
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (H.Z.); (H.X.)
| |
Collapse
|
15
|
Li F, Gong Y, Mason AS, Liu Q, Huang J, Ma M, Xiao M, Wang H, Fu D. Research progress and applications of colorful Brassica crops. PLANTA 2023; 258:45. [PMID: 37462779 DOI: 10.1007/s00425-023-04205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
MAIN CONCLUSION We review the application and the molecular regulation of anthocyanins in colorful Brassica crops, the creation of new germplasm resources, and the development and utilization of colorful Brassica crops. Brassica crops are widely cultivated: these include oilseed crops, such as rapeseed, mustards, and root, leaf, and stem vegetable types, such as turnips, cabbages, broccoli, and cauliflowers. Colorful variants exist of these crop species, and asides from increased aesthetic appeal, these may also offer advantages in terms of nutritional content and improved stress resistances. This review provides a comprehensive overview of pigmentation in Brassica as a reference for the selection and breeding of new colorful Brassica varieties for multiple end uses. We summarize the function and molecular regulation of anthocyanins in Brassica crops, the creation of new colorful germplasm resources via different breeding methods, and the development and multifunctional utilization of colorful Brassica crop types.
Collapse
Affiliation(s)
- Fuyan Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yingying Gong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Qian Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Juan Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Miao Ma
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Meili Xiao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huadong Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
16
|
Tan C, Chen H, Dai G, Liu Y, Shen W, Wang C, Liu D, Liu S, Xu S, Zhu B, Chen D, Cui C. Identification and characterization of the gene BraANS.A03 associated with purple leaf color in pak choi (Brassica rapa L. ssp. chinensis). PLANTA 2023; 258:19. [PMID: 37314587 DOI: 10.1007/s00425-023-04171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION BraANS.A3 was the key gene controlling purple leaf color in pak choi, and two short fragments of promoter region in green pak choi might be interfering its normal expression. Pak choi (B. rapa L. ssp. chinensis) is an influential and important vegetable with green, yellow, or purple leaves that is cultivated worldwide. The purple leaves are rich in anthocyanins, but the underlying genetics and evolution have yet to be extensively studied. Free-hand sections of the purple leaves indicated that anthocyanins mainly accumulate throughout the adaxial and abaxial epidermal leaf cells. Segregation analyses of an F2 population of a B. rapa ssp. chinensis L. purple leaf mutant ZBC indicated that the purple trait is controlled by an incompletely dominant nuclear gene. Bulked segregant analysis (BSA) showed that the key genes controlling the trait were between 24.25 and 38.10 Mb on chromosome A03 of B. rapa. From the annotated genes, only BraA03g050560.3C, homologous to Arabidopsis AtANS, was related to the anthocyanin synthesis pathway. Genome annotation results and transcriptional sequencing analyses revealed that the BraANS.A3 gene was involved in the purple leaf trait. qRT-PCR analyses showed that BraANS.A3 was highly upregulated in ZBC but hardly expressed in the leaves of an inbred homozygous line of B. campestris ssp. chinensis L. green leaf mutant WTC, indicating that BraANS.A3 played a key role catalyzing anthocyanin synthesis in ZBC. Full-length sequence alignment of BraANS.A3 in WTC and ZBC showed that it was highly conserved in the gene region, with significant variation in the promoter region. In particular, the insertion of two short fragments of the promoter region in WTC may interfere with its normal expression. The promoter regions of ANS in six Brassica species all had multiple cis-elements involved in responses to abscisic acid, light, and stress, suggesting that ANS may be involved in multiple metabolic pathways or biological processes. Protein-protein interactions predicted that BraANS.A3 interacts with virtually all catalytic proteins in the anthocyanin synthesis pathway and has a strong relationship with Transparent Testa 8 (TT8). These results suggest that BraANS.A3 promotes anthocyanin accumulation in purple pak choi and provide new insights into the functional analysis of anthocyanin-related genes in Chinese cabbage and transcriptional regulatory networks.
