1
|
Su C, Li X, Dong Y, Daniel B, Liu C, Xing Y, Ma D. Identification and functional analysis of wheat lincRNAs in response to Fusarium graminearum infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109898. [PMID: 40239247 DOI: 10.1016/j.plaphy.2025.109898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
Intergenic long non-coding RNAs (lincRNAs) have recently been recognized as pivotal regulators in plant-pathogen interactions. However, the specific regulatory mechanisms of lincRNAs responding to Fusarium graminearum (F. graminearum) infection remain largely unexplored. Here, we performed time-series transcriptome profiling (0, 24, 48, and 72 h post-inoculation) and systematic identification of lincRNAs. A total of 1238 expressed lincRNAs were identified, among which 548 were differentially expressed lincRNAs during the time course of F. graminearum infection. We further predicted cis-regulatory lincRNA-mRNA pairs, comprising 347 lincRNAs and potential 1015 target genes, which were found to be mainly involved in amino acid metabolism and biosynthetic pathways. Moreover, 19 lincRNAs were predicted as putative precursors or endogenous target mimics of miRNAs. Subsequently, we verified that two lincRNAs, MSTRG.6494 and MSTRG.32080, showed strong transcriptional responses to F. graminearum infection by quantitative real-time PCR (qPCR) screening. Silencing MSTRG.6494 reduced the expression level of defense-related genes, resulting in reduced resistance to fungal pathogenicity. Meanwhile, the expression level of the potential target gene ATP synthase subunit beta (TaATP2) was significantly decreased in MSTRG.6494-silenced plants infected with F. graminearum. Overall, we performed the genome-wide identification of lincRNAs and their possible regulatory networks during F. graminearum infection-related process, confirming that MSTRG.6494 participates in wheat resistance to F. graminearum, may be via targeting TaATP2 to enhance defense responses. Our findings provide new insights into the regulatory mechanism of lincRNAs for Fusarium head blight (FHB) resistance, suggesting this mechanism as an essential strategy for protecting wheat from F. graminearum.
Collapse
Affiliation(s)
- Chang Su
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Xue Li
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China; Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ye Dong
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Bimpong Daniel
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Chao Liu
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China; College of biochemical Engineering, Jingzhou Institute of Technology, Jingzhou, 434020, China
| | - Yujun Xing
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Dongfang Ma
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
2
|
Chen X, Chen Z, Watts R, Luo H. Non-coding RNAs in plant stress responses: molecular insights and agricultural applications. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40408566 DOI: 10.1111/pbi.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/25/2025]
Abstract
Non-coding RNAs (ncRNAs) have emerged as crucial regulators in plant responses to environmental stress, orchestrating complex networks that finetune gene expression under both abiotic and biotic challenges. To elucidate this intricate ncRNA crosstalk, this review comprehensively summarizes recent advances in understanding the mechanisms of key regulatory ncRNAs including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), tRNA derived fragments (tRFs) and small interfering RNAs (siRNAs) in mediating plant adaptations to stress conditions. We discuss molecular insights into how these ncRNAs modulate stress signalling pathways, control hormonal responses and interact through elaborate crosstalk mechanisms. We also emphasize emerging biotechnological strategies that leverage both innate and artificial ncRNAs as well as potential approaches for finetuning ncRNA levels to engineer stress-resilient crops. Collectively, continued advances in high-throughput sequencing, functional genomics and computational modelling will deepen our understanding of ncRNA network mediated stress responses, ultimately guiding the design of robust climate-resilient crops.
Collapse
Affiliation(s)
- Xiaotong Chen
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Zhaohui Chen
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Ryan Watts
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
3
|
Attallah C, Conti G, Zuljan F, Zavallo D, Ariel F. Noncoding RNAs as tools for advancing translational biology in plants. THE PLANT CELL 2025; 37:koaf054. [PMID: 40090356 PMCID: PMC12079378 DOI: 10.1093/plcell/koaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 03/18/2025]
Abstract
Noncoding RNAs (ncRNAs), once considered the "dark matter" of the genome, have emerged as critical regulators of gene expression in plants. Research initially focused on model organisms has laid the groundwork for harnessing the potential of ncRNAs in agriculture, particularly for crop protection, improvement, and modulation. This review explores the role of long and small ncRNAs in plant biology, highlighting their application as powerful tools in agricultural biotechnology. We examine the latest strategies for ncRNA expression and delivery in crops, including transgenic and nontransgenic approaches, as well as emerging technologies that enable precise and efficient modulation of gene activity in plants and pathogens. Additionally, we provide a comprehensive overview of the current state-of-the-art in the regulation of RNA-based products, addressing the challenges and opportunities for integrating these innovations into sustainable agricultural practices. As the regulatory landscape evolves, understanding the safety, efficacy, and environmental impact of ncRNA-based technologies will be crucial for their successful deployment. By leveraging the advances in plant science research, long and small ncRNAs hold promise for designing highly specific tools to boost crop productivity while preserving genetic diversity, contributing to global food security and sustainable agriculture.
Collapse
Affiliation(s)
- Carolina Attallah
- APOLO Biotech, Santa Fe de la Vera Cruz, CP3000 Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP1425 Buenos Aires, Argentina
- Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
| | - Gabriela Conti
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO)—Instituto Nacional de Tecnología Agropecuaria (INTA) -CONICET, CP1686 Hurlingham, Buenos Aires, Argentina
- Facultad de Agronomía-Universidad de Buenos Aires (UBA), CP1417 Buenos Aires, Argentina
| | - Federico Zuljan
- APOLO Biotech, Santa Fe de la Vera Cruz, CP3000 Santa Fe, Argentina
| | - Diego Zavallo
- APOLO Biotech, Santa Fe de la Vera Cruz, CP3000 Santa Fe, Argentina
| | - Federico Ariel
- Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, CP1428 Buenos Aires, Argentina
| |
Collapse
|
4
|
Nardeli SM, de Freitas ALA, Arge LWP, Macedo LLP, Ribeiro-Alves M, Corrêa RL, Grossi-de-Sa MF, Alves-Ferreira M. Blooming resilience: transcriptomic insights into cotton flower responses to boll weevil infestation. PLANT CELL REPORTS 2025; 44:113. [PMID: 40327114 DOI: 10.1007/s00299-025-03503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
KEY MESSAGE Cotton plants undergo a drastic transcriptional reprogramming after cotton boll weevil infestation, modulating several defense pathways to cope with the damage. The global demand for cotton fiber continues to rise, but pests and pathogens significantly hinder cotton production, causing substantial losses. Among these, the cotton boll weevil (Anthonomus grandis) is one of the most destructive pests. To investigate the molecular responses of cotton (Gossypium hirsutum) to boll weevil infestation, we evaluated the global gene expression of floral buds using mRNA-seq. Additionally, we analyzed the expression of non-coding RNAs, including microRNAs (miRNAs) and long intergenic non-coding RNAs (lincRNAs). Infestation by cotton boll weevil larvae triggered a rapid and drastic transcriptional reprogramming, with 1,656 and 1.698 genes modulated after two and twelve hours, respectively. Gene ontology enrichment analysis revealed significant regulation of defense-related and developmental processes, including photosynthesis, primary metabolism, and cell organization. Transcription factor families such as ERF, WRKY, GRAS, and NAC were strongly affected, highlighting their roles in coordinating defense responses. The jasmonate pathway showed intensive modulation, alongside secondary metabolite pathways like terpenoids and phenylpropanoids, which contribute to plant defense mechanisms. Non-coding RNAs also played a critical role in the response. We identified 921 unique known and novel miRNAs, with 36 modulated by the infestation, and predicted 98,850 putative lincRNAs, several of which were differentially expressed. Understanding the genetic and molecular mechanisms underlying cotton's defense against boll weevil, particularly during early infestation stages, is vital for developing biotechnological strategies to reduce pest damage. Our findings provide critical insights to enhance cotton resilience against herbivores.
