1
|
Yao Q, Duan R, Feng Y, Duan D. Alternative splicing analysis of stress tolerance to Al and flg22 in Vitis quinquangularis. PLANTA 2025; 261:139. [PMID: 40366460 DOI: 10.1007/s00425-025-04713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 05/04/2025] [Indexed: 05/15/2025]
Abstract
MAIN CONCLUSION Alternative splicing of transcriptomes after Al and flg22 treatment for 12 h in response to plant defense of Chinese wild Vitis quinquangularis: genes related to stress resistance and splicing factors were identified in response to Al and flg22 treatment. Alternative splicing (AS) is one of the major post-transcriptional regulation processes that potentially regulates the response to biotic and abiotic stresses in plants. So far, the insight into potential roles of AS in grapevine response to aluminium (Al) and flagellin 22 (flg22) stresses remains poorly understood. We performed transcriptome sequencing of grape leaves before and after Al treatment and flg22 treatment, respectively, to identify AS genes. In this study, a total of 11,805 AS events were identified in Al treatment, of which the skipped exon (SE; 88.72%) type was the most frequent. 9156 AS events were identified under flg22 treatment, of which the SE (88.52%) type was the most frequent. Compared with Al-treated and flg22-treated 0 h, there were 42 and 147 differential alternative splicing (DAS) genes differentially expressed (DASEGs) in Al-treated and flg22-treated 12 h, respectively. Functional analysis showed that DASEGs after Al treatment were mainly enriched in glutathione metabolism pathway; DASEGs after flg22 treatment were enriched in MAPK signaling and plant hormone signal transduction. We further verified seven resistance-related DASEGs with up-regulated expression in Al-treated 12 h, including beta-glucosidase, calcineurin B-like protein, synaptotagmin-3, cysteine synthase and glutathione reductase. Several genes function as leucine-rich repeats receptor-like serine/threonine protein kinase, BRI1 associated receptor kinase 1 and receptor-like protein kinase were also verified by RT-qPCR. We also verified four serine/arginine (SR)-rich proteins SCL30A, SCL28, RS2Z32 and SR45A, which were up-regulated in both Al and flg22 stresses. In conclusion, this study provides an in-depth analysis of the correlation between alternative splicing and grapevine stress tolerance, which helps to identify potential candidate genes for useful traits, provides a theoretical basis for grapevine breeding in plant stress tolerance, and offers new perspectives for understanding grapevine environmental adaptation strategies.
Collapse
Affiliation(s)
- Qian Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ruiwei Duan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yang Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Dong Duan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
2
|
Zhang Q, Yu X, Wu Y, Wang R, Zhang Y, Shi F, Zhao H, Yu P, Wang Y, Chen M, Chang J, Li Y, He G, Yang G. TaPP2C-a5 fine-tunes wheat seed dormancy and germination with a Triticeae-specific, alternatively spliced transcript. J Adv Res 2025:S2090-1232(25)00300-5. [PMID: 40345647 DOI: 10.1016/j.jare.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025] Open
Abstract
INTRODUCTION The sessile plants often experience environmental conditions not ideal for growth, and therefore have evolved strategies to survive and adapt to stress conditions. Abscisic acid (ABA) regulates plant development and abiotic stress response. Clade A type 2C protein phosphatases (PP2Cs), act as co-receptors of ABA, negatively regulate ABA signalling. However, the biological function and detailed molecular mechanism of clade A PP2Cs in ABA signalling pathway remain to be elucidated in wheat. OBJECTIVES To analyze the mechanisms of stress response and development mediated by ABA signal precisely regulated by TaPP2C-a5 at the post-transcriptional level in wheat, providing candidate genes for wheat improvement. METHODS Based on our previous results of TaPP2Cs gene family analysis, the function and detailed regulation mechanisms of TaPP2C-a5 gene in seed dormancy and germination as well as drought response mediated by ABA signaling pathway were explored through reverse genetics technology. RESULTS We found that class A TaPP2C-a5 underwent alternative splicing (AS) to produce two transcripts encoding TaPP2C-a5.1 and TaPP2C-a5.2, respectively. Both TaPP2C-a5.1 and TaPP2C-a5.2 were highly expressed in mature seeds, and were upregulated by exogenous ABA in seedlings. Overexpression of TaPP2C-a5.1 and TaPP2C-a5.2 coordinately negatively regulated seed dormancy and ABA-mediated seed germination as well as post-germination developmental arrest in wheat. TaPP2C-a5.1 negatively regulated drought stress response, while TaPP2C-a5.2 did not participate in drought stress response. The homologous genes of TaPP2C-a5 underwent the same AS as TaPP2C-a5 in tetraploid wheat, but not in rice. CONCLUSION Our results revealed that TaPP2C-a5 gene underwent AS and was involved in the regulation of seed dormancy and germination, as well as drought stress response mediated by the ABA signaling at the post-transcriptional level. Our work not only provide a potential target gene to improve PHS resistance, but also emphasize alternative splicing as a strategy with evolution contexts to fine-tune ABA signaling and its involvement in certain biological process.
Collapse
Affiliation(s)
- Qian Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaofen Yu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ya'nan Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruibin Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yufan Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fu Shi
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Puju Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
3
|
Wang T, Meng K, Zhu Z, Pan L, Okita TW, Zhang L, Tian L. The Regulatory Roles of RNA-Binding Proteins in Plant Salt Stress Response. PLANTS (BASEL, SWITZERLAND) 2025; 14:1402. [PMID: 40364430 PMCID: PMC12074014 DOI: 10.3390/plants14091402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Salt stress is one of the most prominent abiotic stresses. Behind the intricate adaptive responses of plants to salt stress, the regulation of gene expression assumes a pivotal role. Complementing transcriptional mechanisms, post-transcriptional regulation performed by RNA-binding proteins provides an additional layer of control through sophisticated molecular machinery. RBPs interact with both RNA molecules and protein partners to coordinate RNA metabolism and, thus, fine-tune the expression of salt-responsive genes, enabling plants to rapidly adapt to ionic challenges. This review systematically evaluates the functional roles of RBPs localized in distinct subcellular compartments, including nuclear, cytoplasmic, chloroplastic, and mitochondrial systems, in mediating post-transcriptional regulatory networks under salinity challenges. Specific classes of RBPs are discussed in detail, including glycine-rich RNA-binding proteins (GR-RBPs), serine/arginine-rich splicing factors (SR proteins), zinc finger domain-containing proteins, DEAD-box RNA helicases (DBRHs), KH domain-containing proteins, Pumilio domain-containing proteins (PUMs), pentatricopeptide repeat proteins (PPRs), and RBPs involved in cytoplasmic RNA granule formation. By integrating their subcellular localization and current mechanistic insights, this review concludes by summarizing the current knowledge and highlighting potential future research directions, aiming to inspire further investigations into the complex network of RBPs in modulating plant responses to salt stress and facilitating the development of strategies to enhance plant salt tolerance.
Collapse
Affiliation(s)
- Tangying Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Kaiyuan Meng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Zilin Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Linxuan Pan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA;
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
4
|
Cheng J, Wu T, Zhou Y, Al-Saud NBS, Cheng B, Admas T, Zhang W, Pan R. The alternative splicing of HvLHCA4.2 enhances drought tolerance in barley by regulating ROS scavenging and stomatal closure. Int J Biol Macromol 2025; 307:142384. [PMID: 40120886 DOI: 10.1016/j.ijbiomac.2025.142384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Alternative splicing (AS) provides flexible strategies for plants to cope with abiotic stress, but how AS regulates drought response in barley (Hordeum vulgare) remains poorly understood. This study investigates the genome-wide AS patterns in drought-sensitive (Baudin) and tolerant barley genotypes (Tadmor, EC_S1) during drought and recovery stages. Baudin showed maximal AS events during drought, while tolerant genotypes activated AS predominantly during recovery. Drought-tolerant EC_S1 exhibited differential AS events enriched in metabolic pathways, amino acid biosynthesis, and chromatin remodeling. WGCNA analysis identified eight modules linked to stomatal dynamics, biomass, and ROS scavenging, with the 'MEmidnightblue' module (related to stoma and ROS regulation) being drought-responsive. A drought-inducible splice variant, LHCA4.2b, was exclusively identified in tolerant genotypes. Silencing HvLHCA4.2a (lhca4.2a) and dual-silencing HvLHCA4.2a + b (lhca4.2a + b) drastically impaired drought tolerance, manifesting as wilting, accelerated water loss, reduced biomass, and elevated electrolyte leakage, coupled with chlorophyll degradation, ROS overaccumulation, and malondialdehyde overproduction. Enhanced stress sensitivity in lhca4.2a + b versus lhca4.2a underscores HvLHCA4.2b's critical role. Additionally, lhca4.2a + b displayed ABA-insensitive stomata with unaltered stomatal conductance under drought or exogenous ABA, implicating LHCA4.2b in ABA signaling. Mechanistically, AS-generated LHCA4.2b isoform enhances PSI-LHCI super-complex stability through strengthened interaction interfaces with LHCA1, thereby improving energy transfer efficiency and reducing ROS generation. This isoform simultaneously coordinates ABA signaling by elevating ABF1/ABF3 transcription factors while suppressing ABI3/ABI4/ABI5 repressors, collectively modulating stomatal closure and ROS homeostasis. Our findings elucidate AS-mediated drought adaptation mechanisms in barley and highlight HvLHCA4.2b as a potential target for breeding drought-tolerant cultivars.
Collapse
Affiliation(s)
- Jingqiu Cheng
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou 434025, China
| | - Tiantian Wu
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou 434025, China
| | - Yi Zhou
- Jingmen Agricultural Technology Extension Center, Jingmen 448000, China
| | - Najla B S Al-Saud
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Najla Bint Saud Al Saud Center for Distinguished Research in Biotechnology, Jeddah 21577, Saudi Arabia
| | - Bingyun Cheng
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou 434025, China
| | - Tayachew Admas
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou 434025, China
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou 434025, China
| | - Rui Pan
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
5
|
Sun P, Hao R, Fan F, Wang Y, Zhu F. Adaptation of High-Altitude Plants to Plateau Abiotic Stresses: A Case Study of the Qinghai-Tibet Plateau. Int J Mol Sci 2025; 26:2292. [PMID: 40076909 PMCID: PMC11900590 DOI: 10.3390/ijms26052292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
High-altitude regions offer outstanding opportunities for investigating the impacts of combined abiotic stresses on plant physiological processes given their significant differences in terms of the ecological environment in high-elevation areas, low anthropogenic disturbance, and obvious distribution characteristics of plants along altitudinal gradients. Therefore, plants in high-altitude areas can be used as good targets for exploring plant adaptations to abiotic stress under extreme conditions. Plants that thrive in high-altitude environments such as the Qinghai-Tibet Plateau endure extreme abiotic stresses, including low temperatures, high UV radiation, and nutrient-poor soils. This study explores their adaptation mechanisms via phenotypic variation analyses and multiomics approaches. Key findings highlight traits such as increased photosynthetic efficiency, robust antioxidant systems, and morphological modifications tailored to high-altitude conditions. These insights advance our understanding of plant evolution in harsh environments and inform strategies to increase stress resistance in crops.
Collapse
Affiliation(s)
| | | | | | | | - Fuyuan Zhu
- Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (P.S.); (R.H.); (F.F.); (Y.W.)
| |
Collapse
|
6
|
Xiao B, Hu Y, Liu Y, Jia S, Zhang T, Yin S, Xiao C, Jiang J, Wang L, Yang C. Physiological and transcriptional analysis provides insights into responses of a spring wheat variety to combination of salt and heat stresses. PHYSIOLOGIA PLANTARUM 2025; 177:e70154. [PMID: 40104955 DOI: 10.1111/ppl.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 03/20/2025]
Abstract
Enhancing the frequency and intensity of extreme high temperature conditions due to global warming largely deteriorates salt-induced harm to the crop plants living in saline lands, which leads to losses of agricultural production. In northern China, spring wheat is grown in many slightly saline areas and often subjected to a combination of salt and heat stresses. In this study, a spring wheat cultivar was selected as the experimental material and subjected to salt stress (S), heat stress (H) and their combination (S + H). Physiological analysis showed that the inhibitory effect of S + H stress on wheat growth was much stronger than that of individual salt stress due to aggravating Na+ toxicity caused by heat stress. We observed that many genes involved in plant hormones showed much higher expression under S + H stress than under salt stress and heat stress, including key ABA synthesis genes (NCEDs), core ABA signalling transduction genes, key ethylene synthesis genes, and core ethylene signalling transduction genes. Particularly, many ABA-responsive genes (HSFs, HSPs, DHNs and LEAs) were upregulated under S + H stress but not under salt stress and heat stress. DHNs and LEAs were identified to play an important role in preventing cytoplasmic dehydration, protein aggregation, and slowing Na+ migration, and ethylene was identified to contribute to Na+ detoxification. We propose that in response to S + H stress, wheat plants regulate the expression of DHNs, LEAs, HSPs and HSFs via the ABA pathway to prevent cell dehydration and protein aggregation and keep ion homeostasis via the ethylene pathway.