Collapse
Affiliation(s)
- Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Haidong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Guoqiang Dai
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Yi Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Wenjie Shen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Chenchen Wang
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Duannv Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Sijia Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Shuqi Xu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Bo Zhu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| | - Cheng Cui
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
| |
Collapse
|
17
|
Guan Z, Li X, Yang J, Zhao J, Wang K, Hu J, Zhang B, Liu K. The mechanism of white flower formation in Brassica rapa is distinct from that in other Brassica species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:133. [PMID: 37204504 DOI: 10.1007/s00122-023-04344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE A single nucleotide (G) deletion in the third exon of BraA02.PES2-2 (Bra032957) leads to the conversion of flower color from yellow to white in B. rapa, and knockout mutants of its orthologous genes in B. napus showed white or pale yellow flowers. Brassica rapa (2n = 20, AA) is grown worldwide as an important crop for edible oil and vegetables. The bright yellow flower color and long-lasting flowering period give it aesthetic qualities appealing to countryside tourists. However, the mechanism controlling the accumulation of yellow pigments in B. rapa has not yet been completely revealed. In this study, we characterized the mechanism of white flower formation using a white-flowered natural B. rapa mutant W01. Compared to the petals of yellow-flowered P3246, the petals of W01 have significantly reduced content of yellowish carotenoids. Furthermore, the chromoplasts in white petals of W01 are abnormal with irregularly structured plastoglobules. Genetic analysis indicated that the white flower was controlled by a single recessive gene. By combining BSA-seq with fine mapping, we identified the target gene BraA02.PES2-2 (Bra032957) homologous to AtPES2, which has a single nucleotide (G) deletion in the third exon. Seven homologous PES2 genes including BnaA02.PES2-2 (BnaA02g28340D) and BnaC02.PES2-2 (BnaC02g36410D) were identified in B. napus (2n = 38, AACC), an allotetraploid derived from B. rapa and B. oleracea (2n = 18, CC). Knockout mutants of either one or two of BnaA02.PES2-2 and BnaC02.PES2-2 in the yellow-flowered B. napus cv. Westar by the CRISPR/Cas9 system showed pale-yellow or white flowers. The knock-out mutants of BnaA02.PES2-2 and BnaC02.PES2-2 had fewer esterified carotenoids. These results demonstrated that BraA02.PES2-2 in B. rapa, and BnaA02.PES2-2 and BnaC02.PES2-2 in B. napus play important roles in carotenoids esterification in chromoplasts that contributes to the accumulation of carotenoids in flower petals.
Collapse
Affiliation(s)
- Zhilin Guan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuewei Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Nanchang, 330046, China
| | - Jianshun Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junwei Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaiyue Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianlin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bao Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
18
|
Li S, Li X, Wang X, Chang T, Peng Z, Guan C, Guan M. Flavonoid Synthesis-Related Genes Determine the Color of Flower Petals in Brassica napus L. Int J Mol Sci 2023; 24:ijms24076472. [PMID: 37047446 PMCID: PMC10094890 DOI: 10.3390/ijms24076472] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
The color of rapeseed (Brassica napus L.) petal is usually yellow but can be milky-white to orange or pink. Thus, the petal color is a popular target in rapeseed breeding programs. In his study, metabolites and RNA were extracted from the yellow (Y), yellow/purple (YP), light purple (LP), and purple (P) rapeseed petals. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), RNA-Seq, and quantitative real-time (qRT-PCR) analyses were performed to analyze the expression correlation of differential metabolites and differential genes. A total of 223 metabolites were identified in the petals of the three purple and yellow rapeseed varieties by UPLC-MS/MS. A total of 20511 differentially expressed genes (DEGs) between P, LP, YP, versus Y plant petals were detected. This study focused on the co-regulation of 4898 differential genes in the three comparison groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation and quantitative RT-PCR analysis showed that the expression of BnaA10g23330D (BnF3H) affects the synthesis of downstream peonidin and delphinidin and is a key gene regulating the purple color of petals in B. napus. L. The gene may play a key role in regulating rapeseed flower color; however, further studies are needed to verify this. These results deepen our understanding of the molecular mechanisms underlying petal color and provide the theoretical and practical basis for flower breeding targeting petal color.
Collapse
|
19
|
Chen D, Jin Q, Pan J, Liu Y, Tang Y, E Y, Xu L, Yang T, Qiu J, Chen X, Wang J, Gong D, Ge X, Li Z, Cui C. Fine mapping of genes controlling pigment accumulation in oilseed rape ( Brassica napus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:19. [PMID: 37313299 PMCID: PMC10248657 DOI: 10.1007/s11032-023-01365-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/22/2023] [Indexed: 06/15/2023]
Abstract
Purple/red appearance is one of the common phenotypic variations in leaves, stems, and siliques of oilseed rape (Brassica napus L.) but very rare in flowers. In this study, the causal genes for the purple/red traits in stems and flowers in two accessions of oilseed rape (DH_PR and DH_GC001, respectively) derived from the wide hybridization were fine mapped, and candidate genes were determined by methods combined with bulked segregant analysis (BSA) and RNA-seq analysis. Both traits of purple stem and red flowers were mapped to the locus as AtPAP2 homologous genes (BnaPAP2.C6a and BnaPAP2.A7b, respectively) belonging to the R2R3-MYB family. Sequence comparisons of full-length allelic genes revealed several InDels and SNPs in intron 1 as well as exons, and completely different promoter region of BnaPAP2.C6a and a 211 bp insertion was identified in the promoter region of BnaPAP2.A7b of DH_GC001. Our results not only contribute to a better understanding of anthocyanin inheritance in B. napus, but also provide a useful toolbox for future breeding of cultivars with purple/red traits through the combination of different functional alleles and homologs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01365-5.