Collapse
Affiliation(s)
- Sarah Muniz Nardeli
- Departament of Genetics, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 219410-970, Brazil
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Ana Luiza Atella de Freitas
- Departament of Genetics, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 219410-970, Brazil
| | - Luis Willian Pacheco Arge
- Departament of Genetics, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 219410-970, Brazil
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108-6026, USA
| | | | - Marcelo Ribeiro-Alves
- Fundação Oswaldo Cruz - (FIOCRUZ), Instituto Nacional de Infectologia Evandro Chagas, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Régis Lopes Corrêa
- Departament of Genetics, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 219410-970, Brazil
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cientificas (CSIC) - Universitat de València (UV), 46980, Paterna, Valencia, Spain
| | | | - Marcio Alves-Ferreira
- Departament of Genetics, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 219410-970, Brazil.
| |
Collapse
|
5
|
Hussein A, Abdelsattar M, Radwan KH, Osman E, Abdeldaym EA, Abdelhadi AA, Abdallah NA. Streamlining the defense mechanism involving miRNA/mRNA and phytohormones during mycorrhiza-fusarium infecting tomato roots. BRAZ J BIOL 2025; 84:e280450. [PMID: 40197894 DOI: 10.1590/1519-6984.280450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 04/10/2025] Open
Abstract
This study was carried out to identify the relationship between miRNAs/ targets and phytohormone-related genes associated with Rhizophagus irregularis/ F. oxysporum f. sp. lycopersici (Fol) interaction through post-infection of tomato roots at different stages. Furthermore, to address the role of miRNA-mediated families in regulating plant hormone crosstalk during plant-microbe interactions, including salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), auxin (AUX) and 5 ethylene (ET). In this study, Expression levels of ethylene-responsive genes reflect antagonism between arbuscular mycorrhizal fungi (AMF) and ET, re-modulating immunoregulatory capacity in tomato. On the other hand, our data reinforce that overexpression of AP2 and ERF1 delay senescence in Fol-infected tomato plants by downregulating the expression level of SPL3. Moreover, a balance between TCP4, miR164, and miR319b transcript levels suggests that their interaction attenuates senescence under AMF infection. Measurements of phytohormone production under AMF/Fol infection at 30 days post-inoculation (dpi) showed significantly lower hormone production in the resistant genotype (Heinz 'Hz') compared to the susceptible genotype (Castle Rock 'CR') by 36, 17, and 14% for ET, ABA, and JA, respectively. These findings potentially imply that modifications in Heinz's hormonal signaling are prompting host changes, which lead to decreased phytohormone levels. This study provides an applied basis for further research on the molecular mechanism and challenges associated with the continuous cropping of tomato by R. irregulari under the deleterious effects of Fusarium on late stages of root infection.
Collapse
Affiliation(s)
- A Hussein
- Agricultural Research Center - ARC, Agricultural Genetic Engineering Research Institute - AGERI, Plant Molecular Biology Department, Giza, Egypt
| | - M Abdelsattar
- Agricultural Research Center - ARC, Agricultural Genetic Engineering Research Institute - AGERI, Plant Molecular Biology Department, Giza, Egypt
| | - K H Radwan
- Agricultural Research Center - ARC, Agricultural Genetic Engineering Research Institute - AGERI, Microbial Molecular Biology Department, Giza, Egypt
- Academy of Scientific Research and Technology - ASRT, National Biotechnology Network of Expertise, Egypt
| | - E Osman
- Cairo University, Faculty of Agriculture, Department of Genetics, Giza, Egypt
| | - E A Abdeldaym
- Cairo University, Faculty of Agriculture, Department of Vegetable Crops, Giza, Egypt
| | - A A Abdelhadi
- Academy of Scientific Research and Technology - ASRT, National Biotechnology Network of Expertise, Egypt
- Cairo University, Faculty of Agriculture, Department of Genetics, Giza, Egypt
| | - N A Abdallah
- Academy of Scientific Research and Technology - ASRT, National Biotechnology Network of Expertise, Egypt
- Cairo University, Faculty of Agriculture, Department of Genetics, Giza, Egypt
| |
Collapse
|
6
|
Li Y, Zhang J, Qi C, Mo Q, Zhong K, Liu J, Cai H, Li J, Chen J, Yang J, Liu P. lncRNA-Encoded Small Peptide Promotes Viral Infection. MOLECULAR PLANT PATHOLOGY 2025; 26:e70084. [PMID: 40242941 PMCID: PMC12004088 DOI: 10.1111/mpp.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
The small open reading frames (ORFs) embedded in lncRNA have been identified to encode biologically functional peptides in many species. However, the function of lncRNA-encoded small peptides in the plant antiviral response remains unclear. In this study, an lncRNA Talnc54748 was identified, which encodes the small peptide ORF4. Transgenic Nicotiana benthamiana overexpressing ORF4 could enhance wheat yellow mosaic virus (WYMV) infection. RNA-sequencing analysis revealed that many genes in plant hormone signalling and MAPK signalling pathways were reduced in ORF4-overexpressing lines. The function of SAUR21 and MKK2, involved in plant hormone signalling and MAPK signalling pathways, respectively, was investigated by virus-induced gene silencing assay. Silencing SAUR21 or MKK2 in wheat and N. benthamiana enhanced WYMV infection. Transgenic overexpression of ORF4 not only enhanced the accumulation of tobacco mosaic virus (TMV) and tomato mosaic virus (ToMV), but also promoted Phytophthora capsici or Pseudomonas syringae pv. tomato DC3000 infection. Our results demonstrated that an lncRNA-encoded small peptide plays an important role in plant immunity and provides new insights into the roles of this lncRNA-encoded small peptide in the plant antiviral response.