Collapse
Affiliation(s)
- Binbin Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Yue Hu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Yaping Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Siyuan Jia
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Tiantian Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Siyuan Yin
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Chaoxia Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Jie Jiang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Lu Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
7
|
Yu S, Wan J, Xu T, Zhang J, Cao L, Liu J, Liu H, Ren X, Yang Z. A gene expression atlas of Nicotiana tabacum across various tissues at transcript resolution. FRONTIERS IN PLANT SCIENCE 2025; 16:1500654. [PMID: 39980486 PMCID: PMC11841470 DOI: 10.3389/fpls.2025.1500654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
Alternative splicing (AS) expands the transcriptome diversity by selectively splicing exons and introns from pre-mRNAs to generate different protein isoforms. This mechanism is widespread in eukaryotes and plays a crucial role in development, environmental adaptation, and stress resistance. In this study, we collected 599 tobacco RNA-seq datasets from 35 projects. 207,689 transcripts were identified in this study, of which 35,519 were annotated in the reference genome, while 172,170 transcripts were newly annotated. Additionally, tissue-specific analysis revealed 4,585 transcripts that were uniquely expressed in different tissues, highlighting the complexity and specialization of tobacco gene expression. The analysis of AS events (ASEs) across different tissues showed significant variability in the expression levels of ASE-derived transcripts, with some of these transcripts being associated with stress resistance, such as the geranyl diphosphate synthase (GGPPS). Moreover, we identified 21,763 splicing quantitative trait locus (sQTLs), which were enriched in genes involved in biological processes such as histone acetylation. Furthermore, sQTLs involved genes related to plant hormone signal transduction, terpenoid backbone biosynthesis, and other resistance pathways. These findings not only reveal the diversity of gene expression in tobacco but also provide new insights and strategies for improving tobacco quality and resistance.
Collapse
Affiliation(s)
- Shizhou Yu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Jufen Wan
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Tenghang Xu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jie Zhang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Linggai Cao
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Jie Liu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Hongfeng Liu
- Guiyang Branch Company of Guizhou Tobacco Company, Guiyang, China
| | - Xueliang Ren
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Zhixiao Yang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| |
Collapse
|
8
|
Zhu Y, Niu S, Lin J, Yang H, Zhou X, Wang S, Liu X, Yang Q, Zhang C, Zhuang Y, Cai T, Zhuang W, Chen H. Genome-Wide Identification and Expression Analysis of TCP Transcription Factors Responding to Multiple Stresses in Arachis hypogaea L. Int J Mol Sci 2025; 26:1069. [PMID: 39940846 PMCID: PMC11816611 DOI: 10.3390/ijms26031069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The TEOSINTE-BRANCHED1/CYCLOIDEA/PROLIFERATING-CELL-FACTOR (TCP) gene family, a plant-specific transcription factor family, plays pivotal roles in various processes such as plant growth and development regulation, hormone crosstalk, and stress responses. However, a comprehensive genome-wide identification and characterization of the TCP gene family in peanut has yet to be fully elucidated. In this study, we conducted a genome-wide search and identified 51 TCP genes (designated as AhTCPs) in peanut, unevenly distributed across 17 chromosomes. These AhTCPs were phylogenetically classified into three subclasses: PCF, CIN, and CYC/TB1. Gene structure analysis of the AhTCPs revealed that most AhTCPs within the same subclade exhibited conserved motifs and domains, as well as similar gene structures. Cis-acting element analysis demonstrated that the AhTCP genes harbored numerous cis-acting elements associated with stress response, plant growth and development, plant hormone response, and light response. Intraspecific collinearity analysis unveiled significant collinear relationships among 32 pairs of these genes. Further collinear evolutionary analysis found that peanuts share 30 pairs, 24 pairs, 33 pairs, and 100 pairs of homologous genes with A. duranensis, A. ipaensis, Arabidopsis thaliana, and Glycine max, respectively. Moreover, we conducted a thorough analysis of the transcriptome expression profiles in peanuts across various tissues, under different hormone treatment conditions, in response to low- and high-calcium treatments, and under low-temperature and drought stress scenarios. The qRT-PCR results were in accordance with the transcriptome expression data. Collectively, these studies have established a solid theoretical foundation for further exploring the biological functions of the TCP gene family in peanuts, providing valuable insights into the regulatory mechanisms of plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Yanting Zhu
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Sijie Niu
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Jingyi Lin
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Hua Yang
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Xun Zhou
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Siwei Wang
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Xiaoyan Liu
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Qiang Yang
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Chong Zhang
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Yuhui Zhuang
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Tiecheng Cai
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Weijian Zhuang
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| | - Hua Chen
- Research Center of Leguminous Oil Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (S.N.); (J.L.); (H.Y.); (X.Z.); (S.W.); (X.L.); (Q.Y.); (C.Z.); (Y.Z.); (T.C.); (W.Z.)
- Key Laboratory of Fujian-Taiwan Crop Biological Breeding and Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Genetics and Comprehensive Utilization, Ministry of Education, Fuzhou 350002, China
| |
Collapse
|
9
|
Priya M, Farooq M, Siddique KHM. Enhancing Tolerance to Combined Heat and Drought Stress in Cool-Season Grain Legumes: Mechanisms, Genetic Insights, and Future Directions. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39829217 DOI: 10.1111/pce.15382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
The increasing frequency of concurrent heat and drought stress poses a significant challenge to agricultural productivity, particularly for cool-season grain legumes, including broad bean (Vicia Faba L.), lupin (Lupinus spp.), lentil (Lens culinaris Medik), chickpea (Cicer arietinum L.), grasspea (Lathyrus sativus L.), pea (Pisum sativum L.), and common vetch (Vicia sativa L.). These legumes play a vital role in sustainable agricultural systems due to their nitrogen-fixing ability and high nutritional value. This review synthesizes current knowledge of the impacts and tolerance mechanisms associated with combined heat and drought stresses in these crops. We evaluate physiological and biochemical responses to combined heat and drought stress, focusing on their detrimental effects on growth, development, and yield. Key genetic and molecular mechanisms, such as the roles of osmolytes, antioxidants, and stress-responsive genes, are explored. We also discuss the intricate interplay between heat and drought stress signaling pathways, including the involvement of Ca2+ ions, reactive oxygen species, transcription factor DREB2A, and the endoplasmic reticulum in mediating stress responses. This comprehensive analysis offers new insights into developing resilient legume varieties to enhance agricultural sustainability under climate change. Future research should prioritize integrating omics technologies to unravel plant responses to combined abiotic stresses.
Collapse
Affiliation(s)
- Manu Priya
- Cranberry Research Station, University of Massachusetts, East Wareham, Massachusetts, USA
| | - Muhammad Farooq
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman
| | - Kadambot H M Siddique
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman
| |
Collapse
|
10
|
Xianguan Z, Yun L, Wei L, Linying C, Haoran C, Xiaoyu H, Heng W, Ying W, Xiaobo W, Jiajia L. Soybean gene GmMLP34 regulates Arabidopsis negative response to high temperature stress. Gene 2025; 933:148983. [PMID: 39368788 DOI: 10.1016/j.gene.2024.148983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
The functions of major latex proteins (MLPs) in plant defense and stress responses have been widely documented; however, their roles in HT stress response in soybeans have not been elucidated. This study investigated the role of GmMLP34, a member of the major latex protein (MLP) family, in the response of soybeans to HT stress. Transcriptome analysis of HT-resistant (JD21) and HT-sensitive (HD14) soybean leaves under HT stress (43.40 ± 1.70 °C) and field conditions revealed differential expression of GmMLP34. Further examination across different HT-resistant varieties showed that GmMLP34 was down-regulated in the leaves of 6 HT-resistant varieties (85.7 %) and up-regulated in the leaves of 6 HT-sensitive varieties (85.7 %) under the HT treatment (45 °C for 3 h). The results of this study indicate that ectopic expression of the GmMLP34 gene in Arabidopsis led to a significant decrease in the survival rate of seedling when compared to the wild type (WT) under HT stress conditions of 37/28 °C (day/night) for 5 d, Moreover, the results indicated a significant decrease in primary root length and lateral root number under 45 °C/3 h HT stress followed by 12 h room temperature recovery. Additionally, the levels of abscisic acid (ABA), and flavonoids, and the activity of the peroxidase (POD) enzyme in the antioxidant system was decreased, while the activity of the superoxide dismutase (SOD) enzyme increased in GmMLP34-overexpressing transgenic Arabidopsis thaliana. The expression levels of the HT-response genes AtCHS1 and AtCHI2-A, were significantly down-regulated, whereas that of AtGBP1 was significantly up-regulated. These results suggest that GmMLP34 negatively regulates the response of Arabidopsis thaliana to HT stress by modulating flavonoid synthesis, hormone synthesis, and the antioxidant enzyme system. These findings provide theoretical information for the genetic improvement of HT tolerance in soybean and contribute to the understanding of the molecular mechanisms underlying plant responses to abiotic stress.
Collapse
Affiliation(s)
- Zhi Xianguan
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Lu Yun
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Liao Wei
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Chen Linying
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Chen Haoran
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Hu Xiaoyu
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Wang Heng
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Wei Ying
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Wang Xiaobo
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Li Jiajia
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
11
|
Zhang H, Chen W, Zhu D, Zhang B, Xu Q, Shi C, He H, Dai X, Li Y, He W, Lv Y, Yang L, Cao X, Cui Y, Leng Y, Wei H, Liu X, Zhang B, Wang X, Guo M, Zhang Z, Li X, Liu C, Yuan Q, Wang T, Yu X, Qian H, Zhang Q, Chen D, Hu G, Qian Q, Shang L. Population-level exploration of alternative splicing and its unique role in controlling agronomic traits of rice. THE PLANT CELL 2024; 36:4372-4387. [PMID: 38916914 PMCID: PMC11449091 DOI: 10.1093/plcell/koae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
Alternative splicing (AS) plays crucial roles in regulating various biological processes in plants. However, the genetic mechanisms underlying AS and its role in controlling important agronomic traits in rice (Oryza sativa) remain poorly understood. In this study, we explored AS in rice leaves and panicles using the rice minicore collection. Our analysis revealed a high level of transcript isoform diversity, with approximately one-fifth of the potential isoforms acting as major transcripts in both tissues. Regarding the genetic mechanism of AS, we found that the splicing of 833 genes in the leaf and 1,230 genes in the panicle was affected by cis-genetic variation. Twenty-one percent of these AS events could only be explained by large structural variations. Approximately 77.5% of genes with significant splicing quantitative trait loci (sGenes) exhibited tissue-specific regulation, and AS can cause 26.9% (leaf) and 23.6% (panicle) of sGenes to have altered, lost, or gained functional domains. Additionally, through splicing-phenotype association analysis, we identified phosphate-starvation-induced RING-type E3 ligase (OsPIE1; LOC_Os01g72480), whose splicing ratio was significantly associated with plant height. In summary, this study provides an understanding of AS in rice and its contribution to the regulation of important agronomic traits.
Collapse
Affiliation(s)
- Hong Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya, Hainan 572024, China
| | - Wu Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - De Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Bintao Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Qiang Xu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Chuanlin Shi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Huiying He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xiaofan Dai
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Yilin Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Yang Lv
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Longbo Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xinglan Cao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Yan Cui
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Yue Leng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Hua Wei
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xiangpei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Bin Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xianmeng Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Mingliang Guo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Zhipeng Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xiaoxia Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Congcong Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Qiaoling Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Tianyi Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xiaoman Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Hongge Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Qianqian Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Dandan Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Guanjing Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya, Hainan 572024, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya, Hainan 572024, China
- Nanfan Research Institute, Chinese Academy of Agriculture Science, Sanya, Hainan 572024, China
| |
Collapse
|
12
|
Devi S, Singh V, Yashveer S, Poonia AK, Paras, Chawla R, Kumar D, Akbarzai DK. Phenotypic, Physiological and Biochemical Delineation of Wheat Genotypes Under Different Stress Conditions. Biochem Genet 2024; 62:3305-3335. [PMID: 38100038 DOI: 10.1007/s10528-023-10579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/28/2023] [Indexed: 09/28/2024]
Abstract
Wheat is a vital crop, providing calories, nutrients and versatility in the food industry. However, the combination of heat and drought stress, exacerbated by climate change, poses a significant threat to wheat production, leading to potential yield losses. To ensure the sustainability of wheat production it is crucial to prioritize research on developing stress-tolerant wheat genotypes. The current study focused on identifying the traits that are important for developing stress-tolerant wheat varieties under timely sown irrigated, drought stress, heat stress, and combined stress conditions. It addresses the knowledge gap regarding the combined effects of heat and drought stress on wheat physiology and yield, aiming to shed light on the intricate interactions between these stresses. The experiment was conducted at CCS HAU, Hisar, during the Rabi seasons of 2019-2020 and 2020-2021. By evaluating variability parameters, conducting correlation analysis, and path coefficient analysis among 80 diverse wheat genotypes, this research identifies genetic factors contributing to stress tolerance and helps select plants with desirable characteristics. The results showed that traits i.e., malendialdehyde, wax covering on blade, wax covering on sheath and wax covering on spike had high potential for improvement through selection among genotypes for grain yield and its component traits. The study also highlighted the importance of selecting wheat varieties with early maturity to mitigate the risk of yield loss under combined stress conditions. Moreover, the interaction between drought and heat stress can increase oxidative stress, leading to elevated malondialdehyde levels. Selecting varieties with lower malondialdehyde and optimal canopy temperature is important. Understanding the complex response of wheat to heat, drought, and their combined stress is essential for improving crop quality and production potential. Overall, this research contributes to the field of plant breeding by facilitating the development of wheat varieties with high and stable yields in challenging environments.