Collapse
Affiliation(s)
- Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000 China
| | - Qingdong Jin
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Jianming Pan
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Yi Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000 China
| | - Yijia Tang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Yanrong E
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Linshan Xu
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Taihua Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Jie Qiu
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Xiaodi Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Deping Gong
- Jingzhou Academy of Agricultural Science, Jingzhou, 434007 China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Cheng Cui
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
| |
Collapse
|
20
|
Pan Q, Zeng P, Li Z. Unraveling Large and Polyploidy Genome of the Crucifer Orychophragmus violaceus in China, a Potential Oil Crop. PLANTS (BASEL, SWITZERLAND) 2023; 12:374. [PMID: 36679087 PMCID: PMC9864872 DOI: 10.3390/plants12020374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The genus Orychophragmus in the Brassicaceae family includes the types with 2n = 20, 22, 24, and 48. The species O. violaceus (L.) O. E. Schulz has 2n = 24 and is widely cultivated as an ornamental plant in China. This review summarizes the research progress of its genome structure and evolution in the context of cytogenetics and genome sequencing. This species has a large genome size of ~1 Gb and longer chromosomes than those of Brassica species, which is attributable to the burst of TE insertions. Even more, one tetraploidization event from about 600-800 million years ago is elucidated to occur during its genome evolution, which is consistent with the polyploidy nature of its genome revealed by the meiotic pairing patterns. Its chromosomes are still characterized by a larger size and deeper staining than those from Brassica species in their intergeneric hybrids, which is likely related to their inherent differences between genome structures and cytology. Its genome is dissected by the development of additional alien lines, and some traits are located on individual chromosomes. Due to the abundant dihydroxy fatty acids in its seed oil with superior lubricant properties and wide environmental adaptations, this plant promises to be utilized as one new oil crop in the future.
Collapse
Affiliation(s)
- Qi Pan
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Pan Zeng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zaiyun Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
21
|
Chen YY, Lu HQ, Jiang KX, Wang YR, Wang YP, Jiang JJ. The Flavonoid Biosynthesis and Regulation in Brassica napus: A Review. Int J Mol Sci 2022; 24:ijms24010357. [PMID: 36613800 PMCID: PMC9820570 DOI: 10.3390/ijms24010357] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Brassica napus is an important crop for edible oil, vegetables, biofuel, and animal food. It is also an ornamental crop for its various petal colors. Flavonoids are a group of secondary metabolites with antioxidant activities and medicinal values, and are important to plant pigmentation, disease resistance, and abiotic stress responses. The yellow seed coat, purple leaf and inflorescence, and colorful petals of B. napus have been bred for improved nutritional value, tourism and city ornamentation. The putative loci and genes regulating flavonoid biosynthesis in B. napus have been identified using germplasms with various seed, petal, leaf, and stem colors, or different flavonoid contents under stress conditions. This review introduces the advances of flavonoid profiling, biosynthesis, and regulation during development and stress responses of B. napus, and hopes to help with the breeding of B. napus with better quality, ornamental value, and stress resistances.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Hai-Qin Lu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Kai-Xuan Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yi-Ran Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - You-Ping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jin-Jin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
22
|
Ye S, Hua S, Ma T, Ma X, Chen Y, Wu L, Zhao L, Yi B, Ma C, Tu J, Shen J, Fu T, Wen J. Genetic and multi-omics analyses reveal BnaA07.PAP2In-184-317 as the key gene conferring anthocyanin-based color in Brassica napus flowers. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6630-6645. [PMID: 35857343 DOI: 10.1093/jxb/erac312] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The molecular mechanisms underlying anthocyanin-based flower coloration remain unknown in Brassica napus. To identify the key genes and metabolites associated with apricot and pink flower colors, metabolome, BSA-seq, and RNA-seq analyses were conducted on apricot-, pink-, yellow-, and white-flowered F2B. napus. Yellow carotenoids and red anthocyanins were abundant in apricot petals, while colorless carotenoids and red anthocyanins accumulated in pink petals. Most carotenoid genes were not differentially regulated between apricot and yellow or between pink and white petals. Three regulator genes, BnaMYBL2, BnaA07.PAP2, and BnaTT8, and structural genes in anthocyanin biosynthesis were dramatically enhanced in apricot and pink petals in comparison with yellow and white petals. Map-based cloning revealed that BnaA07.PAP2 is responsible for anthocyanin-based flower color and encodes a nucleus-localized protein predominantly expressed in apricot and pink flowers. Two insertions in the promoter region are responsible for the transcriptional activation of BnaA07.PAP2 in flowers. Introducing the BnaA07.PAP2In-184-317 allele broadly activated the expression of anthocyanin-related genes and promoted anthocyanin accumulation in flowers, yielding color change from yellow to apricot. These findings illustrate the genetic basis of anthocyanin-based flower coloration and provide a valuable genetic resource for breeding varieties with novel flower colors in B. napus.