Collapse
Affiliation(s)
- Yaoyao Li
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo UniversityNingboChina
| | - Juan Zhang
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo UniversityNingboChina
| | - Chunyan Qi
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo UniversityNingboChina
| | - Qitao Mo
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo UniversityNingboChina
| | - Kaili Zhong
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo UniversityNingboChina
| | - Jiaqian Liu
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo UniversityNingboChina
| | - Hailin Cai
- Hunan Tobacco Research InstituteChangshaHunanChina
| | - Jianyong Li
- Hunan Tobacco Research InstituteChangshaHunanChina
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo UniversityNingboChina
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo UniversityNingboChina
| | - Peng Liu
- State Key Laboratory for Quality and Safety of Agro‐Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo UniversityNingboChina
| |
Collapse
|
7
|
Yang F, Wu X, Chen L, Qi M. The Tomato lncRNA47258-miR319b-TCP Module in Biocontrol Bacteria Sneb821 Induced Plants Resistance to Meloidogyne incognita. Pathogens 2025; 14:256. [PMID: 40137741 PMCID: PMC11945786 DOI: 10.3390/pathogens14030256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 03/29/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) represent a class of non-coding RNAs. In the study of Pseudomonas putida Sneb821-induced tomato resistance to Meloidogyne incognita, reverse transcription polymerase chain reaction (RT-PCR) was employed to validate 12 lncRNAs in tomato. Among them, the lncRNA47258/miR319b/TCP molecular regulatory module was likely implicated in the process of Sneb821-induced tomato resistance against M. incognita. Through the application of tomato hairy root and virus-induced gene silencing (VIGS) technologies for the investigation of lncRNA47258, it was determined that lncRNA47258 could target the TCP (Solyc07g062681.1) gene and modulate the metabolic pathway of tomato jasmonic acid-related indices, thereby impeding the infection of M. incognita. Moreover, the overexpression of the target gene TCP (Solyc07g062681.1) using tomato hairy root technology demonstrated that it could regulate the jasmonic acid synthesis pathway in tomato, consequently obstructing the infection and suppressing the development of M. incognita. Collectively, lncRNA47258/miR319b/TCP (Solyc07g062681.1) was preliminarily verified to be involved in the Sneb821-induced resistance process against M. incognita in tomato.
Collapse
Affiliation(s)
- Fan Yang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China;
| | - Xiaoxiao Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
| | - Lijie Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China;
| |
Collapse
|
8
|
Du T, Meng D, Cao H, Lian Y, Wu R, Liu T, Wang T, Qin C, Song Z, Dong B, Fu Y, Yang Q. Sorbitol induces flavonoid accumulation as a secondary signal via the nanoencapsulated SPc/lncRNA809-MmNAC17 module against Alternaria alternata in Malus micromalus. MOLECULAR HORTICULTURE 2025; 5:5. [PMID: 39885599 PMCID: PMC11783756 DOI: 10.1186/s43897-024-00125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/29/2024] [Indexed: 02/01/2025]
Abstract
Sorbitol is an important primary metabolite that serves as both a carbon source and signal to pathogens. The leaf diseases caused by Alternata alternata are particularly serious in crabapple (Malus micromalus). Here, we found that sorbitol can enhance the resistance of crabapple to A. alternata R1 by increasing the content of flavonoid catechin. Nanomaterials as an emerging technology tool can efficiently deliver lncRNA to target cells. Here, we found nanoencapsulated lncRNA809 (SPc/lncRNA809) exhibits significant resistance to R1strain. To elucidate the effect of SPc/lncRNA809 on flavonoids catechin synthesis, we observed the expression of lncRNA809 was consistent with that of MmNAC17 which regulates the synthesis of catechin and both could jointly respond to sorbitol. MmNAC17 induced the accumulation of catechin in vivo by directly activating the expression of catechin synthase genes MmF3H and MmLAR. Correspondingly, overexpression of lncRNA809 significantly upregulated the expression of MmNAC17 and enhanced the disease resistance. This study reveals for the first time that sorbitol positively regulates the expression of MmNAC17 through lncRNA809, promoting the accumulation of catechin via the expression of MmF3H and MmLAR, ultimately improving the defense response of M. micromalus. This research provides a crucial foundation for the establishment and application of sorbitol-based signaling regulatory networks.
Collapse
Affiliation(s)
- Tingting Du
- Beijing Forestry University, Beijing, 100000, China
| | - Dong Meng
- Beijing Forestry University, Beijing, 100000, China
| | - Hongyan Cao
- Beijing Forestry University, Beijing, 100000, China
| | - Yi Lian
- Beijing Forestry University, Beijing, 100000, China
| | - Rui Wu
- Beijing Forestry University, Beijing, 100000, China
| | - Tengyue Liu
- Beijing Forestry University, Beijing, 100000, China
| | - Tianyi Wang
- Beijing Forestry University, Beijing, 100000, China
| | - Cai Qin
- Beijing Forestry University, Beijing, 100000, China
| | - Zhihua Song
- Beijing Forestry University, Beijing, 100000, China
| | - Biying Dong
- Beijing Forestry University, Beijing, 100000, China
| | - Yujie Fu
- Beijing Forestry University, Beijing, 100000, China
| | - Qing Yang
- Beijing Forestry University, Beijing, 100000, China.
| |
Collapse
|
9
|
Shi H, Ding G, Wang Y, Wang J, Wang X, Wang D, Lu P. Genome-wide identification of long non-coding RNA for Botrytis cinerea during infection to tomato (Solanum lycopersicum) leaves. BMC Genomics 2025; 26:7. [PMID: 39762752 PMCID: PMC11702200 DOI: 10.1186/s12864-024-11171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Long non-coding RNA (lncRNA) plays important roles in animals and plants. In filamentous fungi, however, their biological function in infection stage has been poorly studied. Here, we investigated the landscape and regulation of lncRNA in the filamentous plant pathogenic fungus Botrytis cinerea by strand-specific RNA-seq of multiple infection stages. In total, 1837 lncRNAs have been identified in B. cinerea. A large number of lncRNAs were found to be antisense to mRNAs, forming 743 sense-antisense pairs, of which 55 antisense lncRNAs and their respective sense transcripts were induced in parallel as the infection stage. Although small RNAs were produced from these overlapping loci, antisense lncRNAs appeared not to be involved in gene silencing pathways. In addition, we found the alternative splicing events occurred in lncRNA. These results highlight the developmental stage-specific nature and functional potential of lncRNA expression in the infection stage and provide fundamental resources for studying infection stage-induced lncRNAs.