Collapse
Affiliation(s)
- Suman Devi
- Genetics and Plant Breeding Department, CCS HAU, Hisar, Haryana, India.
| | - Vikram Singh
- Genetics and Plant Breeding Department, CCS HAU, Hisar, Haryana, India
| | - Shikha Yashveer
- Department of Molecular Biology and Biotechnology, CCS HAU, Hisar, Haryana, India
| | - Anil Kumar Poonia
- Department of Molecular Biology and Biotechnology, CCS HAU, Hisar, Haryana, India
| | - Paras
- Genetics and Plant Breeding Department, CCS HAU, Hisar, Haryana, India
| | - Rukoo Chawla
- Genetics and Plant Breeding Department, CCS HAU, Hisar, Haryana, India
| | - Deepak Kumar
- Genetics and Plant Breeding Department, CCS HAU, Hisar, Haryana, India
| | | |
Collapse
|
13
|
Zheng D, Lin K, Yang X, Zhang W, Cheng X. Functional Characterization of Accessible Chromatin in Common Wheat. Int J Mol Sci 2024; 25:9384. [PMID: 39273331 PMCID: PMC11395023 DOI: 10.3390/ijms25179384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Eukaryotic gene transcription is fine-tuned by precise spatiotemporal interactions between cis-regulatory elements (CREs) and trans-acting factors. However, how CREs individually or coordinated with epigenetic marks function in regulating homoeolog bias expression is still largely unknown in wheat. In this study, through comprehensively characterizing open chromatin coupled with DNA methylation in the seedling and spikelet of common wheat, we observed that differential chromatin openness occurred between the seedling and spikelet, which plays important roles in tissue development through regulating the expression of related genes or through the transcription factor (TF)-centered regulatory network. Moreover, we found that CHH methylation may act as a key determinant affecting the differential binding of TFs, thereby resulting in differential expression of target genes. In addition, we found that sequence variations in MNase hypersensitive sites (MHSs) result in the differential expression of key genes responsible for important agronomic traits. Thus, our study provides new insights into the roles of CREs in regulating tissue or homoeolog bias expression, and controlling important agronomic traits in common wheat. It also provides potential CREs for genetic and epigenetic manipulation toward improving desirable traits for wheat molecule breeding.
Collapse
Affiliation(s)
- Dongyang Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
| | - Kande Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
| | - Xueming Yang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
| | - Xuejiao Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
| |
Collapse
|
14
|
Okubara PA, Sharpe RM, Peetz AB, Li X, Zasada IA. Differential induction of defense genes in hexaploid wheat roots by the plant-parasitic nematodes Pratylenchus neglectus and P. thornei. PLoS One 2024; 19:e0306533. [PMID: 39208324 PMCID: PMC11361681 DOI: 10.1371/journal.pone.0306533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/19/2024] [Indexed: 09/04/2024] Open
Abstract
Pratylenchus neglectus and P. thornei are among the most destructive root lesion nematodes of wheat in the Pacific Northwest, United States of America and throughout the world. The aim of this study was to determine whether both nematode species were similar in their ability to induce defense genes in roots of wheat genotype Scarlet, and whether a combination of both species induced a different pattern of gene induction than each species alone. The long-term aspect of the research was to identify nematode-inducible promoters for deploying defense genes in roots in breeding programs. The root transcriptomes of genotype Scarlet were obtained after a one-week infection period with each nematode species separately, or both species combined. Root defense gene expression was induced for all three treatments relative to the no-nematode control, but P. thornei affected expression to a greater extent compared to P. neglectus. The species combination induced the highest number of defense genes. This result was not predicted from nematode enumeration studies, in which P. thornei colonization was substantially lower than that of P. neglectus, and the nematode combination did not show a significant difference. Quantitative real time polymerase chain reaction (qRT-PCR) assays for Dehydrin2, Glucan endo-1,3-beta-glucosidase, 1-cys-Peroxiredoxin, Pathogenesis-related protein 1 and Late embryogenesis-abundant proteins 76 and group 3 authenticated the induction observed in the transcriptome data. In addition, a near-isogenic line of Scarlet harboring genetic resistance to fungal soilborne pathogens, called Scarlet-Rz1, showed similar or higher levels of defense gene expression compared to fungus-susceptible Scarlet in qRT-PCR assays. Finally, transcriptome expression patterns revealed nematode-inducible promoters that are responsive to both P. neglectus and P. thornei.
Collapse
Affiliation(s)
- Patricia A. Okubara
- Wheat Health, Genetics and Quality Research Unit, USDA-ARS, Pullman, Washington, United States of America
| | - Richard M. Sharpe
- Department of Horticulture, Washington State University, Pullman, Washington, United States of America
| | - Amy B. Peetz
- Horticultural Crops Disease and Pest Management Research Unit, USDA-ARS, Corvallis, Oregon, United States of America
| | - Xianran Li
- Wheat Health, Genetics and Quality Research Unit, USDA-ARS, Pullman, Washington, United States of America
| | - Inga A. Zasada
- Horticultural Crops Disease and Pest Management Research Unit, USDA-ARS, Corvallis, Oregon, United States of America
| |
Collapse
|
15
|
Yao H, Li G, Gao Z, Guo F, Feng J, Xiao G, Shen H, Li H. Alternative splicing responses to salt stress in Glycyrrhiza uralensis revealed by global profiling of transcriptome RNA-seq datasets. Front Genet 2024; 15:1397502. [PMID: 39045328 PMCID: PMC11263197 DOI: 10.3389/fgene.2024.1397502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Excessive reactive oxygen species stress due to salinity poses a significant threat to the growth of Glycyrrhiza uralensis Fisch. To adapt to salt stress, G. uralensis engages in alternative splicing (AS) to generate a variety of proteins that help it withstand the effects of salt stress. While several studies have investigated the impact of alternative splicing on plants stress responses, the mechanisms by which AS interacts with transcriptional regulation to modulate the salt stress response in G. uralensis remain poorly understood. In this study, we utilized high-throughput RNA sequencing data to perform a comprehensive analysis of AS events at various time points in G. uralensis under salt stress, with exon skipping (SE) being the predominant AS type. KEGG enrichment analysis was performed on the different splicing genes (DSG), and pathways associated with AS were significantly enriched, including RNA transport, mRNA surveillance, and spliceosome. This indicated splicing regulation of genes, resulting in AS events under salt stress conditions. Moreover, plant response to salt stress pathways were also enriched, such as mitogen-activated protein kinase signaling pathway - plant, flavonoid biosynthesis, and oxidative phosphorylation. We focused on four differentially significant genes in the MAPK pathway by AS and qRT-PCR analysis. The alternative splicing type of MPK4 and SnRK2 was skipped exon (SE). ETR2 and RbohD were retained intron (RI) and alternative 5'splice site (A5SS), respectively. The expression levels of isoform1 of these four genes displayed different but significant increases in different tissue sites and salt stress treatment times. These findings suggest that MPK4, SnRK2, ETR2, and RbohD in G. uralensis activate the expression of isoform1, leading to the production of more isoform1 protein and thereby enhancing resistance to salt stress. These findings suggest that salt-responsive AS directly and indirectly governs G. uralensis salt response. Further investigations into AS function and mechanism during abiotic stresses may offer novel references for bolstering plant stress tolerance.
Collapse
Affiliation(s)
- Hua Yao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Guozhi Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Zhuanzhuan Gao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Fei Guo
- Zhuhai College of Science and Technology, Zhuhai, China
| | - Jianghua Feng
- Business School of Xinjiang Normal University, Urumqi, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
16
|
Gan J, Qiu Y, Tao Y, Zhang L, Okita TW, Yan Y, Tian L. RNA-seq analysis reveals transcriptome reprogramming and alternative splicing during early response to salt stress in tomato root. FRONTIERS IN PLANT SCIENCE 2024; 15:1394223. [PMID: 38966147 PMCID: PMC11222332 DOI: 10.3389/fpls.2024.1394223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Salt stress is one of the dominant abiotic stress conditions that cause severe damage to plant growth and, in turn, limiting crop productivity. It is therefore crucial to understand the molecular mechanism underlying plant root responses to high salinity as such knowledge will aid in efforts to develop salt-tolerant crops. Alternative splicing (AS) of precursor RNA is one of the important RNA processing steps that regulate gene expression and proteome diversity, and, consequently, many physiological and biochemical processes in plants, including responses to abiotic stresses like salt stress. In the current study, we utilized high-throughput RNA-sequencing to analyze the changes in the transcriptome and characterize AS landscape during the early response of tomato root to salt stress. Under salt stress conditions, 10,588 genes were found to be differentially expressed, including those involved in hormone signaling transduction, amino acid metabolism, and cell cycle regulation. More than 700 transcription factors (TFs), including members of the MYB, bHLH, and WRKY families, potentially regulated tomato root response to salt stress. AS events were found to be greatly enhanced under salt stress, where exon skipping was the most prevalent event. There were 3709 genes identified as differentially alternatively spliced (DAS), the most prominent of which were serine/threonine protein kinase, pentatricopeptide repeat (PPR)-containing protein, E3 ubiquitin-protein ligase. More than 100 DEGs were implicated in splicing and spliceosome assembly, which may regulate salt-responsive AS events in tomato roots. This study uncovers the stimulation of AS during tomato root response to salt stress and provides a valuable resource of salt-responsive genes for future studies to improve tomato salt tolerance.
Collapse
Affiliation(s)
- Jianghuang Gan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yongqi Qiu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yilin Tao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Yanyan Yan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Fu C, Zhou Y, Liu A, Chen R, Yin L, Li C, Mao H. Genome-wide association study for seedling heat tolerance under two temperature conditions in bread wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2024; 24:430. [PMID: 38773371 PMCID: PMC11107014 DOI: 10.1186/s12870-024-05116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND As the greenhouse effect intensifies, global temperatures are steadily increasing, posing a challenge to bread wheat (Triticum aestivum L.) production. It is imperative to comprehend the mechanism of high temperature tolerance in wheat and implement breeding programs to identify and develop heat-tolerant wheat germplasm and cultivars. RESULTS To identify quantitative trait loci (QTL) related to heat stress tolerance (HST) at seedling stage in wheat, a panel of 253 wheat accessions which were re-sequenced used to conduct genome-wide association studies (GWAS) using the factored spectrally transformed linear mixed models (FaST-LMM). For most accessions, the growth of seedlings was found to be inhibited under heat stress. Analysis of the phenotypic data revealed that under heat stress conditions, the main root length, total root length, and shoot length of seedlings decreased by 47.46%, 49.29%, and 15.19%, respectively, compared to those in normal conditions. However, 17 varieties were identified as heat stress tolerant germplasm. Through GWAS analysis, a total of 115 QTLs were detected under both heat stress and normal conditions. Furthermore, 15 stable QTL-clusters associated with heat response were identified. By combining gene expression, haplotype analysis, and gene annotation information within the physical intervals of the 15 QTL-clusters, two novel candidate genes, TraesCS4B03G0152700/TaWRKY74-B and TraesCS4B03G0501400/TaSnRK3.15-B, were responsive to temperature and identified as potential regulators of HST in wheat at the seedling stage. CONCLUSIONS This study conducted a detailed genetic analysis and successfully identified two genes potentially associated with HST in wheat at the seedling stage, laying a foundation to further dissect the regulatory mechanism underlying HST in wheat under high temperature conditions. Our finding could serve as genomic landmarks for wheat breeding aimed at improving adaptation to heat stress in the face of climate change.