Collapse
Affiliation(s)
- Shenhua Ye
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Shuijin Hua
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tiantian Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Xiaowei Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Yanping Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Lumei Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
23
|
Hao P, Lin B, Ren Y, Hu H, Xue B, Huang L, Hua S. Auxin-regulated timing of transition from vegetative to reproductive growth in rapeseed ( Brassica napus L.) under different nitrogen application rates. FRONTIERS IN PLANT SCIENCE 2022; 13:927662. [PMID: 36161032 PMCID: PMC9501695 DOI: 10.3389/fpls.2022.927662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Accelerating the differentiation of floral meristem (FM) from shoot apical meristems (SAM) which determines the conversion from vegetative to reproductive growth is of great significance for the production of rapeseed (Brassica napus L.). In this research, the mechanisms of different nitrogen (N) application rates (low N, N1; normal N, N2; and high N, N3) on different FM development stages triggering the regulation of FM differentiation genes through the auxin biosynthetic and signal transduction were investigated. We found that the stage of FM differentiation, which was identified through a stereomicroscope and scanning electron microscope, came 4 and 7 days earlier under high N rate than under normal and low N levels, with the seed yield increased by 11.1 and 22.6%, respectively. Analysis of the auxin and its derivatives contents showed that the main biosynthesis way of auxin was the indole acetaldehyde oxime (IAOx) pathway, with 3-Indole acetonitrile dramatically accumulated during FM differentiation. At the same time, an obvious decrease of IAA contents at each FM differentiation stage was detected, and then gradually rose. Results of the expression of genes involved in auxin biosynthesis, auxin signaling transduction, and FM identification under five FM differentiation stages and three nitrogen application rates showed that genes involved in auxin biosynthesis were regulated before the FM differentiation stage, while the regulation of FM identity genes appeared mainly at the middle and later periods of the five stages, and the regulation level of genes varied under different N rates. Taken together, a high nitrogen rate could accelerate the initiation of FM differentiation, and auxin involved a lot in this regulation.
Collapse
Affiliation(s)
- Pengfei Hao
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Baogang Lin
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yun Ren
- Huzhou Agricultural Science and Technology Development Center, Huzhou, China
| | - Hao Hu
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Bowen Xue
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lan Huang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuijin Hua
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
24
|
Hao P, Liu H, Lin B, Ren Y, Huang L, Jiang L, Hua S. BnaA03.ANS Identified by Metabolomics and RNA-seq Partly Played Irreplaceable Role in Pigmentation of Red Rapeseed ( Brassica napus) Petal. FRONTIERS IN PLANT SCIENCE 2022; 13:940765. [PMID: 35909732 PMCID: PMC9330612 DOI: 10.3389/fpls.2022.940765] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/17/2022] [Indexed: 05/29/2023]
Abstract
Colorful flowers of rapeseed (Brassica napus L.) have been a hotspot for researchers, but the underlying mechanisms of pigment formation still need to be clarified. In this study, two stages of unopened rapeseed petals with red, white, and yellow colors were selected to identify the metabolites and genes involved in red pigment formation. Metabolomic analysis showed that flavonoids enriched the most co-differentially accumulated metabolites among all categories, and showed higher accumulation in red petal rapeseed than in white and yellow petal ones. RNA-seq analysis showed that among co-differentially expressed genes involved in red pigment formation, genes involved in anthocyanin (belonging to flavonoids) biosynthesis pathway were largely regulated by ANS, DFR, and UF3GT. The expression of those genes was higher in red petals of rapeseed than in white and yellow petals ones as well. Results of RNA interference of BnaA03.ANS in red rapeseed altered petal colors from raspberry red to beige red and zinc yellow under different interference levels, with the contents of pelargonidin, cyanidin, lutein, neoxanthin, β-carotene, and lycopene significantly decreased. However, overexpression of BnaA03.ANS in yellow rapeseed petals did not change the color of yellow petals. This study confirmed the important function of flavonoids, especially anthocyanins on red pigment formation, and for the first time, identified the irreplaceable role of BnaA03.ANS on red-flowered rapeseed.