Collapse
Affiliation(s)
- Haojie Shi
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Guijuan Ding
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yun Wang
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jiaqi Wang
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiaoli Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Dan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Ping Lu
- The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
10
|
Lei MQ, He RR, Zhou YF, Yang L, Zhang ZF, Yuan C, Zhao WL, Cheng Y, Lian JP, Zhang YC, Wang WT, Yu Y, Chen YQ. The long noncoding RNA ALEX1 confers a functional phase state of ARF3 to enhance rice resistance to bacterial pathogens. MOLECULAR PLANT 2025; 18:114-129. [PMID: 39659014 DOI: 10.1016/j.molp.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Rice bacterial blight is a devastating disease worldwide, causing significant yield losses. Understanding how plants defend against microbial infection is critical for sustainable crop production. In this study, we show that ALEX1, a previously identified pathogen-induced long noncoding RNA, localizes to the nucleus and directly binds AUXIN RESPONSE FACTOR 3 (ARF3). We showed that ARF3 forms the condensates in the nucleus via its intrinsically disordered middle region (MR), and that these ARF3 condensates display solid-like properties. We further revealed that ALEX1 directly binds the MR of ARF3 to regulate ARF3 condensate dynamics and promote ARF3 homodimerization. The dispersed, dimeric form of ARF3, referred to as its functional phase state, enhances its ability to transcriptionally repress the expression of downstream target genes such as JAZ13, thereby modulating the jasmonic acid signaling pathway and enhancing pathogen resistance in rice. Collectively, this study reveals the role of a long noncoding RNA in regulating protein condensation and complex assembly, thus contributing to plant pathogen resistance.
Collapse
Affiliation(s)
- Meng-Qi Lei
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Rui-Rui He
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Yan-Fei Zhou
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Lu Yang
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Zhen-Fei Zhang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Chao Yuan
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Wen-Long Zhao
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Yu Cheng
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Jian-Ping Lian
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Wen-Tao Wang
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Yang Yu
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P.R. China; Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China.
| | - Yue-Qin Chen
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P.R. China.
| |
Collapse
|
11
|
Zhao Z, Yang Y, Iqbal A, Wu Q, Zhou L. Biological Insights and Recent Advances in Plant Long Non-Coding RNA. Int J Mol Sci 2024; 25:11964. [PMID: 39596034 PMCID: PMC11593582 DOI: 10.3390/ijms252211964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Long non-coding RNA (lncRNA) refers to an RNA molecule longer than 200 nucleotides (nt) that plays a significant role in regulating essential molecular and biological processes. It is commonly found in animals, plants, and viruses, and is characterized by features such as epigenetic markers, developmental stage-specific expression, and tissue-specific expression. Research has shown that lncRNA participates in anatomical processes like plant progression, while also playing a crucial role in plant disease resistance and adaptation mechanisms. In this review, we provide a concise overview of the formation mechanism, structural characteristics, and databases related to lncRNA in recent years. We primarily discuss the biological roles of lncRNA in plant progression as well as its involvement in response to biotic and abiotic stresses. Additionally, we examine the current challenges associated with lncRNA and explore its potential application in crop production and breeding. Studying plant lncRNAs is highly significant for multiple reasons: It reveals the regulatory mechanisms of plant growth and development, promotes agricultural production and food security, and drives research in plant genomics and epigenetics. Additionally, it facilitates ecological protection and biodiversity conservation.
Collapse
Affiliation(s)
- Zhihao Zhao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
- Industrial Development Department, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
| | - Amjad Iqbal
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Qiufei Wu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
| | - Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Z.); (Y.Y.); (Q.W.)
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
| |
Collapse
|
12
|
Yang X, Yu R, Liu J, Xiao D, Wang C, Fu T, Yang Y, Rong K, Wang Y. Integrating multiregulatory analysis reveals the negative regulatory function of miR482a in the response of poplar to canker pathogen infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1094-1111. [PMID: 39316613 DOI: 10.1111/tpj.17039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/16/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Canker disease caused by the bacterium Lonsdalea populi is one of the most destructive diseases affecting poplar stems. However, the detailed stress response mechanisms of poplar have not been widely characterized. To explore the diverse regulatory RNA landscape and the function of key regulators in poplar subjected to L. populi stress, we integrated time-course experiment with mock-inoculation (CK) and inoculation (IN) with L. populi at the first, third, and sixth day (IN1, IN3, IN6) on Populus × euramericana cv. '74/76' (107), small RNA-seq, whole transcriptome-wide analysis, degradome analysis and transgenic experiments. A total of 98 differentially expressed (DE) miRNA, 17 974 DEmRNA, and 807 DElncRNA were identified in poplar infected by L. populi, presenting dynamic changes over the infection course. Regulatory networks among RNAs were further constructed. Notably, a network centered on ptc-miR482a in CK-vs-IN3 contained most DEGs. We show that miR482a and miR1448 are located in one transcript as a polycistron. Overexpression of pre-miR482a-miR1448 (OX482-1448) and pre-miR482a (OX482) increased poplar susceptibility to canker pathogen with reduced accumulation of reactive oxygen species, while the suppression of miR482a (STTM482) conferred poplar disease resistance. PHA7 was validated as the target of miR482a with degradome sequencing and tobacco transient co-transformation, its expression being downregulated in OX482-1448 and OX482 lines. Additionally, a series of phasiRNAs were triggered by miR482a targeting PHA7, forming regulatory cascades with more RLP, NBS-LRR, and PK genes, further verifying the defense function of miR482a. These findings provide insights for understanding the roles of ncRNAs and regulatory networks involved in poplar immunity.