Collapse
Affiliation(s)
- Chao Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ankui Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rui Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Yin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cong Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
18
|
Huang Z, Chen S, He K, Yu T, Fu J, Gao S, Li H. Exploring salt tolerance mechanisms using machine learning for transcriptomic insights: case study in Spartina alterniflora. HORTICULTURE RESEARCH 2024; 11:uhae082. [PMID: 38766535 PMCID: PMC11101319 DOI: 10.1093/hr/uhae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/12/2024] [Indexed: 05/22/2024]
Abstract
Salt stress poses a significant threat to global cereal crop production, emphasizing the need for a comprehensive understanding of salt tolerance mechanisms. Accurate functional annotations of differentially expressed genes are crucial for gaining insights into the salt tolerance mechanism. The challenge of predicting gene functions in under-studied species, especially when excluding infrequent GO terms, persists. Therefore, we proposed the use of NetGO 3.0, a machine learning-based annotation method that does not rely on homology information between species, to predict the functions of differentially expressed genes under salt stress. Spartina alterniflora, a halophyte with salt glands, exhibits remarkable salt tolerance, making it an excellent candidate for in-depth transcriptomic analysis. However, current research on the S. alterniflora transcriptome under salt stress is limited. In this study we used S. alterniflora as an example to investigate its transcriptional responses to various salt concentrations, with a focus on understanding its salt tolerance mechanisms. Transcriptomic analysis revealed substantial changes impacting key pathways, such as gene transcription, ion transport, and ROS metabolism. Notably, we identified a member of the SWEET gene family in S. alterniflora, SA_12G129900.m1, showing convergent selection with the rice ortholog SWEET15. Additionally, our genome-wide analyses explored alternative splicing responses to salt stress, providing insights into the parallel functions of alternative splicing and transcriptional regulation in enhancing salt tolerance in S. alterniflora. Surprisingly, there was minimal overlap between differentially expressed and differentially spliced genes following salt exposure. This innovative approach, combining transcriptomic analysis with machine learning-based annotation, avoids the reliance on homology information and facilitates the discovery of unknown gene functions, and is applicable across all sequenced species.
Collapse
Affiliation(s)
- Zhangping Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Shoukun Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
- Hainan Seed Industry Laboratory, Sanya, Hainan 572024, China
| | - Kunhui He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Tingxi Yu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Junjie Fu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Shang Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Huihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| |
Collapse
|
19
|
Zong Y, Zhang F, Wu H, Xia H, Wu J, Tu Z, Yang L, Li H. Comprehensive deciphering the alternative splicing patterns involved in leaf morphogenesis of Liriodendron chinense. BMC PLANT BIOLOGY 2024; 24:250. [PMID: 38580919 PMCID: PMC10998384 DOI: 10.1186/s12870-024-04915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/15/2024] [Indexed: 04/07/2024]
Abstract
Alternative splicing (AS), a pivotal post-transcriptional regulatory mechanism, profoundly amplifies diversity and complexity of transcriptome and proteome. Liriodendron chinense (Hemsl.) Sarg., an excellent ornamental tree species renowned for its distinctive leaf shape, which resembles the mandarin jacket. Despite the documented potential genes related to leaf development of L. chinense, the underlying post-transcriptional regulatory mechanisms remain veiled. Here, we conducted a comprehensive analysis of the transcriptome to clarify the genome-wide landscape of the AS pattern and the spectrum of spliced isoforms during leaf developmental stages in L. chinense. Our investigation unveiled 50,259 AS events, involving 10,685 genes (32.9%), with intron retention as the most prevalent events. Notably, the initial stage of leaf development witnessed the detection of 804 differentially AS events affiliated with 548 genes. Although both differentially alternative splicing genes (DASGs) and differentially expressed genes (DEGs) were enriched into morphogenetic related pathways during the transition from fishhook (P2) to lobed (P7) leaves, there was only a modest degree of overlap between DASGs and DEGs. Furthermore, we conducted a comprehensively AS analysis on homologous genes involved in leaf morphogenesis, and most of which are subject to post-transcriptional regulation of AS. Among them, the AINTEGUMENTA-LIKE transcript factor LcAIL5 was characterization in detailed, which experiences skipping exon (SE), and two transcripts displayed disparate expression patterns across multiple stages. Overall, these findings yield a comprehensive understanding of leaf development regulation via AS, offering a novel perspective for further deciphering the mechanism of plant leaf morphogenesis.
Collapse
Affiliation(s)
- Yaxian Zong
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Fengchao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Hainan Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Hui Xia
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Junpeng Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhonghua Tu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lichun Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
20
|
Fan C, Lyu M, Zeng B, He Q, Wang X, Lu MZ, Liu B, Liu J, Esteban E, Pasha A, Provart NJ, Wang H, Zhang J. Profiling of the gene expression and alternative splicing landscapes of Eucalyptus grandis. PLANT, CELL & ENVIRONMENT 2024; 47:1363-1378. [PMID: 38221855 DOI: 10.1111/pce.14814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024]
Abstract
Eucalyptus is a widely planted hardwood tree species due to its fast growth, superior wood properties and adaptability. However, the post-transcriptional regulatory mechanisms controlling tissue development and stress responses in Eucalyptus remain poorly understood. In this study, we performed a comprehensive analysis of the gene expression profile and the alternative splicing (AS) landscape of E. grandis using strand-specific RNA-Seq, which encompassed 201 libraries including different organs, developmental stages, and environmental stresses. We identified 10 416 genes (33.49%) that underwent AS, and numerous differentially expressed and/or differential AS genes involved in critical biological processes, such as primary-to-secondary growth transition of stems, adventitious root formation, aging and responses to phosphorus- or boron-deficiency. Co-expression analysis of AS events and gene expression patterns highlighted the potential upstream regulatory role of AS events in multiple processes. Additionally, we highlighted the lignin biosynthetic pathway to showcase the potential regulatory functions of AS events in the KNAT3 and IRL3 genes within this pathway. Our high-quality expression atlas and AS landscape serve as valuable resources for unravelling the genetic control of woody plant development, long-term adaptation, and understanding transcriptional diversity in Eucalyptus. Researchers can conveniently access these resources through the interactive ePlant browser (https://bar.utoronto.ca/eplant_eucalyptus).
Collapse
Affiliation(s)
- Chunjie Fan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mingjie Lyu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Bingshan Zeng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Qiang He
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoping Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Bobin Liu
- Jiansu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Eddi Esteban
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Li X, Zhang L, Wei X, Datta T, Wei F, Xie Z. Polyploidization: A Biological Force That Enhances Stress Resistance. Int J Mol Sci 2024; 25:1957. [PMID: 38396636 PMCID: PMC10888447 DOI: 10.3390/ijms25041957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Organisms with three or more complete sets of chromosomes are designated as polyploids. Polyploidy serves as a crucial pathway in biological evolution and enriches species diversity, which is demonstrated to have significant advantages in coping with both biotic stressors (such as diseases and pests) and abiotic stressors (like extreme temperatures, drought, and salinity), particularly in the context of ongoing global climate deterioration, increased agrochemical use, and industrialization. Polyploid cultivars have been developed to achieve higher yields and improved product quality. Numerous studies have shown that polyploids exhibit substantial enhancements in cell size and structure, physiological and biochemical traits, gene expression, and epigenetic modifications compared to their diploid counterparts. However, some research also suggested that increased stress tolerance might not always be associated with polyploidy. Therefore, a more comprehensive and detailed investigation is essential to complete the underlying stress tolerance mechanisms of polyploids. Thus, this review summarizes the mechanism of polyploid formation, the polyploid biochemical tolerance mechanism of abiotic and biotic stressors, and molecular regulatory networks that confer polyploidy stress tolerance, which can shed light on the theoretical foundation for future research.
Collapse
Affiliation(s)
- Xiaoying Li
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Luyue Zhang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Tanusree Datta
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Fang Wei
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
22
|
Han M, Niu M, Gao T, Shen Y, Zhou X, Zhang Y, Liu L, Chai M, Sun G, Wang Y. Responsive Alternative Splicing Events of Opisthopappus Species against Salt Stress. Int J Mol Sci 2024; 25:1227. [PMID: 38279226 PMCID: PMC10816081 DOI: 10.3390/ijms25021227] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
Salt stress profoundly affects plant growth, prompting intricate molecular responses, such as alternative splicing (AS), for environmental adaptation. However, the response of AS events to salt stress in Opisthopappus (Opisthopappus taihangensis and Opisthopappus longilobus) remains unclear, which is a Taihang Mountain cliff-dwelling species. Using RNA-seq data, differentially expressed genes (DEGs) were identified under time and concentration gradients of salt stress. Two types of AS, skipped exon (SE) and mutually exclusive exons (MXE), were found. Differentially alternative splicing (DAS) genes in both species were significantly enriched in "protein phosphorylation", "starch and sucrose metabolism", and "plant hormone signal transduction" pathways. Meanwhile, distinct GO terms and KEGG pathways of DAS occurred between two species. Only a small subset of DAS genes overlapped with DEGs under salt stress. Although both species likely adopted protein phosphorylation to enhance salt stress tolerance, they exhibited distinct responses. The results indicated that the salt stress mechanisms of both Opisthopappus species exhibited similarities and differences in response to salt stress, which suggested that adaptive divergence might have occurred between them. This study initially provides a comprehensive description of salt responsive AS events in Opisthopappus and conveys some insights into the molecular mechanisms behind species tolerance on the Taihang Mountains.
Collapse
Affiliation(s)
- Mian Han
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Mengfan Niu
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Ting Gao
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Yuexin Shen
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Xiaojuan Zhou
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Yimeng Zhang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Li Liu
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Min Chai
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Genlou Sun
- Department of Botany, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
| | - Yiling Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| |
Collapse
|
23
|
Yu Z, Huang X, Wen S, Cao H, Wang N, Shen S, Ding M. Alternative Splicing under Cold Stress in Paper Mulberry. PLANTS (BASEL, SWITZERLAND) 2023; 12:3950. [PMID: 38068587 PMCID: PMC10707748 DOI: 10.3390/plants12233950] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 05/19/2024]
Abstract
The paper mulberry is a commonly found tree species with a long history of cultivation. It also serves as a crucial case study for understanding how woody plants adapt to low temperatures. Under cold treatment, we observed a substantial number of alternative splicing (AS) genes, showcasing the intricate landscape of AS events. We have detected all seven types of AS events, with the alternative 3' splice site (A3) having the most. We observed that many genes that underwent differential AS were significantly enriched in starch and sucrose metabolism and circadian rhythm pathways. Moreover, a considerable proportion of differentially spliced genes (DSGs) also showed differential expression, with 20.38% and 25.65% under 12 h and 24 h cold treatments, respectively. This suggests a coordinated regulation between gene AS and expression, playing a pivotal role in the paper mulberry's adaptation to cold stress. We further investigated the regulatory mechanisms of AS, identifying 41 serine/arginine-rich (SR) splicing factors, among which 11 showed differential expression under cold treatment, while 29 underwent alternative splicing. Additionally, genes undergoing AS displayed significantly higher DNA methylation levels under cold stress, while normal splicing (non-AS) genes exhibited relatively lower methylation levels. These findings suggest that methylation may play an important role in governing gene AS. Finally, our research will provide useful information on the role of AS in the cold acclimation tolerance of the paper mulberry.
Collapse
Affiliation(s)
- Zhipeng Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China; (Z.Y.); (X.H.); (S.W.); (H.C.); (N.W.)
| | - Xia Huang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China; (Z.Y.); (X.H.); (S.W.); (H.C.); (N.W.)
| | - Shuhan Wen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China; (Z.Y.); (X.H.); (S.W.); (H.C.); (N.W.)
| | - Haijuan Cao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China; (Z.Y.); (X.H.); (S.W.); (H.C.); (N.W.)
| | - Nan Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China; (Z.Y.); (X.H.); (S.W.); (H.C.); (N.W.)
| | - Shihua Shen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Mingquan Ding
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China; (Z.Y.); (X.H.); (S.W.); (H.C.); (N.W.)
| |
Collapse
|
24
|
Wang Z, Miao L, Chen Y, Peng H, Ni Z, Sun Q, Guo W. Deciphering the evolution and complexity of wheat germplasm from a genomic perspective. J Genet Genomics 2023; 50:846-860. [PMID: 37611848 DOI: 10.1016/j.jgg.2023.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Bread wheat provides an essential fraction of the daily calorific intake for humanity. Due to its huge and complex genome, progress in studying on the wheat genome is substantially trailed behind those of the other two major crops, rice and maize, for at least a decade. With rapid advances in genome assembling and reduced cost of high-throughput sequencing, emerging de novo genome assemblies of wheat and whole-genome sequencing data are leading to a paradigm shift in wheat research. Here, we review recent progress in dissecting the complex genome and germplasm evolution of wheat since the release of the first high-quality wheat genome. New insights have been gained in the evolution of wheat germplasm during domestication and modern breeding progress, genomic variations at multiple scales contributing to the diversity of wheat germplasm, and complex transcriptional and epigenetic regulations of functional genes in polyploid wheat. Genomics databases and bioinformatics tools meeting the urgent needs of wheat genomics research are also summarized. The ever-increasing omics data, along with advanced tools and well-structured databases, are expected to accelerate deciphering the germplasm and gene resources in wheat for future breeding advances.