Collapse
Affiliation(s)
- Pengfei Hao
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Han Liu
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Yongding Agriculture and Rural Bureau of Longyan, Longyan, China
| | - Baogang Lin
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yun Ren
- Huzhou Agricultural Science and Technology Development Center/Huzhou Academy of Agricultural Sciences, Huzhou, China
| | - Lan Huang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lixi Jiang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuijin Hua
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
25
|
Chen D, Yang Y, Niu G, Shan X, Zhang X, Jiang H, Liu L, Wen Z, Ge X, Zhao Q, Yao X, Sun D. Metabolic and RNA sequencing analysis of cauliflower curds with different types of pigmentation. AOB PLANTS 2022; 14:plac001. [PMID: 35414860 PMCID: PMC8994856 DOI: 10.1093/aobpla/plac001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Cauliflower (Brassica oleracea var. botrytis) is a popular vegetable worldwide due to its delicious taste, high nutritional value and anti-cancer properties. Cauliflower normally produces white curds, and natural spontaneous mutations lead to the production of orange, purple or green curds. However, some white cauliflowers show uneven purple pigmentation in their curds, which seriously affects the appearance quality and economic value of this crop. The underlying mechanism is still unclear. In this study, we performed comparative transcriptional and metabolic profiling analysis of light orange, white and purplish cauliflower curds. Metabolite analysis revealed that the pigments conferring purple colouration were delphinin and cyanin. Transcriptome analysis showed that the anthocyanin metabolism-related structural genes DFR, ANS and UGT and the transcription factor genes PAP2, TT8, GL3, EGL3 and TTG1 were upregulated in purplish versus white curds. These findings shed light on the formation of purplish curds, which could facilitate the breeding of purely white or red cauliflower.
Collapse
Affiliation(s)
- Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou 341000, China
| | - Yingxia Yang
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Guobao Niu
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Xiaozheng Shan
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Xiaoli Zhang
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Hanmin Jiang
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Lili Liu
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Zhenghua Wen
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiancheng Zhao
- Tianjin Huierjia Seeds Industry Technology Co., Ltd, Tianjin 300392, China
| | - Xingwei Yao
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| | - Deling Sun
- Tianjin Academy of Agricultural Sciences, The State Key Laboratory of Vegetable Germplasm Innovation, The Tianjin Key Laboratory of Vegetable Genetics and Breeding, Tianjin 300384, China
| |
Collapse
|
26
|
Abstract
Rapeseed (Brassica napus) is one of the most important oil crops worldwide. However, an intriguing new use for rapeseed has recently developed: as an ornamental. Tourism based on blossoming fields of these yellow flowers has become a new economic growth opportunity in China. From a breeding perspective, two main problems currently limit the potential of rapeseed as an ornamental. First, the flowering period is quite short (30 days on average), which limits economic income; second, the flower color in commercial cultivars is currently limited to bright yellow, which may pall quickly for sightseers. This review summarizes the possible problems of using rapeseed as an ornamental, and details factors affecting the flowering period, how the flowering period can be prolonged by integrating optimal cultivation measures or/and spraying with chemical reagents, and ways of creating and breeding rapeseed with diverse flower colors.
Collapse
|
27
|
Hu D, Jing J, Snowdon RJ, Mason AS, Shen J, Meng J, Zou J. Exploring the gene pool of Brassica napus by genomics-based approaches. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1693-1712. [PMID: 34031989 PMCID: PMC8428838 DOI: 10.1111/pbi.13636] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 05/08/2023]
Abstract
De novo allopolyploidization in Brassica provides a very successful model for reconstructing polyploid genomes using progenitor species and relatives to broaden crop gene pools and understand genome evolution after polyploidy, interspecific hybridization and exotic introgression. B. napus (AACC), the major cultivated rapeseed species and the third largest oilseed crop in the world, is a young Brassica species with a limited genetic base resulting from its short history of domestication, cultivation, and intensive selection during breeding for target economic traits. However, the gene pool of B. napus has been significantly enriched in recent decades that has been benefit from worldwide effects by the successful introduction of abundant subgenomic variation and novel genomic variation via intraspecific, interspecific and intergeneric crosses. An important question in this respect is how to utilize such variation to breed crops adapted to the changing global climate. Here, we review the genetic diversity, genome structure, and population-level differentiation of the B. napus gene pool in relation to known exotic introgressions from various species of the Brassicaceae, especially those elucidated by recent genome-sequencing projects. We also summarize progress in gene cloning, trait-marker associations, gene editing, molecular marker-assisted selection and genome-wide prediction, and describe the challenges and opportunities of these techniques as molecular platforms to exploit novel genomic variation and their value in the rapeseed gene pool. Future progress will accelerate the creation and manipulation of genetic diversity with genomic-based improvement, as well as provide novel insights into the neo-domestication of polyploid crops with novel genetic diversity from reconstructed genomes.