Collapse
Affiliation(s)
- Xiaoqian Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, National Engineering Research Center of Tree Breeding and Ecological Restoration, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Ruen Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, National Engineering Research Center of Tree Breeding and Ecological Restoration, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jiahao Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, National Engineering Research Center of Tree Breeding and Ecological Restoration, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Dandan Xiao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, National Engineering Research Center of Tree Breeding and Ecological Restoration, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, National Engineering Research Center of Tree Breeding and Ecological Restoration, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Tiantian Fu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, National Engineering Research Center of Tree Breeding and Ecological Restoration, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yuzhang Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, National Engineering Research Center of Tree Breeding and Ecological Restoration, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Kaijing Rong
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, National Engineering Research Center of Tree Breeding and Ecological Restoration, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, National Engineering Research Center of Tree Breeding and Ecological Restoration, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
13
|
Fahad M, Tariq L, Muhammad S, Wu L. Underground communication: Long non-coding RNA signaling in the plant rhizosphere. PLANT COMMUNICATIONS 2024; 5:100927. [PMID: 38679911 PMCID: PMC11287177 DOI: 10.1016/j.xplc.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as integral gene-expression regulators underlying plant growth, development, and adaptation. To adapt to the heterogeneous and dynamic rhizosphere, plants use interconnected regulatory mechanisms to optimally fine-tune gene-expression-governing interactions with soil biota, as well as nutrient acquisition and heavy metal tolerance. Recently, high-throughput sequencing has enabled the identification of plant lncRNAs responsive to rhizosphere biotic and abiotic cues. Here, we examine lncRNA biogenesis, classification, and mode of action, highlighting the functions of lncRNAs in mediating plant adaptation to diverse rhizosphere factors. We then discuss studies that reveal the significance and target genes of lncRNAs during developmental plasticity and stress responses at the rhizobium interface. A comprehensive understanding of specific lncRNAs, their regulatory targets, and the intricacies of their functional interaction networks will provide crucial insights into how these transcriptomic switches fine-tune responses to shifting rhizosphere signals. Looking ahead, we foresee that single-cell dissection of cell-type-specific lncRNA regulatory dynamics will enhance our understanding of the precise developmental modulation mechanisms that enable plant rhizosphere adaptation. Overcoming future challenges through multi-omics and genetic approaches will more fully reveal the integral roles of lncRNAs in governing plant adaptation to the belowground environment.
Collapse
Affiliation(s)
- Muhammad Fahad
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Leeza Tariq
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Sajid Muhammad
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liang Wu
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
14
|
Numan M, Sun Y, Li G. Exploring the emerging role of long non-coding RNAs (lncRNAs) in plant biology: Functions, mechanisms of action, and future directions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108797. [PMID: 38850732 DOI: 10.1016/j.plaphy.2024.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA transcripts that surpass 200 nucleotides in length and lack discernible coding potential. LncRNAs that have been functionally characterized have pivotal functions in several plant processes, including the regulation of flowering, and development of lateral roots. It also plays a crucial role in the plant's response to abiotic stressors and exhibits vital activities in environmental adaptation. The progress in NGS (next-generation sequencing) and functional genomics technology has facilitated the discovery of lncRNA in plant species. This review is a brief explanation of lncRNA genomics, its molecular role, and the mechanism of action in plants. The review also addresses the challenges encountered in this field and highlights promising molecular and computational methodologies that can aid in the comparative and functional analysis of lncRNAs.
Collapse
Affiliation(s)
- Mian Numan
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Yuge Sun
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Guanglin Li
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| |
Collapse
|
15
|
Xu X, Xiong F, Sun K, Xiao Q, Tan Y, Cheng X, Li X, Jin D, Fan Y. An Oxidoreductase-like Protein is Required for Verticillium dahliae Infection and Participates in the Metabolism of Host Plant Defensive Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4669-4678. [PMID: 38383289 DOI: 10.1021/acs.jafc.3c08582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Verticillium dahliae, a notorious phytopathogenic fungus, is responsible for vascular wilt diseases in numerous crops. Uncovering the molecular mechanisms underlying pathogenicity is crucial for controlling V. dahliae. Herein, we characterized a putative oxidoreductase-like protein (VdOrlp) from V. dahliae that contains a functional signal peptide. While the expression of VdOrlp was low in artificial media, it significantly increased during host infection. Deletion of VdOrlp had minimal effects on the growth and development of V. dahliae but severely impaired its pathogenicity. Metabolomic analysis revealed significant changes in organic heterocyclic compounds and phenylpropane compounds in cotton plants infected with ΔVdOrlp and V991. Furthermore, VdOrlp expression was induced by lignin, and its deletion affected the metabolism of host lignin and phenolic acids. In conclusion, our results demonstrated that VdOrlp plays an important role in the metabolism of plant phenylpropyl lignin and organic heterocyclic compounds and is required for fungal pathogenicity in V. dahliae.
Collapse
Affiliation(s)
- Xueping Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Fangjie Xiong
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Kang Sun
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Qi Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yingqing Tan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xi Cheng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xianbi Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Dan Jin
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yanhua Fan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
16
|
Zhang JH, Wei HB, Hong YH, Yang RR, Meng J, Luan YS. The lncRNA20718-miR6022-RLPs module regulates tomato resistance to Phytophthora infestans. PLANT CELL REPORTS 2024; 43:57. [PMID: 38319523 DOI: 10.1007/s00299-024-03161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
KEY MESSAGE Sl-lncRNA20718 acts as an eTM of Sl-miR6022 regulating its expression thereby affecting SlRLP6/10 expression. SlRLP6/10 regulate PRs expression, ROS accumulation, and JA/ET content thereby affecting tomato resistance to P. infestans. Tomato (Solanum lycopersicum) is an important horticultural and cash crop whose yield and quality can be severely affected by Phytophthora infestans (P. infestans). Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are widely involved in plant defense responses against pathogens. The involvement of Sl-lncRNA20718 and Sl-miR6022 in tomato resistance to P. infestans as well as the targeting of Sl-miR6022 to receptor-like protein genes (RLPs) were predicted in our previous study. However, uncertainty exists regarding their potential interaction as well as the molecular processes regulating tomato resistance. Here, we found that Sl-lncRNA20718 and Sl-miR6022 are positive and negative regulators of tomato resistance to P. infestans by gain- and loss-of-function experiments, respectively. Overexpression of Sl-lncRNA20718 decreased the expression of Sl-miR6022, induced the expression of PRs, reduced the diameter of lesions (DOLs), thereby enhanced disease resistance. A six-point mutation in the binding region of Sl-lncRNA20718 to Sl-miR6022 disabled the interaction, indicating that Sl-lncRNA20718 acts as an endogenous target mimic (eTM) of Sl-miR6022. We demonstrated that Sl-miR6022 cleaves SlRLP6/10. Overexpression of Sl-miR6022 decreases the expression levels of SlRLP6/10, induces the accumulation of reactive oxygen species (ROS) and reduces the content of JA and ET, thus inhibiting tomato resistance to P. infestans. In conclusion, our study provides detailed information on the lncRNA20718-miR6022-RLPs module regulating tomato resistance to P. infestans by affecting the expression of disease resistance-related genes, the accumulation of ROS and the phytohormone levels, providing a new reference for tomato disease resistance breeding.