Collapse
Affiliation(s)
- Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
25
|
Dwivedi SL, Quiroz LF, Reddy ASN, Spillane C, Ortiz R. Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs. Int J Mol Sci 2023; 24:15205. [PMID: 37894886 PMCID: PMC10607462 DOI: 10.3390/ijms242015205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, SE, Sweden
| |
Collapse
|
26
|
Li S, Guo W, Wang C, Tang Y, Li L, Zhang H, Li Y, Wei Z, Chen J, Sun Z. Alternative splicing impacts the rice stripe virus response transcriptome. Virology 2023; 587:109870. [PMID: 37669612 DOI: 10.1016/j.virol.2023.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023]
Abstract
Alternative splicing (AS) is an important form of post transcriptional modification present in both animals and plants. However, little information was obtained about AS events in response to plant virus infection. In this study, we conducted a genome-wide transcriptome analysis on AS change in rice infected by a devastating virus, Rice stripe virus (RSV). KEGG analysis was performed on the differentially expressed (DE) genes and differentially alternative spliced (DAS) genes. The results showed that DE genes were significantly enriched in the pathway of interaction with plant pathogens. The DAS genes were mainly enriched in basal metabolism and RNA splicing pathways. The heat map clustering showed that DEGs clusters were mainly enriched in regulation of transcription and defense response while differential transcript usage (DTU) clusters were strongly enriched in mRNA splicing and calcium binding. Overall, our results provide a fundamental basis for gene-wide AS changes in rice after RSV infection.
Collapse
Affiliation(s)
- Shanshan Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Chen Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yao Tang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lulu Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
27
|
Wen J, Qin Z, Sun L, Zhang Y, Wang D, Peng H, Yao Y, Hu Z, Ni Z, Sun Q, Xin M. Alternative splicing of TaHSFA6e modulates heat shock protein-mediated translational regulation in response to heat stress in wheat. THE NEW PHYTOLOGIST 2023; 239:2235-2247. [PMID: 37403528 DOI: 10.1111/nph.19100] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
Heat stress greatly threatens crop production. Plants have evolved multiple adaptive mechanisms, including alternative splicing, that allow them to withstand this stress. However, how alternative splicing contributes to heat stress responses in wheat (Triticum aestivum) is unclear. We reveal that the heat shock transcription factor gene TaHSFA6e is alternatively spliced in response to heat stress. TaHSFA6e generates two major functional transcripts: TaHSFA6e-II and TaHSFA6e-III. TaHSFA6e-III enhances the transcriptional activity of three downstream heat shock protein 70 (TaHSP70) genes to a greater extent than does TaHSFA6e-II. Further investigation reveals that the enhanced transcriptional activity of TaHSFA6e-III is due to a 14-amino acid peptide at its C-terminus, which arises from alternative splicing and is predicted to form an amphipathic helix. Results show that knockout of TaHSFA6e or TaHSP70s increases heat sensitivity in wheat. Moreover, TaHSP70s are localized in stress granule following exposure to heat stress and are involved in regulating stress granule disassembly and translation re-initiation upon stress relief. Polysome profiling analysis confirms that the translational efficiency of stress granule stored mRNAs is lower at the recovery stage in Tahsp70s mutants than in the wild types. Our finding provides insight into the molecular mechanisms by which alternative splicing improves the thermotolerance in wheat.
Collapse
Affiliation(s)
- Jingjing Wen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhen Qin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lv Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yumei Zhang
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Dongli Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
28
|
Xu X, Fonseca de Lima CF, Vu LD, De Smet I. When drought meets heat - a plant omics perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1250878. [PMID: 37674736 PMCID: PMC10478009 DOI: 10.3389/fpls.2023.1250878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Changes in weather patterns with emerging drought risks and rising global temperature are widespread and negatively affect crop growth and productivity. In nature, plants are simultaneously exposed to multiple biotic and abiotic stresses, but most studies focus on individual stress conditions. However, the simultaneous occurrence of different stresses impacts plant growth and development differently than a single stress. Plants sense the different stress combinations in the same or in different tissues, which could induce specific systemic signalling and acclimation responses; impacting different stress-responsive transcripts, protein abundance and modifications, and metabolites. This mini-review focuses on the combination of drought and heat, two abiotic stress conditions that often occur together. Recent omics studies indicate common or independent regulators involved in heat or drought stress responses. Here, we summarize the current research results, highlight gaps in our knowledge, and flag potential future focus areas.
Collapse
Affiliation(s)
- Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca de Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
29
|
Tang Y, Li J, Song Q, Cheng Q, Tan Q, Zhou Q, Nong Z, Lv P. Transcriptome and WGCNA reveal hub genes in sugarcane tiller seedlings in response to drought stress. Sci Rep 2023; 13:12823. [PMID: 37550374 PMCID: PMC10406934 DOI: 10.1038/s41598-023-40006-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023] Open
Abstract
Drought stress can severely affect sugarcane growth and yield. The objective of this research was to identify candidate genes in sugarcane tillering seedlings in response to drought stress. We performed a comparative phenotypic, physiological and transcriptomic analysis of tiller seedlings of drought-stressed and well-watered "Guire 2" sugarcane, in a time-course experiment (5 days, 9 days and 15 days). Physiological examination reviewed that SOD, proline, soluble sugars, and soluble proteins accumulated in large amounts in tiller seedlings under different intensities of drought stress, while MDA levels remained at a stable level, indicating that the accumulation of osmoregulatory substances and the enhancement of antioxidant enzyme activities helped to limit further damage caused by drought stress. RNA-seq and weighted gene co-expression network analysis (WGCNA) were performed to identify genes and modules associated with sugarcane tillering seedlings in response to drought stress. Drought stress induced huge down-regulated in gene expression profiles, most of down-regulated genes were mainly associated with photosynthesis, sugar metabolism and fatty acid synthesis. We obtained four gene co-expression modules significantly associated with the physiological changes under drought stress (three modules positively correlated, one module negatively correlated), and found that LSG1-2, ERF1-2, SHKA, TIL, HSP18.1, HSP24.1, HSP16.1 and HSFA6A may play essential regulatory roles as hub genes in increasing SOD, Pro, soluble sugar or soluble protein contents. In addition, one module was found mostly involved in tiller stem diameter, among which members of the BHLH148 were important nodes. These results provide new insights into the mechanisms by which sugarcane tillering seedlings respond to drought stress.
Collapse
Affiliation(s)
- Yuwei Tang
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| | - Jiahui Li
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China.
| | - Qiqi Song
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| | - Qin Cheng
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| | - Qinliang Tan
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| | - Quanguang Zhou
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| | - Zemei Nong
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| | - Ping Lv
- Guangxi Subtropical Crops Research Institute, 22 Yongwu Road, Xingning District, Nanning, 530001, Guangxi Province, China
| |
Collapse
|
30
|
Wang S, Wu H, Zhao Y, Wang L, Guan X, Zhao T. Mapping intron retention events contributing to complex traits using splice quantitative trait locus. PLANT METHODS 2023; 19:72. [PMID: 37480119 PMCID: PMC10362629 DOI: 10.1186/s13007-023-01048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Alternative splicing (AS) of mRNA plays an important roles in transcriptome diversity, involving regulation of plant growth and stress response. Understanding the variation of AS events underlying GWAS loci in a crop population can provide insight into the molecular mechanisms of complex agronomic traits. To date, genome-wide association studies relating AS events to agronomic traits have rarely been conducted at the population level in crops. RESULTS Here, a pipeline was constructed to identify candidate AS events related to complex traits. Firstly, ovule transcriptome data were used to characterize intron retention (IR), the predominant type of AS in plants, on a genome-wide scale. This was done in a natural population consisting of 279 upland cotton lines. Secondly, splice quantitative trait locus (sQTL) analysis was carried out, which yielded a total of 2295 sQTLs involving 1607 genes. Of these, 14.25% (n = 427) were cis-regulatory loci. Integration with expression quantitative trait loci (eQTL) revealed that 53 (21.4%) cis-sGenes were regulated by both cis-sQTLs and cis-eQTLs. Finally, co-localization analysis integrated with GWAS loci in this population showed 32 cis-QTLs to be co-located with genetic regulatory loci related to fiber yield and quality traits, indicating that sQTLs are likely to participate in regulating cotton fiber yield and quality. An in-depth evaluation confirmed that differences in the IR rates of sQTL-regulated candidate genes such as GhLRRK1 and GhGC1 are associated with lint percentage (LP), which has potential in breeding applications. CONCLUSION This study provides a clue that AS of mRNA has an impact on crop yield, along with functional sQTLs are new genetic resources for cotton precision breeding.
Collapse
Affiliation(s)
- Siyuan Wang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 300058, China
| | - Hongyu Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 300058, China
| | - Yongyan Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 300058, China
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, Hainan, China
| | - Luyao Wang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 300058, China
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, Hainan, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 300058, China.
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, Hainan, China.
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 300058, China.
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, Hainan, China.
| |
Collapse
|
31
|
Liu J, Li D, Zhu P, Qiu S, Yao K, Zhuang Y, Chen C, Liu G, Wen M, Guo R, Yao W, Deng Y, Shen X, Li T. The Landscapes of Gluten Regulatory Network in Elite Wheat Cultivars Contrasting in Gluten Strength. Int J Mol Sci 2023; 24:9447. [PMID: 37298403 PMCID: PMC10253585 DOI: 10.3390/ijms24119447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Yangmai-13 (YM13) is a wheat cultivar with weak gluten fractions. In contrast, Zhenmai-168 (ZM168) is an elite wheat cultivar known for its strong gluten fractions and has been widely used in a number of breeding programs. However, the genetic mechanisms underlying the gluten signatures of ZM168 remain largely unclear. To address this, we combined RNA-seq and PacBio full-length sequencing technology to unveil the potential mechanisms of ZM168 grain quality. A total of 44,709 transcripts were identified in Y13N (YM13 treated with nitrogen) and 51,942 transcripts in Z168N (ZM168 treated with nitrogen), including 28,016 and 28,626 novel isoforms in Y13N and Z168N, respectively. Five hundred and eighty-four differential alternative splicing (AS) events and 491 long noncoding RNAs (lncRNAs) were discovered. Incorporating the sodium-dodecyl-sulfate (SDS) sedimentation volume (SSV) trait, both weighted gene coexpression network analysis (WGCNA) and multiscale embedded gene coexpression network analysis (MEGENA) were employed for network construction and prediction of key drivers. Fifteen new candidates have emerged in association with SSV, including 4 transcription factors (TFs) and 11 transcripts that partake in the post-translational modification pathway. The transcriptome atlas provides new perspectives on wheat grain quality and would be beneficial for developing promising strategies for breeding programs.
Collapse
Affiliation(s)
- Jiajun Liu
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Dongsheng Li
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Peng Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Collaborative Innovation of Modern Crops and Food Crops in Jiangsu/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (P.Z.); (G.L.)
| | - Shi Qiu
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Kebing Yao
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Yiqing Zhuang
- Testing Center, Jiangsu Academy of Agricultural Science, Nanjing 210014, China;
| | - Chen Chen
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Guanqing Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Collaborative Innovation of Modern Crops and Food Crops in Jiangsu/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (P.Z.); (G.L.)
| | - Mingxing Wen
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Rui Guo
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Weicheng Yao
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Yao Deng
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Xueyi Shen
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Tao Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Collaborative Innovation of Modern Crops and Food Crops in Jiangsu/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (P.Z.); (G.L.)
| |
Collapse
|
32
|
Muhammad S, Xu X, Zhou W, Wu L. Alternative splicing: An efficient regulatory approach towards plant developmental plasticity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1758. [PMID: 35983878 DOI: 10.1002/wrna.1758] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 05/13/2023]
Abstract
Alternative splicing (AS) is a gene regulatory mechanism that plants adapt to modulate gene expression (GE) in multiple ways. AS generates alternative isoforms of the same gene following various development and environmental stimuli, increasing transcriptome plasticity and proteome complexity. AS controls the expression levels of certain genes and regulates GE networks that shape plant adaptations through nonsense-mediated decay (NMD). This review intends to discuss AS modulation, from interaction with noncoding RNAs to the established roles of splicing factors (SFs) in response to endogenous and exogenous cues. We aim to gather such studies that highlight the magnitude and impact of AS, which are not always clear from individual articles, when AS is increasing in individual genes and at a global level. This work also anticipates making plant researchers know that AS is likely to occur in their investigations and that dynamic changes in AS and their effects must be frequently considered. We also review our understanding of AS-mediated posttranscriptional modulation of plant stress tolerance and discuss its potential application in crop improvement in the future. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > Splicing Mechanisms RNA-Based Catalysis > RNA Catalysis in Splicing and Translation.