Collapse
Affiliation(s)
- Dandan Hu
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinjie Jing
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Rod J. Snowdon
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Annaliese S. Mason
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
- Plant Breeding DepartmentINRESThe University of BonnBonnGermany
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinling Meng
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jun Zou
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
28
|
Gao R, Han T, Xun H, Zeng X, Li P, Li Y, Wang Y, Shao Y, Cheng X, Feng X, Zhao J, Wang L, Gao X. MYB transcription factors GmMYBA2 and GmMYBR function in a feedback loop to control pigmentation of seed coat in soybean. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4401-4418. [PMID: 33825878 DOI: 10.1093/jxb/erab152] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Soybean has undergone extensive selection pressures for seed nutrient composition and seed color during domestication, but the major genetic loci controlling seed coat color have not been completely understood, and the transcriptional regulation relationship among the loci remains elusive. Here, two major regulators, GmMYBA2 and GmMYBR, were functionally characterized as an anthocyanin activator and repressor, respectively. Ectopic expression of GmMYBA2 in soybean hairy roots conferred the enhanced accumulation of delphinidin and cyanidin types of anthocyanins in W1t and w1T backgrounds, respectively, through activating anthocyanin biosynthetic genes in the reported loci. The seed coat pigmentation of GmMYBA2-overexpressing transgenic plants in the W1 background mimicked the imperfect black phenotype (W1/w1, i, R, t), suggesting that GmMYBA2 was responsible for the R locus. Molecular and biochemical analysis showed that GmMYBA2 interacted with GmTT8a to directly activate anthocyanin biosynthetic genes. GmMYBA2 and GmMYBR might form a feedback loop to fine-tune seed coat coloration, which was confirmed in transgenic soybeans. Both GmTT8a and GmMYBR that were activated by GmMYBA2 in turn enhanced and obstructed the formation of the GmMYBA2-GmTT8a module, respectively. The results revealed the sophisticated regulatory network underlying the soybean seed coat pigmentation loci and shed light on the understanding of the seed coat coloration and other seed inclusions.
Collapse
Affiliation(s)
- Ruifang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Taotao Han
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Hongwei Xun
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiangsheng Zeng
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Yanan Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Yan Shao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Xin Cheng
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
29
|
Liu Y, Ye S, Yuan G, Ma X, Heng S, Yi B, Ma C, Shen J, Tu J, Fu T, Wen J. Gene silencing of BnaA09.ZEP and BnaC09.ZEP confers orange color in Brassica napus flowers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:932-949. [PMID: 32808386 DOI: 10.1111/tpj.14970] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 05/28/2023]
Abstract
Brassica napus is currently cultivated as an important ornamental crop in China. Flower color has attracted much attention in rapeseed genetics and breeding. Here, we characterize an orange-flowered mutant of B. napus that exhibits an altered carotenoid profile in its petals. As revealed by map-based cloning, the change in color from yellow to orange is attributed to the loss of BnaC09.ZEP (zeaxanthin epoxidase) and a 1695-bp deletion in BnaA09.ZEP. HPLC analysis, genetic complementation and CRISPR/Cas9 experiments demonstrated that BnaA09.ZEP and BnaC09.ZEP have similar functions, and the abolishment of both genes led to a substantial increase in lutein content and a sharp decline in violaxanthin content in petals but not leaves. BnaA09.ZEP and BnaC09.ZEP are predominantly expressed in floral tissues, whereas their homologs, BnaA07.ZEP and BnaC07.ZEP, mainly function in leaves, indicating redundancy and tissue-specific diversification of BnaZEP function. Transcriptome analysis in petals revealed differences in the expression of carotenoid and flavonoid biosynthesis-related genes between the mutant and its complementary lines. Flavonoid profiles in the petals of complementary lines were greatly altered compared to the mutant, indicating potential cross-talk between the regulatory networks underlying the carotenoid and flavonoid pathways. Additionally, our results indicate that there is functional compensation by BnaA07.ZEP and BnaC07.ZEP in the absence of BnaA09.ZEP and BnaC09.ZEP. Cloning and characterization of BnaZEPs provide insights into the molecular mechanisms underlying flower pigmentation in B. napus and would facilitate breeding of B. napus varieties with higher ornamental value.