Collapse
Affiliation(s)
- Jia-Hui Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Hong-Bo Wei
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yu-Hui Hong
- Key Laboratory of Biotechnology and Bioresources Utilization-Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
| | - Rui-Rui Yang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yu-Shi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
17
|
Othman SMIS, Mustaffa AF, Mohd Zahid NII, Che-Othman MH, Samad AFA, Goh HH, Ismail I. Harnessing the potential of non-coding RNA: An insight into its mechanism and interaction in plant biotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108387. [PMID: 38266565 DOI: 10.1016/j.plaphy.2024.108387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Plants have developed diverse physical and chemical defence mechanisms to ensure their continued growth and well-being in challenging environments. Plants also have evolved intricate molecular mechanisms to regulate their responses to biotic stress. Non-coding RNA (ncRNA) plays a crucial role in this process that affects the expression or suppression of target transcripts. While there have been numerous reviews on the role of molecules in plant biotic stress, few of them specifically focus on how plant ncRNAs enhance resistance through various mechanisms against different pathogens. In this context, we explored the role of ncRNA in exhibiting responses to biotic stress endogenously as well as cross-kingdom regulation of transcript expression. Furthermore, we address the interplay between ncRNAs, which can act as suppressors, precursors, or regulators of other ncRNAs. We also delve into the regulation of ncRNAs in response to attacks from different organisms, such as bacteria, viruses, fungi, nematodes, oomycetes, and insects. Interestingly, we observed that diverse microorganisms interact with distinct ncRNAs. This intricacy leads us to conclude that each ncRNA serves a specific function in response to individual biotic stimuli. This deeper understanding of the molecular mechanisms involving ncRNAs in response to biotic stresses enhances our knowledge and provides valuable insights for future research in the field of ncRNA, ultimately leading to improvements in plant traits.
Collapse
Affiliation(s)
- Syed Muhammad Iqbal Syed Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Arif Faisal Mustaffa
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Nur Irdina Izzatie Mohd Zahid
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - M Hafiz Che-Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Abdul Fatah A Samad
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, 81310, Johor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Ismanizan Ismail
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia; Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
18
|
Tian Y, Fang Y, Zhang K, Zhai Z, Yang Y, He M, Cao X. Applications of Virus-Induced Gene Silencing in Cotton. PLANTS (BASEL, SWITZERLAND) 2024; 13:272. [PMID: 38256825 PMCID: PMC10819639 DOI: 10.3390/plants13020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Virus-induced gene silencing (VIGS) is an RNA-mediated reverse genetics technique that has become an effective tool to investigate gene function in plants. Cotton is one of the most important economic crops globally. In the past decade, VIGS has been successfully applied in cotton functional genomic studies, including those examining abiotic and biotic stress responses and vegetative and reproductive development. This article summarizes the traditional vectors used in the cotton VIGS system, the visible markers used for endogenous gene silencing, the applications of VIGS in cotton functional genomics, and the limitations of VIGS and how they can be addressed in cotton.
Collapse
Affiliation(s)
- Yue Tian
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yao Fang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Kaixin Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Zeyang Zhai
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yujie Yang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Meiyu He
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Xu Cao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| |
Collapse
|
19
|
Liu Q, Xue J, Zhang L, Jiang L, Li C. Unveiling the Roles of LncRNA MOIRAs in Rice Blast Disease Resistance. Genes (Basel) 2024; 15:82. [PMID: 38254971 PMCID: PMC10815219 DOI: 10.3390/genes15010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Rice blast disease, caused by the fungal pathogen Magnaporthe oryzae, is a major threat to rice production worldwide. This study investigates the role of long non-coding RNAs (lncRNAs) in rice's response to this destructive disease, with a focus on their impacts on disease resistance and yield traits. Three specific lncRNAs coded by M. oryzae infection-responsive lncRNAs (MOIRAs), MOIRA1, MOIRA2, and MOIRA3, were identified as key regulators of rice's response to M. oryzae infection. Strikingly, when MOIRA1 and MOIRA2 were overexpressed, they exhibited a dual function: they increased rice's susceptibility to blast fungus, indicating a negative role in disease resistance, while simultaneously enhancing tiller numbers and single-plant yield, with no adverse effects on other yield-related traits. This unexpected improvement in productivity suggests the possibility of overcoming the traditional trade-off between disease resistance and crop yield. These findings provide a novel perspective on crop enhancement, offering a promising solution to global food security challenges by developing rice varieties that effectively balance disease resistance and increased productivity.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.Z.); (L.J.); (C.L.)
| | - Jiao Xue
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Lanlan Zhang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.Z.); (L.J.); (C.L.)
| | - Liqun Jiang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.Z.); (L.J.); (C.L.)
| | - Chen Li
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.Z.); (L.J.); (C.L.)
| |
Collapse
|
20
|
Li B, Feng C, Zhang W, Sun S, Yue D, Zhang X, Yang X. Comprehensive non-coding RNA analysis reveals specific lncRNA/circRNA-miRNA-mRNA regulatory networks in the cotton response to drought stress. Int J Biol Macromol 2023; 253:126558. [PMID: 37659489 DOI: 10.1016/j.ijbiomac.2023.126558] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/29/2023] [Accepted: 08/20/2023] [Indexed: 09/04/2023]
Abstract
Root and leaf are essential organs of plants in sensing and responding to drought stress. However, comparative knowledge of non-coding RNAs (ncRNAs) of root and leaf tissues in the regulation of drought response in cotton is limited. Here, we used deep sequencing data of leaf and root tissues of drought-resistant and drought-sensitive cotton varieties for identifying miRNAs, lncRNAs and circRNAs. A total of 1531 differentially expressed (DE) ncRNAs was identified, including 77 DE miRNAs, 1393 DE lncRNAs and 61 DE circRNAs. The tissue-specific and variety-specific competing endogenous RNA (ceRNA) networks of DE lncRNA-miRNA-mRNA response to drought were constructed. Furthermore, the novel drought-responsive lncRNA 1 (DRL1), specifically and differentially expressed in root, was verified to positively affect phenotypes of cotton seedlings under drought stress, competitively binding to miR477b with GhNAC1 and GhSCL3. In addition, we also constructed another ceRNA network consisting of 18 DE circRNAs, 26 DE miRNAs and 368 DE mRNAs. Fourteen circRNA were characterized, and a novel molecular regulatory system of circ125- miR7484b/miR7450b was proposed under drought stress. Our findings revealed the specificity of ncRNA expression in tissue- and variety-specific patterns involved in the response to drought stress, and uncovered novel regulatory pathways and potentially effective molecules in genetic improvement for crop drought resistance.