Collapse
Affiliation(s)
- Sajid Muhammad
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute of Zhejiang University, Sanya, Hainan, China
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoli Xu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weijun Zhou
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Wu
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute of Zhejiang University, Sanya, Hainan, China
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
33
|
Laskar P, Hazra A, Pal A, Kundu A. Deciphering the role of alternative splicing as modulators of defense response in the MYMIV- Vigna mungo pathosystem. PHYSIOLOGIA PLANTARUM 2023; 175:e13922. [PMID: 37114622 DOI: 10.1111/ppl.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 06/19/2023]
Abstract
Alternative splicing (AS) is a crucial regulatory mechanism that impacts transcriptome and proteome complexity under stressful situations. Although its role in abiotic stresses is somewhat understood, our understanding of the mechanistic regulation of pre-mRNA splicing in plant-pathogen interaction is meagre. To comprehend this unexplored immune reprogramming mechanism, transcriptome profiles of Mungbean Yellow Mosaic India Virus (MYMIV)-resistant and susceptible Vigna mungo genotypes were analysed for AS genes that may underlie the resistance mechanism. Results revealed a repertoire of AS-isoforms accumulated during pathogenic infestation, with intron retention being the most common AS mechanism. Identification of 688 differential alternatively spliced (DAS) genes in the resistant host elucidates its robust antiviral response, whereas 322 DAS genes were identified in the susceptible host. Enrichment analyses confirmed DAS transcripts pertaining to stress, signalling, and immune system pathways have undergone maximal perturbations. Additionally, a strong regulation of the splicing factors has been observed both at transcriptional and post-transcriptional levels. qPCR validation of candidate DAS transcripts with induced expression upon MYMIV-infection demonstrated a competent immune response in the resistant background. The AS-impacted genes resulted either in partial/complete loss of functional domains or altered sensitivity to miRNA-mediated gene silencing. A complex regulatory module, miR7517-ATAF2, has been identified in an aberrantly spliced ATAF2 isoform that exposes an intronic miR7517 binding site, thereby suppressing the negative regulator to enhance defense reaction. The present study establishes AS as a non-canonical immune reprogramming mechanism that operates in parallel, thereby offering an alternative strategy for developing yellow mosaic-resistant V. mungo cultivars. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Parbej Laskar
- Plant Genomics and Bioinformatics Laboratory, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata
| | - Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata
- Present Address: Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata
| |
Collapse
|
34
|
Cui J, Qiu T, Li L, Cui S. De novo full-length transcriptome analysis of two ecotypes of Phragmites australis (swamp reed and dune reed) provides new insights into the transcriptomic complexity of dune reed and its long-term adaptation to desert environments. BMC Genomics 2023; 24:180. [PMID: 37020272 PMCID: PMC10077656 DOI: 10.1186/s12864-023-09271-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND The extremely harsh environment of the desert is changing dramatically every moment, and the rapid adaptive stress response in the short term requires enormous energy expenditure to mobilize widespread regulatory networks, which is all the more detrimental to the survival of the desert plants themselves. The dune reed, which has adapted to desert environments with complex and variable ecological factors, is an ideal type of plant for studying the molecular mechanisms by which Gramineae plants respond to combinatorial stress of the desert in their natural state. But so far, the data on the genetic resources of reeds is still scarce, therefore most of their research has focused on ecological and physiological studies. RESULTS In this study, we obtained the first De novo non-redundant Full-Length Non-Chimeric (FLNC) transcriptome databases for swamp reeds (SR), dune reeds (DR) and the All of Phragmites australis (merged of iso-seq data from SR and DR), using PacBio Iso-Seq technology and combining tools such as Iso-Seq3 and Cogent. We then identified and described long non-coding RNAs (LncRNA), transcription factor (TF) and alternative splicing (AS) events in reeds based on a transcriptome database. Meanwhile, we have identified and developed for the first time a large number of candidates expressed sequence tag-SSR (EST-SSRs) markers in reeds based on UniTransModels. In addition, through differential gene expression analysis of wild-type and homogenous cultures, we found a large number of transcription factors that may be associated with desert stress tolerance in the dune reed, and revealed that members of the Lhc family have an important role in the long-term adaptation of dune reeds to desert environments. CONCLUSIONS Our results provide a positive and usable genetic resource for Phragmites australis with a widespread adaptability and resistance, and provide a genetic database for subsequent reeds genome annotation and functional genomic studies.
Collapse
Affiliation(s)
- Jipeng Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China
| | - Tianhang Qiu
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China
| | - Li Li
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China
| | - Suxia Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China.
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China.
| |
Collapse
|
35
|
de Jong GW, Adams KL. Subgenome-dominant expression and alternative splicing in response to Sclerotinia infection in polyploid Brassica napus and progenitors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:142-158. [PMID: 36710652 DOI: 10.1111/tpj.16127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Polyploidy has played an extensive role in the evolution of flowering plants. Allopolyploids, with subgenomes containing duplicated gene pairs called homeologs, can show rapid transcriptome changes including novel alternative splicing (AS) patterns. The extent to which abiotic stress modulates AS of homeologs is a nascent topic in polyploidy research. We subjected both resynthesized and natural lines of polyploid Brassica napus, along with the progenitors Brassica rapa and Brassica oleracea, to infection with the fungal pathogen Sclerotinia sclerotiorum. RNA-sequencing analyses revealed widespread divergence between polyploid subgenomes in both gene expression and AS patterns. Resynthesized B. napus displayed significantly more A and C subgenome biased homeologs under pathogen infection than during uninfected growth. Differential AS (DAS) in response to infection was highest in natural B. napus (12 709 DAS events) and lower in resynthesized B. napus (8863 DAS events). Natural B. napus had more upregulated events and fewer downregulated events. There was a global expression bias towards the B. oleracea-derived (C) subgenome in both resynthesized and natural B. napus, enhanced by widespread non-parental downregulation of the B. rapa-derived (A) homeolog. In the resynthesized B. napus, this resulted in a disproportionate C subgenome contribution to the pathogen defense response, characterized by biases in both transcript expression levels and the proportion of induced genes. Our results elucidate the complex ways in which Sclerotinia infection affects expression and AS of homeologous genes in resynthesized and natural B. napus.
Collapse
Affiliation(s)
- Grant W de Jong
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Keith L Adams
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
36
|
Wang L, Wang L, Tan M, Wang L, Zhao W, You J, Wang L, Yan X, Wang W. The pattern of alternative splicing and DNA methylation alteration and their interaction in linseed (Linum usitatissimum L.) response to repeated drought stresses. Biol Res 2023; 56:12. [PMID: 36922868 PMCID: PMC10018860 DOI: 10.1186/s40659-023-00424-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Drought stress has significantly hampered agricultural productivity worldwide and can also result in modifications to DNA methylation levels. However, the dynamics of DNA methylation and its association with the changes in gene transcription and alternative splicing (AS) under drought stress are unknown in linseed, which is frequently cultivated in arid and semiarid regions. RESULTS We analysed AS events and DNA methylation patterns in drought-tolerant (Z141) and drought-sensitive (NY-17) linseed under drought stress (DS) and repeated drought stress (RD) treatments. We found that the number of intron-retention (IR) and alternative 3' splice site (Alt3'SS) events were significantly higher in Z141 and NY-17 under drought stress. We found that the linseed response to the DS treatment was mainly regulated by transcription, while the response to the RD treatment was coregulated by transcription and AS. Whole genome-wide DNA methylation analysis revealed that drought stress caused an increase in the overall methylation level of linseed. Although we did not observe any correlation between differentially methylated genes (DMGs) and differentially spliced genes (DSGs) in this study, we found that the DSGs whose gene body region was hypermethylated in Z141 and hypomethylated in NY-17 were enriched in abiotic stress response Gene Ontology (GO) terms. This finding implies that gene body methylation plays an important role in AS regulation in some specific genes. CONCLUSION Our study is the first comprehensive genome-wide analysis of the relationship between linseed methylation changes and AS under drought and repeated drought stress. Our study revealed different interaction patterns between differentially expressed genes (DEGs) and DSGs under DS and RD treatments and differences between methylation and AS regulation in drought-tolerant and drought-sensitive linseed varieties. The findings will probably be of interest in the future. Our results provide interesting insights into the association between gene expression, AS, and DNA methylation in linseed under drought stress. Differences in these associations may account for the differences in linseed drought tolerance.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Lei Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Meilian Tan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Wei Zhao
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | | | - Xingchu Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China.
| |
Collapse
|
37
|
Liu E, Xu L, Luo Z, Li Z, Zhou G, Gao H, Fang F, Tang J, Zhao Y, Zhou Z, Jin P. Transcriptomic analysis reveals mechanisms for the different drought tolerance of sweet potatoes. FRONTIERS IN PLANT SCIENCE 2023; 14:1136709. [PMID: 37008495 PMCID: PMC10060965 DOI: 10.3389/fpls.2023.1136709] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 06/19/2023]
Abstract
Drought is a common environmental stress with great negative impacts on plant growth, development and geographical distribution as well as agriculture and food production. Sweet potato is characterized by starchy, fresh and pigmented tuber, and is regarded as the seventh most important food crop. However, there has been no comprehensive study of the drought tolerance mechanism of different sweet potato cultivars to date. Here, we studied the mechanism for drought response of seven sweet potato drought-tolerant cultivars using the drought coefficients, physiological indicators and transcriptome sequencing. The seven sweet potato cultivars were classified into four groups of drought tolerance performance. A large number of new genes and transcripts were identified, with an average of about 8000 new genes per sample. Alternative splicing events in sweet potato, which were dominated by first exon and last exon alternative splicing, were not conserved among different cultivars and not significantly affected by drought stress. Furthermore, different drought-tolerance mechanisms were revealed through differentially expressed gene analysis and functional annotation. Two drought-sensitive cultivars, Shangshu-9 and Xushu-22, mainly resisted drought stress by up-regulating plant signal transduction. The other drought-sensitive cultivar Jishu-26 responded to drought stress by down-regulating isoquinoline alkaloid biosynthesis and nitrogen/carbohydrate metabolism. In addition, the drought-tolerant cultivar Chaoshu-1 and drought-preferred cultivar Z15-1 only shared 9% of differentially expressed genes, as well as many opposite metabolic pathways in response to drought. They mainly regulated flavonoid and carbohydrate biosynthesis/metabolism in response to drought, while Z15-1 increased photosynthesis and carbon fixation capacity. The other drought-tolerant cultivar Xushu-18 responded to drought stress by regulating the isoquinoline alkaloid biosynthesis and nitrogen/carbohydrate metabolism. The extremely drought-tolerant cultivar Xuzi-8 was almost unaffected by drought stress and responded to drought environment only by regulating the cell wall. These findings provide important information for the selection of sweet potatoes for specific purposes.
Collapse
Affiliation(s)
- Enliang Liu
- Grain Crops Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Linli Xu
- Comprehensive Proving Ground, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Zhengqian Luo
- Comprehensive Proving Ground, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Zhiqiang Li
- Grain Crops Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Guohui Zhou
- Adsen Biotechnology Co., Ltd., Urumqi, China
| | - Haifeng Gao
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Furong Fang
- Grain Crops Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Jun Tang
- Xuzhou Institute of Agricultural Sciences in Xuhuai District, Xuzhou, China
| | - Yue Zhao
- Grain Crops Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Zhilin Zhou
- Xuzhou Institute of Agricultural Sciences in Xuhuai District, Xuzhou, China
| | - Ping Jin
- Comprehensive Proving Ground, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
38
|
Li C, Hong Y, Sun J, Wang G, Zhou H, Xu L, Wang L, Xu G. Temporal transcriptome analysis reveals several key pathways involve in cadmium stress response in Nicotiana tabacum L. FRONTIERS IN PLANT SCIENCE 2023; 14:1143349. [PMID: 36959946 PMCID: PMC10027936 DOI: 10.3389/fpls.2023.1143349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Tobacco has a strong cadmium (Cd) enrichment capacity, meaning that it can absorb large quantities from the environment, but too much Cd will cause damage to the plant. It is not yet clear how the plant can dynamically respond to Cd stress. Here, we performed a temporal transcriptome analysis of tobacco roots under Cd treatment from 0 to 48 h. The number of differentially expressed genes (DEGs) was found to change significantly at 3 h of Cd treatment, which we used to define the early and middle stages of the Cd stress response. The gene ontology (GO) term analysis indicates that genes related to photosynthesis and fatty acid synthesis were enriched during the early phases of the stress response, and in the middle phase biological process related to metal ion transport, DNA damage repair, and metabolism were enriched. It was also found that plants use precursor mRNA (pre-mRNA) processes to first resist Cd stress, and with the increasing of Cd treatment time, the overlapped genes number of DEGs and DAS increased, suggesting the transcriptional levels and post-transcriptional level might influence each other. This study allowed us to better understand how plants dynamically respond to cadmium stress at the transcriptional and post-transcriptional levels and provided a reference for the screening of Cd-tolerant genes in the future.