Collapse
Affiliation(s)
- Yingjun Liu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shenhua Ye
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gaigai Yuan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaowei Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangping Heng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
30
|
Fan L, Wang Y, Xu L, Tang M, Zhang X, Ying J, Li C, Dong J, Liu L. A genome-wide association study uncovers a critical role of the RsPAP2 gene in red-skinned Raphanus sativus L. HORTICULTURE RESEARCH 2020; 7:164. [PMID: 33042558 PMCID: PMC7518265 DOI: 10.1038/s41438-020-00385-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/24/2020] [Accepted: 07/19/2020] [Indexed: 05/03/2023]
Abstract
Radish (Raphanus sativus L.) taproot contains high concentrations of flavonoids, including anthocyanins (ATCs), in red-skinned genotypes. However, little information on the genetic regulation of ATC biosynthesis in radish is available. A genome-wide association study of radish red skin color was conducted using whole-genome sequencing data derived from 179 radish genotypes. The R2R3-MYB transcription factor production of anthocyanin pigment 2 (PAP2) gene was found in the region associated with a leading SNP located on chromosome 2. The amino acid sequence encoded by the RsPAP2 gene was different from those of the other published RsMYB genes responsible for the red skin color of radish. The overexpression of the RsPAP2 gene resulted in ATC accumulation in Arabidopsis and radish, which was accompanied by the upregulation of several ATC-related structural genes. RsPAP2 was found to bind the RsUFGT and RsTT8 promoters, as shown by a dual-luciferase reporter system and a yeast one-hybrid assay. The promoter activities of the RsANS, RsCHI, RsPAL, and RsUFGT genes could be strongly activated by coinfiltration with RsPAP2 and RsTT8. These findings showed the effectiveness of GWAS in identifying candidate genes in radish and demonstrated that RsPAP2 could (either directly or together with its cofactor RsTT8) regulate the transcript levels of ATC-related genes to promote ATC biosynthesis, facilitating the genetic enhancement of ATC contents and other related traits in radish.
Collapse
Affiliation(s)
- Lianxue Fan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Mingjia Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Xiaoli Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Cui Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, PR China
| |
Collapse
|
31
|
Chen D, Liu Y, Yin S, Qiu J, Jin Q, King GJ, Wang J, Ge X, Li Z. Alternatively Spliced BnaPAP2.A7 Isoforms Play Opposing Roles in Anthocyanin Biosynthesis of Brassica napus L. FRONTIERS IN PLANT SCIENCE 2020; 11:983. [PMID: 32973819 PMCID: PMC7466728 DOI: 10.3389/fpls.2020.00983] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Brassica napus L. (rapeseed, oilseed rape, and canola) and varieties of its two diploid parents, B. oleracea and B. rapa, display a large amount of variation in anthocyanin pigmentation of the leaf, stem, and fruit. Here, we demonstrate that BnaPAP2.A7, an ortholog of the B. oleracea anthocyanin activator BoMYB2 that confers purple traits, positively regulates anthocyanin biosynthesis in leaves of B. napus. Sequencing of BnaPAP2.A7 and transgenic analysis suggests that activation of this gene in purple rapeseed may result from a single nucleotide and/or 2bp insertion in its promoter region. BnaPAP2.A7 gives rise to three splice variants, designated BnaPAP2.A7-744, BnaPAP2.A7-910, and BnaPAP2.A7-395 according to the length of the transcripts. While BnaPAP2.A7-744 encodes a full-length R2R3-MYB, both BnaPAP2.A7-910 and BnaPAP2.A7-395 encode truncated proteins that lack both a partial R3 repeat and the complete C terminal domain, and so in vitro are unable to interact with the Arabidopsis bHLH protein AtTT8. Although expression of either BnaPAP2.A7-910 or BnaPAP2.A7-395 in green rapeseed does not result in purple leaves, both genes do modify genome-wide gene expression, with a strong repression of anthocyanin-related genes. We have demonstrated that BnaPAP.A7 regulates anthocyanin accumulation in leaves of B. napus and propose a potential mechanism for modulation of anthocyanin biosynthesis by alternative splicing.
Collapse
Affiliation(s)
- Daozong Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuai Yin
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Qiu
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qingdong Jin
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
32
|
Luo X, Xu L, Wang Y, Dong J, Chen Y, Tang M, Fan L, Zhu Y, Liu L. An ultra-high-density genetic map provides insights into genome synteny, recombination landscape and taproot skin colour in radish (Raphanus sativus L.). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:274-286. [PMID: 31218798 PMCID: PMC6920339 DOI: 10.1111/pbi.13195] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 05/19/2023]
Abstract
High-density genetic map is a valuable tool for exploring novel genomic information, quantitative trait locus (QTL) mapping and gene discovery of economically agronomic traits in plant species. However, high-resolution genetic map applied to tag QTLs associated with important traits and to investigate genomic features underlying recombination landscape in radish (Raphanus sativus) remains largely unexplored. In this study, an ultra-high-density genetic map with 378 738 SNPs covering 1306.8 cM in nine radish linkage groups (LGs) was developed by a whole-genome sequencing-based approach. A total of 18 QTLs for 11 horticulture traits were detected. The map-based cloning data indicated that the R2R3-MYB transcription factor RsMYB90 was a crucial candidate gene determining the taproot skin colour. Comparative genomics analysis among radish, Brassica rapa and B. oleracea genome revealed several genomic rearrangements existed in the radish genome. The highly uneven distribution of recombination was observed across the nine radish chromosomes. Totally, 504 recombination hot regions (RHRs) were enriched near gene promoters and terminators. The recombination rate in RHRs was positively correlated with the density of SNPs and gene, and GC content, respectively. Functional annotation indicated that genes within RHRs were mainly involved in metabolic process and binding. Three QTLs for three traits were found in the RHRs. The results provide novel insights into the radish genome evolution and recombination landscape, and facilitate the development of effective strategies for molecular breeding by targeting and dissecting important traits in radish.