Collapse
Affiliation(s)
- Baoqi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Cheng Feng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Wenhao Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Simin Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Dandan Yue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
21
|
Si X, Liu H, Cheng X, Xu C, Han Z, Dai Z, Wang R, Pan C, Lu G. Integrative transcriptomic analysis unveils lncRNA-miRNA-mRNA interplay in tomato plants responding to Ralstonia solanacearum. Int J Biol Macromol 2023; 253:126891. [PMID: 37709224 DOI: 10.1016/j.ijbiomac.2023.126891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/26/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Ralstonia solanacearum, a bacterial plant pathogen, poses a significant threat to tomato (Solanum lycopersicum) production through destructive wilt disease. While noncoding RNA has emerged as a crucial regulator in plant disease, its specific involvement in tomato bacterial wilt remains limited. Here, we conducted a comprehensive analysis of the transcriptional landscape, encompassing both mRNAs and noncoding RNAs, in a tomato resistant line ('ZRS_7') and a susceptible line ('HTY_9') upon R. solanacearum inoculation using high-throughput RNA sequencing. Differential expression (DE) analysis revealed significant alterations in 7506 mRNAs, 997 lncRNAs, and 69 miRNAs between 'ZRS_7' and 'HTY_9' after pathogen exposure. Notably, 4548 mRNAs, 367 lncRNAs, and 26 miRNAs exhibited genotype-specific responses to R. solanacearum inoculation. GO and KEGG pathway analyses unveiled the potential involvement of noncoding RNAs in the response to bacterial wilt disease, targeting receptor-like kinases, cell wall-related genes, glutamate decarboxylases, and other key pathways. Furthermore, we constructed a comprehensive competing endogenous RNA (ceRNA) network incorporating 13 DE-miRNAs, 30 DE-lncRNAs, and 127 DEGs, providing insights into their potential contributions to the response against bacterial inoculation. Importantly, the characterization of possible endogenous target mimics (eTMs) of Sly-miR482e-3p via VIGS technology demonstrated the significant impact of eTM482e-3p-1 silencing on tomato's sensitivity to R. solanacearum. These findings support the existence of an eTM482e-3p-1-Sly-miR482e-3p-NBS-LRRs network in regulating tomato's response to the pathogen. Collectively, our findings shed light on the intricate interactions among lncRNAs, miRNAs, and mRNAs as underlying factors in conferring resistance to R. solanacearum in tomato.
Collapse
Affiliation(s)
- Xiuyang Si
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongyan Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xi Cheng
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chengcui Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhanghui Han
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhongren Dai
- Branch Academy of Horticultural Research, Harbin Academy of Agricultural Sciences, Harbin 150029, China
| | - Rongqing Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310022, China
| | - Changtian Pan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Zhejiang University, Hangzhou 310058, China
| | - Gang Lu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Yuan C, He RR, Zhao WL, Chen YQ, Zhang YC. Insights into the roles of long noncoding RNAs in the communication between plants and the environment. THE PLANT GENOME 2023; 16:e20277. [PMID: 36345558 DOI: 10.1002/tpg2.20277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
In addition to coding proteins, RNA molecules, especially long noncoding RNAs (lncRNAs), have well-established functions in regulating gene expression. The number of studies focused on the roles played by different types of lncRNAs in a variety of plant biological processes has markedly increased. These lncRNA roles involve plant vegetative and reproductive growth and responses to biotic and abiotic stresses. In this review, we examine the classification, mechanisms, and functions of lncRNAs and then emphasize the roles played by these lncRNAs in the communication between plants and the environment mainly with respect to the following environmental factors: temperature, light, water, salt stress, and nutrient deficiencies. We also discuss the consensus among researchers and the remaining challenges and underscore the exciting ways lncRNAs may affect the biology of plants.
Collapse
Affiliation(s)
- Chao Yuan
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen Univ., Guangzhou, 510275, P. R. China
| | - Rui-Rui He
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen Univ., Guangzhou, 510275, P. R. China
| | - Wen-Long Zhao
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen Univ., Guangzhou, 510275, P. R. China
| | - Yue-Qin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen Univ., Guangzhou, 510275, P. R. China
- MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen Univ., Guangzhou, 510275, China
| | - Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen Univ., Guangzhou, 510275, P. R. China
- MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen Univ., Guangzhou, 510275, China
| |
Collapse
|
23
|
Bhar A, Roy A. Emphasizing the Role of Long Non-Coding RNAs (lncRNA), Circular RNA (circRNA), and Micropeptides (miPs) in Plant Biotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3951. [PMID: 38068588 PMCID: PMC10708525 DOI: 10.3390/plants12233951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 02/13/2025]
Abstract
Biotic stress tolerance in plants is complex as it relies solely on specific innate immune responses from different plant species combating diverse pathogens. Each component of the plant immune system is crucial to comprehend the molecular basis underlying sustainable resistance response. Among many other regulatory components, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have recently emerged as novel regulatory control switches in plant development and stress biology. Besides, miPs, the small peptides (100-150 amino acids long) encoded by some of the non-coding portions of the genome also turned out to be paramount regulators of plant stress. Although some studies have been performed in deciphering the role of miPs in abiotic stress tolerance, their function in regulating biotic stress tolerance is still largely elusive. Hence, the present review focuses on the roles of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in combating biotic stress in plants. The probable role of miPs in plant-microbe interaction is also comprehensively highlighted. This review enhances our current understanding of plant lncRNAs, circRNAs, and miPs in biotic stress tolerance and raises intriguing questions worth following up.