Collapse
Affiliation(s)
- Chenyang Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
| | - Yi Hong
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Jinhao Sun
- Technology Center, China Tobacco Jiangsu Industrial Co. Ltd., Nanjing, China
| | - Guoping Wang
- Yuxi Zhongyan Tobacco Seed Co., Ltd., Yuxi, Yunnan, China
| | - Huina Zhou
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Liangtao Xu
- Technology Center, China Tobacco Jiangsu Industrial Co. Ltd., Nanjing, China
| | - Long Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
| | - Guoyun Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| |
Collapse
|
39
|
Willems P, Van Ruyskensvelde V, Maruta T, Pottie R, Fernández-Fernández ÁD, Pauwels J, Hannah MA, Gevaert K, Van Breusegem F, Van der Kelen K. Mutation of Arabidopsis SME1 and Sm core assembly improves oxidative stress resilience. Free Radic Biol Med 2023; 200:117-129. [PMID: 36870374 DOI: 10.1016/j.freeradbiomed.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Alternative splicing is a key posttranscriptional gene regulatory process, acting in diverse adaptive and basal plant processes. Splicing of precursor-messenger RNA (pre-mRNA) is catalyzed by a dynamic ribonucleoprotein complex, designated the spliceosome. In a suppressor screen, we identified a nonsense mutation in the Smith (Sm) antigen protein SME1 to alleviate photorespiratory H2O2-dependent cell death in catalase deficient plants. Similar attenuation of cell death was observed upon chemical inhibition of the spliceosome, suggesting pre-mRNA splicing inhibition to be responsible for the observed cell death alleviation. Furthermore, the sme1-2 mutants showed increased tolerance to the reactive oxygen species inducing herbicide methyl viologen. Both an mRNA-seq and shotgun proteomic analysis in sme1-2 mutants displayed a constitutive molecular stress response, together with extensive alterations in pre-mRNA splicing of transcripts encoding metabolic enzymes and RNA binding proteins, even under unstressed conditions. Using SME1 as a bait to identify protein interactors, we provide experimental evidence for almost 50 homologs of the mammalian spliceosome-associated protein to reside in the Arabidopsis thaliana spliceosome complexes and propose roles in pre-mRNA splicing for four uncharacterized plant proteins. Furthermore, as for sme1-2, a mutant in the Sm core assembly protein ICLN resulted in a decreased sensitivity to methyl viologen. Taken together, these data show that both a perturbed Sm core composition and assembly results in the activation of a defense response and in enhanced resilience to oxidative stress.
Collapse
Affiliation(s)
- Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark 75, 9052, Ghent, Belgium; Center for Medical Biotechnology, VIB, Technologiepark 75, 9052, Ghent, Belgium.
| | - Valerie Van Ruyskensvelde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium.
| | - Takanori Maruta
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium; Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane, 690-8504, Japan.
| | - Robin Pottie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium.
| | - Álvaro D Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium.
| | - Jarne Pauwels
- Department of Biomolecular Medicine, Ghent University, Technologiepark 75, 9052, Ghent, Belgium; Center for Medical Biotechnology, VIB, Technologiepark 75, 9052, Ghent, Belgium.
| | - Matthew A Hannah
- BASF Belgium Coordination Center, Innovation Center Gent, Technologiepark 101, 9052, Ghent, Belgium.
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Technologiepark 75, 9052, Ghent, Belgium; Center for Medical Biotechnology, VIB, Technologiepark 75, 9052, Ghent, Belgium.
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium.
| | - Katrien Van der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium.
| |
Collapse
|
40
|
Guo L, Xu Z, Wang S, Nie Y, Ye X, Jin X, Zhu J, Wu W. Integrative multi-omics analysis of three early diverged rosid species reveals an ancient hierarchical cold-responsive regulatory network. PHYSIOLOGIA PLANTARUM 2023; 175:e13892. [PMID: 36929522 DOI: 10.1111/ppl.13892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Elucidating regulators, including transcription factors (TFs) and RNA-binding proteins (RBPs), underlying gene transcriptional and post-transcriptional co-regulatory network is key to understand plant cold responses. Previous studies were mainly conducted on single species, and whether the regulators are conserved across different species remains elusive. Here, we selected three species that diverged at the early evolution of rosids (~99-113 million years ago), performed cold-responsive phylotranscriptome experiments, and integrated chromatin immunoprecipitation- and DNA affinity purification-sequencing (ChIP/DAP-seq) analysis to explore cold-responsive regulators and their regulatory networks. First, we detected over 10,000 cold-induced differentially expressed genes (DEGs) and alternative splicing genes (DASGs) in each species. Among the DEGs, a set of TFs and RBPs were conserved in rosid cold response. Compared to TFs, RBPs displayed a delayed cold-responsive pattern, implying a hierarchical regulation of DEGs and DASGs. By integrating DEGs and DASGs, we identified 259 overlapping DE-DASG orthogroups (closely-related homologs) that were cold-regulated at both transcriptional and post-transcriptional levels in all three studied species. Notably, pathway analysis on each of the DEGs, DASGs, and DE-DASGs in the three species showed a common enrichment connected to the circadian rhythm. Evidently, 226 cold-responsive genes were directly targeted by at least two circadian rhythm components (CCA1, LHY, RV4, RVE7, and RVE8). Finally, we revealed an ancient hierarchy of cold-responsive regulatory networks at transcriptional and post-transcriptional levels launched by circadian components in rosids. Altogether, this study sheds light on conserved regulators underlying cold-responsive regulatory networks across rosid species, despite a long evolutionary history after their divergence.
Collapse
Affiliation(s)
- Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Zhiming Xu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yuqi Nie
- Université Paris Saclay, GQE-Le Moulon, Gif-sur-Yvette, 91190, France
| | - Xiaoxue Ye
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Yumin Road 7, Sanya, 572025, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Jianhua Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, 20742, USA
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| |
Collapse
|
41
|
Hu Z, He Z, Li Y, Wang Q, Yi P, Yang J, Yang C, Borovskii G, Cheng X, Hu R, Zhang W. Transcriptomic and metabolic regulatory network characterization of drought responses in tobacco. FRONTIERS IN PLANT SCIENCE 2023; 13:1067076. [PMID: 36743571 PMCID: PMC9891310 DOI: 10.3389/fpls.2022.1067076] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Drought stress usually causes huge economic losses for tobacco industries. Drought stress exhibits multifaceted impacts on tobacco systems through inducing changes at different levels, such as physiological and chemical changes, changes of gene transcription and metabolic changes. Understanding how plants respond and adapt to drought stress helps generate engineered plants with enhanced drought resistance. In this study, we conducted multiple time point-related physiological, biochemical,transcriptomic and metabolic assays using K326 and its derived mutant 28 (M28) with contrasting drought tolerance. Through integrative analyses of transcriptome and metabolome,we observed dramatic changes of gene expression and metabolic profiles between M28 and K326 before and after drought treatment. we found that some of DEGs function as key enzymes responsible for ABA biosynthesis and metabolic pathway, thereby mitigating impairment of drought stress through ABA signaling dependent pathways. Four DEGs were involved in nitrogen metabolism, leading to synthesis of glutamate (Glu) starting from NO-3 /NO-2 that serves as an indicator for stress responses. Importantly, through regulatory network analyses, we detected several drought induced TFs that regulate expression of genes responsible for ABA biosynthesis through network, indicating direct and indirect involvement of TFs in drought responses in tobacco. Thus, our study sheds some mechanistic insights into how plant responding to drought stress through transcriptomic and metabolic changes in tobacco. It also provides some key TF or non-TF gene candidates for engineering manipulation for breeding new tobacco varieties with enhanced drought tolerance.
Collapse
Affiliation(s)
- Zhengrong Hu
- Hunan Tobacco Research Institute, Changsha, Hunan, China
| | - Zexue He
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, Hunan, China
| | - Qing Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pengfei Yi
- Hu'nan Tobacco Company Changde Company, Changde, Hunan, China
| | - Jiashuo Yang
- Hunan Tobacco Research Institute, Changsha, Hunan, China
| | - Chenkai Yang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Gennadii Borovskii
- Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of Russian Academy of Sciences (SB RAS) Irkutsk, Lermontova, Russia
| | - Xuejiao Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Risheng Hu
- Hunan Tobacco Research Institute, Changsha, Hunan, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
42
|
Ma Z, Li M, Zhang H, Zhao B, Liu Z, Duan S, Meng X, Li G, Guo X. Alternative Splicing of TaHsfA2-7 Is Involved in the Improvement of Thermotolerance in Wheat. Int J Mol Sci 2023; 24:ijms24021014. [PMID: 36674529 PMCID: PMC9861123 DOI: 10.3390/ijms24021014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
High temperature has severely affected plant growth and development, resulting in reduced production of crops worldwide, especially wheat. Alternative splicing (AS), a crucial post-transcriptional regulatory mechanism, is involved in the growth and development of eukaryotes and the adaptation to environmental changes. Previous transcriptome data suggested that heat shock transcription factor (Hsf) TaHsfA2-7 may form different transcripts by AS. However, it remains unclear whether this post-transcriptional regulatory mechanism of TaHsfA2-7 is related to thermotolerance in wheat (Triticum aestivum). Here, we identified a novel splice variant, TaHsfA2-7-AS, which was induced by high temperature and played a positive role in thermotolerance regulation in wheat. Moreover, TaHsfA2-7-AS is predicted to encode a small truncated TaHsfA2-7 isoform, retaining only part of the DNA-binding domain (DBD). TaHsfA2-7-AS is constitutively expressed in various tissues of wheat. Notably, the expression level of TaHsfA2-7-AS is significantly up-regulated by heat shock (HS) during flowering and grain-filling stages in wheat. Further studies showed that TaHsfA2-7-AS was localized in the nucleus but lacked transcriptional activation activity. Ectopic expression of TaHsfA2-7-AS in yeast exhibited improved thermotolerance. Compared to non-transgenic plants, overexpression of TaHsfA2-7-AS in Arabidopsis results in enhanced tolerance to heat stress. Simultaneously, we also found that TaHsfA1 is directly involved in the transcriptional regulation of TaHsfA2-7 and TaHsfA2-7-AS. In summary, our findings demonstrate the function of TaHsfA2-7-AS splicing variant in response to heat stress and establish a link between regulatory mechanisms of AS and the improvement of thermotolerance in wheat.
Collapse
Affiliation(s)
- Zhenyu Ma
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Mingyue Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Huaning Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Baihui Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zihui Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Shuonan Duan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Xiangzhao Meng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
- Correspondence: (X.M.); (G.L.)
| | - Guoliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
- Correspondence: (X.M.); (G.L.)
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| |
Collapse
|
43
|
Jia Z, Gao P, Yin F, Quilichini TD, Sheng H, Song J, Yang H, Gao J, Chen T, Yang B, Kochian LV, Zou J, Patterson N, Yang Q, Gillmor CS, Datla R, Li Q, Xiang D. Asymmetric gene expression in grain development of reciprocal crosses between tetraploid and hexaploid wheats. Commun Biol 2022; 5:1412. [PMID: 36564439 PMCID: PMC9789062 DOI: 10.1038/s42003-022-04374-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Production of viable progeny from interploid crosses requires precise regulation of gene expression from maternal and paternal chromosomes, yet the transcripts contributed to hybrid seeds from polyploid parent species have rarely been explored. To investigate the genome-wide maternal and paternal contributions to polyploid grain development, we analyzed the transcriptomes of developing embryos, from zygote to maturity, alongside endosperm in two stages of development, using reciprocal crosses between tetraploid and hexaploid wheats. Reciprocal crosses between species with varied levels of ploidy displayed broad impacts on gene expression, including shifts in alternative splicing events in select crosses, as illustrated by active splicing events, enhanced protein synthesis and chromatin remodeling. Homoeologous gene expression was repressed on the univalent D genome in pentaploids, but this suppression was attenuated in crosses with a higher ploidy maternal parent. Imprinted genes were identified in endosperm and early embryo tissues, supporting predominant maternal effects on early embryogenesis. By systematically investigating the complex transcriptional networks in reciprocal-cross hybrids, this study presents a framework for understanding the genomic incompatibility and transcriptome shock that results from interspecific hybridization and uncovers the transcriptional impacts on hybrid seeds created from agriculturally-relevant polyploid species.