Collapse
Affiliation(s)
- Xiaobo Luo
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Guizhou Institute of BiotechnologyGuizhou Academy of Agricultural SciencesGuiyangChina
| | | | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and EnvironmentThe University of Western AustraliaPerthWAAustralia
| | - Mingjia Tang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Lianxue Fan
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yuelin Zhu
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
33
|
Li Y, Dong C, Hu M, Bai Z, Tong C, Zuo R, Liu Y, Cheng X, Cheng M, Huang J, Liu S. Identification of Flower-Specific Promoters through Comparative Transcriptome Analysis in Brassica napus. Int J Mol Sci 2019; 20:ijms20235949. [PMID: 31779216 PMCID: PMC6928827 DOI: 10.3390/ijms20235949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 01/24/2023] Open
Abstract
Brassica napus (oilseed rape) is an economically important oil crop worldwide. Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is a threat to oilseed rape production. Because the flower petals play pivotal roles in the SSR disease cycle, it is useful to express the resistance-related genes specifically in flowers to hinder further infection with S. sclerotiorum. To screen flower-specific promoters, we first analyzed the transcriptome data from 12 different tissues of the B. napus line ZS11. In total, 249 flower-specific candidate genes with high expression in petals were identified, and the expression patterns of 30 candidate genes were verified by quantitative real-time transcription-PCR (qRT-PCR) analysis. Furthermore, two novel flower-specific promoters (FSP046 and FSP061 promoter) were identified, and the tissue specificity and continuous expression in petals were determined in transgenic Arabidopsis thaliana with fusing the promoters to β-glucuronidase (GUS)-reporter gene. GUS staining, transcript expression pattern, and GUS activity analysis indicated that FSP046 and FSP061 promoter were strictly flower-specific promoters, and FSP046 promoter had a stronger activity. The two promoters were further confirmed to be able to direct GUS expression in B. napus flowers using transient expression system. The transcriptome data and the flower-specific promoters screened in the present study will benefit fundamental research for improving the agronomic traits as well as disease and pest control in a tissue-specific manner.
Collapse
|
34
|
Yin NW, Wang SX, Jia LD, Zhu MC, Yang J, Zhou BJ, Yin JM, Lu K, Wang R, Li JN, Qu CM. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC-HESI-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11053-11065. [PMID: 31525973 DOI: 10.1021/acs.jafc.9b05046] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oilseed rape (Brassica napus L.) is the second highest yielding oil crop worldwide. In addition to being used as an edible oil and a feed for livestock, rapeseed has high ornamental value. In this study, we identified and characterized the main floral major constituents, including phenolic acids and flavonoids components, in rapeseed accessions with different-colored petals. A total of 144 constituents were identified using ultrahigh-performance liquid chromatography-HESI-mass spectrometry (UPLC-HESI-MS/MS), 57 of which were confirmed and quantified using known standards and mainly contained phenolic acids, flavonoids, and glucosinolates compounds. Most of the epicatechin, quercetin, and isorhamnetin derivates were found in red and pink petals of B. napus, while kaempferol derivates were in yellow and pale white petals. Moreover, petal-specific compounds, including a putative hydroxycinnamic acid derivative, sinapoyl malate, 1-O-sinapoyl-β-d-glucose, feruloyl glucose, naringenin-7-O-glucoside, cyanidin-3-glucoside, cyanidin-3,5-di-O-glucoside, petunidin-3-O-β-glucopyranoside, isorhamnetin-3-O-glucoside, kaempferol-3-O-glucoside-7-O-glucoside, quercetin-3,4'-O-di-β-glucopyranoside, quercetin-3-O-glucoside, and delphinidin-3-O-glucoside, might contribute to a variety of petal colors in B. napus. In addition, bound phenolics were tentatively identified and contained three abundant compounds (p-coumaric acid, ferulic acid, and 8-O-4'-diferulic acid). These results provide insight into the molecular mechanisms underlying petal color and suggest strategies for breeding rapeseed with a specific petal color in the future.
Collapse
|