Collapse
Affiliation(s)
- Zhen Jia
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Peng Gao
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Feifan Yin
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070 Wuhan, China
| | - Teagen D. Quilichini
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Huajin Sheng
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Jingpu Song
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Hui Yang
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Jie Gao
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ting Chen
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Bo Yang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Leon V. Kochian
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Jitao Zou
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Nii Patterson
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Qingyong Yang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, 430070 Wuhan, China
| | - C. Stewart Gillmor
- grid.512574.0Langebio, Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, 36821 México
| | - Raju Datla
- grid.25152.310000 0001 2154 235XGlobal Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
| | - Qiang Li
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Daoquan Xiang
- grid.24433.320000 0004 0449 7958Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| |
Collapse
|
44
|
Wu B, Zhang X, Hu K, Zheng H, Zhang S, Liu X, Ma M, Zhao H. Two alternative splicing variants of a wheat gene TaNAK1, TaNAK1.1 and TaNAK1.2, differentially regulate flowering time and plant architecture leading to differences in seed yield of transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1014176. [PMID: 36531344 PMCID: PMC9751850 DOI: 10.3389/fpls.2022.1014176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
In wheat production, appropriate flowering time and ideal plant architecture are the prerequisites for high grain yield. Alternative splicing (AS) is a vital process that regulates gene expression at the post-transcriptional level, and AS events in wheat have been found to be closely related to grain-related traits and abiotic stress tolerance. However, AS events and their biological roles in regulating flowering time and plant architecture in wheat remain unclear. In this study, we report that TaNAK1 undergoes AS, producing three splicing variants. Molecular characterization of TaNAK1 and its splicing variants demonstrated that all three protein isoforms have a conserved NB-ARC domain and a protein kinase domain, but the positions of these two domains and the length of the protein kinase domains are different among them, implying that they may have different three-dimensional structures and therefore have different functions. Further investigations showed that the two splicing variants of TaNAK1, TaNAK1.1 and TaNAK1.2, exhibited different expression patterns during wheat growth and development, while the other one, TaNAK1.3, was not detected. Subcellular localization demonstrated that TaNAK1.1 was mainly localized in the cytoplasm, while TaNAK1.2 was localized in the nucleus and cytoplasm. Both TaNAK1.1 and TaNAK1.2 exhibit protein kinase activity in vitro. Ectopic expression of TaNAK1.1 and TaNAK1.2 in Arabidopsis demonstrated that these two splicing variants play opposite roles in regulating flowering time and plant architecture, resulting in different seed yields. TaNAK1.2 positive regulates the transition from vegetative to reproductive growth, plant height, branching number, seed size, and seed yield of Arabidopsis, while TaNAK1.1 negatively regulates these traits. Our findings provide new gene resource for regulating flowering time and plant architecture in crop breeding for high grain yield.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meng Ma
- *Correspondence: Huixian Zhao, ; Meng Ma,
| | | |
Collapse
|
45
|
Ruggiero A, Punzo P, Van Oosten MJ, Cirillo V, Esposito S, Costa A, Maggio A, Grillo S, Batelli G. Transcriptomic and splicing changes underlying tomato responses to combined water and nutrient stress. FRONTIERS IN PLANT SCIENCE 2022; 13:974048. [PMID: 36507383 PMCID: PMC9732681 DOI: 10.3389/fpls.2022.974048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Tomato is a horticultural crop of high economic and nutritional value. Suboptimal environmental conditions, such as limited water and nutrient availability, cause severe yield reductions. Thus, selection of genotypes requiring lower inputs is a goal for the tomato breeding sector. We screened 10 tomato varieties exposed to water deficit, low nitrate or a combination of both. Biometric, physiological and molecular analyses revealed different stress responses among genotypes, identifying T270 as severely affected, and T250 as tolerant to the stresses applied. Investigation of transcriptome changes caused by combined stress in roots and leaves of these two genotypes yielded a low number of differentially expressed genes (DEGs) in T250 compared to T270, suggesting that T250 tailors changes in gene expression to efficiently respond to combined stress. By contrast, the susceptible tomato activated approximately one thousand and two thousand genes in leaves and roots respectively, indicating a more generalized stress response in this genotype. In particular, developmental and stress-related genes were differentially expressed, such as hormone responsive factors and transcription factors. Analysis of differential alternative splicing (DAS) events showed that combined stress greatly affects the splicing landscape in both genotypes, highlighting the important role of AS in stress response mechanisms. In particular, several stress and growth-related genes as well as transcription and splicing factors were differentially spliced in both tissues. Taken together, these results reveal important insights into the transcriptional and post-transcriptional mechanisms regulating tomato adaptation to growth under reduced water and nitrogen inputs.
Collapse
Affiliation(s)
- Alessandra Ruggiero
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | - Paola Punzo
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | | | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples, Federico II, Portici, Italy
| | - Salvatore Esposito
- CREA-CI, Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Foggia, Italy
| | - Antonello Costa
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples, Federico II, Portici, Italy
| | - Stefania Grillo
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | - Giorgia Batelli
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| |
Collapse
|
46
|
Zhou T, He Y, Zeng X, Cai B, Qu S, Wang S. Comparative Analysis of Alternative Splicing in Two Contrasting Apple Cultivars Defense against Alternaria alternata Apple Pathotype Infection. Int J Mol Sci 2022; 23:ijms232214202. [PMID: 36430679 PMCID: PMC9693243 DOI: 10.3390/ijms232214202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Alternaria blotch disease, caused by the Alternaria alternata apple pathotype (A. alternata AP), is one of the most serious fungal diseases in apples. Alternative splicing (AS), one of the pivotal post-transcriptional regulatory mechanisms, plays essential roles in various disease resistance responses. Here, we performed RNA-Seq for two apple cultivars (resistant cultivar 'Jonathan' (J) and susceptible cultivar 'Starking Delicious' (SD)) infected by A. alternata AP to further investigate their AS divergence. In total, 1454, 1780, 1367 and 1698 specifically regulated differential alternative splicing (DAS) events were detected in J36, J72, SD36 and SD72 groups, respectively. Retained intron (RI) was the dominant AS pattern. Conformably, 642, 764, 585 and 742 uniquely regulated differentially spliced genes (DSGs) were found during A. alternata AP infection. Comparative analysis of AS genes in differential splicing and expression levels suggested that only a small proportion of DSGs overlapped with differentially expressed genes (DEGs). Gene ontology (GO) enrichment analysis demonstrated that the DSGs were significantly enriched at multiple levels of gene expression regulation. Briefly, the specific AS was triggered in apple defense against A. alternata AP. Therefore, this study facilitates our understanding on the roles of AS regulation in response to A. alternata AP infection in apples.
Collapse
|
47
|
Yang L, Yang L, Zhao C, Liu J, Tong C, Zhang Y, Cheng X, Jiang H, Shen J, Xie M, Liu S. Differential alternative splicing genes and isoform co-expression networks of Brassica napus under multiple abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1009998. [PMID: 36311064 PMCID: PMC9608124 DOI: 10.3389/fpls.2022.1009998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Alternative splicing (AS) is an important regulatory process that affects plant development and stress responses by greatly increasing the complexity of transcriptome and proteome. To understand how the AS landscape of B. napus changes in response to abiotic stresses, we investigated 26 RNA-seq libraries, including control and treatments with cold, dehydration, salt, and abscisic acid (ABA) at two different time points, to perform comparative alternative splicing analysis. Apparently, AS events increased under all stresses except dehydration for 1 h, and intron retention was the most common AS mode. In addition, a total of 357 differential alternative splicing (DAS) genes were identified under four abiotic stresses, among which 81 DAS genes existed in at least two stresses, and 276 DAS genes were presented under only one stress. A weighted gene co-expression network analysis (WGCNA) based on the splicing isoforms, rather than the genes, pinpointed out 23 co-expression modules associated with different abiotic stresses. Among them, a number of significant hub genes were also found to be DAS genes, which encode key isoforms involved in responses to single stress or multiple stresses, including RNA-binding proteins, transcription factors, and other important genes, such as RBP45C, LHY, MYB59, SCL30A, RS40, MAJ23.10, and DWF4. The splicing isoforms of candidate genes identified in this study could be a valuable resource for improving tolerance of B. napus against multiple abiotic stresses.
Collapse
Affiliation(s)
- Lingli Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Li Yang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Chuanji Zhao
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jie Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chaobo Tong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuanyuan Zhang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaohui Cheng
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Huifang Jiang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Meili Xie
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
48
|
Fu Q, Zhang P, Zhao S, Li Y, Li X, Cao M, Yang N, Li C. A novel full-length transcriptome resource from multiple immune-related tissues in turbot (Scophthalmus maximus) using Pacbio SMART sequencing. FISH & SHELLFISH IMMUNOLOGY 2022; 129:106-113. [PMID: 35995372 DOI: 10.1016/j.fsi.2022.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Turbot (Scophthalmus maximus) is an important cold-water economic fish. However, the production and development of turbot industry has been constantly hindered by the frequent occurrence of some diseases. Lacking full-length transcriptome for turbot limits immune gene discoveries and gene structures analysis. Therefore, we generated a full-length transcriptome using mixed immune-related tissues of turbot with PacBio Sequel platform. In this study, a total of 31.7 Gb high quality data were generated with the average subreads length of 2618 bp. According to the presence of 5' and 3' primers as well as poly (A) tails, FL (Full-length) and NFL (Non-full-length) isoforms were obtained. Meanwhile, we identified 32,003 non-redundant transcripts, 76.02% of which was novel isoforms of known genes. In addition, 12,176 alternative splicing (AS) events, 6614 polyadenylation (APA) events, 1905 transcription factors, and 2703 lncRNAs were identified. This work is a comprehensive report on the full-length transcriptome of immune-related tissues of turbot, and it also provides valuable molecular resources for future research on the adaptation mechanisms and functional genomics of turbot.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Pei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shoucong Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xingchun Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
49
|
Guo J, Wang Z, Qu L, Hu Y, Lu D. Transcriptomic and alternative splicing analyses provide insights into the roles of exogenous salicylic acid ameliorating waxy maize seedling growth under heat stress. BMC PLANT BIOLOGY 2022; 22:432. [PMID: 36076169 PMCID: PMC9461148 DOI: 10.1186/s12870-022-03822-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Salicylic acid (SA) is a phytohormone which works to regulate the abiotic stress response of plants. However, the molecular mechanism by which SA mediates heat tolerance in waxy maize (Zea mays L. sinsensis Kulesh) remains unknown. RESULTS Two varieties of waxy maize seedlings, heat-tolerant 'Yunuo7' (Y7) and heat-sensitive 'Suyunuo5' (S5), were pretreated with SA prior to heat stress (HTS). After treatment, physiological and transcriptomic changes were analyzed. Compared with HTS, the exogenous application of SA enhanced the shoot dry weight, the activities of antioxidant enzymes (e.g., SOD, POD, CAT and APX), and the concentration of endogenous phytohormones (e.g., SA, ABA, IAA, GA3), while decreased the MDA content. Transcriptome analysis showed that the number of differentially expressed genes (DEGs) identified in the control (CK) vs HTS and HTS vs HTS + SA comparisons were more in S5 than in Y7. HTS induced the downregulation of genes involved in photosynthesis and the upregulation of genes encoding heat shock transcription factors (HSFs) and heat shock proteins (HSPs). Compared with HTS, SA pretreatment reversed the expression of 5 photosynthesis-related genes, 26 phytohormone-related genes, and all genes encoding HSFs and HSPs in S5. Furthermore, the number of alternative splicing (AS) events increased under HTS treatment for both varieties, while decreased under SA pretreatment of S5. Differentially spliced genes (DSGs) showed little overlap with DEGs, and DEGs and DSGs differed significantly in functional enrichment. CONCLUSIONS Physiological and transcriptional together indicated that HTS and SA pretreatment had a greater effect on S5 than Y7. Additionally, it appears that transcriptional regulation and AS work synergistically to enhance thermotolerance in heat-sensitive waxy maize. Our study revealed the regulatory effects and underlying molecular mechanisms of SA on waxy maize seedling under HTS.
Collapse
Affiliation(s)
- Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zitao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Lingling Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yifan Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College of Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
50
|
Liu L, Wu D, Gu Y, Liu F, Liu B, Mao F, Yi X, Tang T, Zhao X. Comprehensive profiling of alternative splicing landscape during secondary dormancy in oilseed rape ( Brassica napus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:44. [PMID: 37313517 PMCID: PMC10248609 DOI: 10.1007/s11032-022-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Alternative splicing is a general mechanism that regulates gene expression at the post-transcriptional level, which increases the transcriptomic diversity. Oilseed rape (Brassica napus L.), one of the main oil crops worldwide, is prone to secondary dormancy. However, how alternative splicing landscape of oilseed rape seed changes in response to secondary dormancy is unknown. Here, we analyzed twelve RNA-seq libraries from varieties "Huaiyou-SSD-V1" and "Huaiyou-WSD-H2" which exhibited high (> 95%) and low (< 5%) secondary dormancy potential, respectively, and demonstrated that alternative splicing changes led to a significant increase with the diversity of the transcripts in response to secondary dormancy induction via polyethylene glycol 6000 (PEG6000) treatment. Among the four basic alternative splicing types, intron retention dominates, and exon skipping shows the rarest frequency. A total of 8% of expressed genes had two or more transcripts after PEG treatment. Further analysis revealed that global isoform expression percentage variations in alternative splicing in differently expressed genes (DEGs) is more than three times as much as those in non-DEGs, suggesting alternative splicing change is associated with the transcriptional activity change in response to secondary dormancy induction. Eventually, 342 differently spliced genes (DSGs) associated with secondary dormancy were identified, five of which were validated by RT-PCR. The number of the overlapped genes between DSGs and DEGs associated with secondary dormancy was much less than that of either DSGs or DEGs, suggesting that DSGs and DEGs may independently regulates secondary dormancy. Functional annotation analysis of DSGs revealed that spliceosome components are overrepresented among the DSGs, including small nuclear ribonucleoprotein particles (snRNPs), serine/arginine-rich (SR) proteins, and other splicing factors. Thus, it is proposed that the spliceosome components could be exploited to reduce secondary dormancy potential in oilseed rape. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01314-8.
Collapse
Affiliation(s)
- Lei Liu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Depeng Wu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Yujuan Gu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei 066600 China
| | - Fuxia Liu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Bin Liu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
| | - Feng Mao
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
| | - Xin Yi
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Tang Tang
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| | - Xiangxiang Zhao
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, 223300 China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’an, 223300 China
| |
Collapse
|