Collapse
Affiliation(s)
- Anirban Bhar
- Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata 700118, India
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| |
Collapse
|
24
|
Domínguez-Rosas E, Hernández-Oñate MÁ, Fernandez-Valverde SL, Tiznado-Hernández ME. Plant long non-coding RNAs: identification and analysis to unveil their physiological functions. FRONTIERS IN PLANT SCIENCE 2023; 14:1275399. [PMID: 38023843 PMCID: PMC10644886 DOI: 10.3389/fpls.2023.1275399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Eukaryotic genomes encode thousands of RNA molecules; however, only a minimal fraction is translated into proteins. Among the non-coding elements, long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. LncRNAs are associated mainly with the regulation of the expression of the genome; nonetheless, their study has just scratched the surface. This is somewhat due to the lack of widespread conservation at the sequence level, in addition to their relatively low and highly tissue-specific expression patterns, which makes their exploration challenging, especially in plant genomes where only a few of these molecules have been described completely. Recently published high-quality genomes of crop plants, along with new computational tools, are considered promising resources for studying these molecules in plants. This review briefly summarizes the characteristics of plant lncRNAs, their presence and conservation, the different protocols to find these elements, and the limitations of these protocols. Likewise, it describes their roles in different plant physiological phenomena. We believe that the study of lncRNAs can help to design strategies to reduce the negative effect of biotic and abiotic stresses on the yield of crop plants and, in the future, help create fruits and vegetables with improved nutritional content, higher amounts of compounds with positive effects on human health, better organoleptic characteristics, and fruits with a longer postharvest shelf life.
Collapse
Affiliation(s)
- Edmundo Domínguez-Rosas
- Coordinación de Tecnología de Alimentos de Origen Vegeta, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Sonora, Mexico
| | | | | | - Martín Ernesto Tiznado-Hernández
- Coordinación de Tecnología de Alimentos de Origen Vegeta, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Sonora, Mexico
| |
Collapse
|
25
|
Cen Y, Geng S, Gao L, Wang X, Yan X, Hou Y, Wang P. Genome-Wide Identification and Expression Analysis of RLCK-VII Subfamily Genes Reveal Their Roles in Stress Responses of Upland Cotton. PLANTS (BASEL, SWITZERLAND) 2023; 12:3170. [PMID: 37687414 PMCID: PMC10490013 DOI: 10.3390/plants12173170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Receptor-like cytoplasmic kinase VII (RLCK-VII) subfamily members are vital players in plant innate immunity and are also involved in plant development and abiotic stress tolerance. As a widely cultivated textile crop, upland cotton (Gossypium hirsutum) attaches great importance to the cotton industry worldwide. To obtain details of the composition, phylogeny, and putative function of RLCK-VII genes in upland cotton, genome-wide identification, evolutionary event analysis, and expression pattern examination of RLCK-VII subfamily genes in G. hirsutum were performed. There are 129 RLCK-VII members in upland cotton (GhRLCKs) and they were divided into nine groups based on their phylogenetic relationships. The gene structure and sequence features are relatively conserved within each group, which were divided based on their phylogenetic relationships, and consistent with those in Arabidopsis. The phylogenetic analysis results showed that RLCK-VII subfamily genes evolved in plants before the speciation of Arabidopsis and cotton, and segmental duplication was the major factor that caused the expansion of GhRLCKs. The diverse expression patterns of GhRLCKs in response to abiotic stresses (temperature, salt, and drought) and V. dahliae infection were observed. The candidates that may be involved in cotton's response to these stresses are highlighted. GhRLCK7 (GhRLCK7A and D), which is notably induced by V. dahliae infection, was demonstrated to positively regulate cotton defense against V. dahliae by the loss-of-function assay in cotton. These findings shed light on the details of the RLCK-VII subfamily in cotton and provide a scaffold for the further function elucidation and application of GhRLCKs for the germplasm innovation of cotton.
Collapse
Affiliation(s)
- Yuhan Cen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China (S.G.)
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Shiyi Geng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China (S.G.)
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Linying Gao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China (S.G.)
| | - Xinyue Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China (S.G.)
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Xin Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China (S.G.)
| | - Yuxia Hou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China (S.G.)
| | - Ping Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China (S.G.)
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| |
Collapse
|
26
|
Huang H, Huang H, Xia Z, Yang Y, Jiang X, Huang C, Yang Y, Wang D, Chen Z. Sequencing, Functional Annotation, and Interaction Prediction of mRNAs and Candidate Long Noncoding RNAs Originating from Tea Leaves During Infection by the Fungal Pathogen Causing Tea Leaf Spot, Didymella bellidis. PLANT DISEASE 2023; 107:2830-2834. [PMID: 37707825 DOI: 10.1094/pdis-05-22-1240-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Tea leaf spot caused by Didymella bellidis can seriously reduce the productivity and quality of tea (Camellia sinensis var. sinensis) leaves in Guizhou Province, southwest China. Analysis of the relationship between messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) of tea could provide insights into the plant-pathogen interaction. In this study, high-throughput sequencing of mRNAs and lncRNAs from tea leaves during infection by D. bellidis was conducted using the Illumina Novaseq 6000 platform. Infection by D. bellidis hyphae resulted in up- or downregulation of 553 and 191 of the differentially expressed mRNAs (DEmRNAs), respectively. As the S gene number (total number of genes with significantly differential expression annotated in the specified Gene Ontology [GO] database), three were enriched with respect to the defense response to the fungus at the biological process level. Expression of the DEmRNAs peroxidase 21 (TEA000222.1) and mcht-2 (TEA013240.1) originating from tea leaves were upregulated during challenge by D. bellidis hyphae, whereas expression of the LRR receptor-like serine/threonine-protein kinase ERECTA (TEA016781.1) gene was downregulated. The infection of D. bellidis hyphae resulted in up- or downregulation of 227 and 958 of the differentially expressed lncRNAs (DElncRNAs). The DEmRNAs associated with uncharacterized LOC101499401 (TEA015626.1), uncharacterized protein (TEA014125.1), structural maintenance of chromosomes protein 1 (TEA001660.1), and uncharacterized protein (TEA017727.1) occurred as a result of cis regulation by DElncRNAs MSTRG.20036, MSTRG.3843, MSTRG.26132, and MSTRG.56701, respectively. The expression profiling and lncRNA/mRNA association prediction in the tea leaves infected by D. bellidis will provide a valuable resource for further research into disease resistance.
Collapse
Affiliation(s)
- Honglin Huang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Hongke Huang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
- College of Tea Science, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhongqiu Xia
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
- College of Tea Science, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yuqin Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
- College of Tea Science, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xinyue Jiang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chen Huang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yuanyou Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhuo Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
27
|
Su C, Wang Z, Cui J, Wang Z, Wang R, Meng J, Luan Y. Sl-lncRNA47980, a positive regulator affects tomato resistance to Phytophthora infestans. Int J Biol Macromol 2023; 248:125824. [PMID: 37453642 DOI: 10.1016/j.ijbiomac.2023.125824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) involve in defense respond against pathogen attack and show great potentials to improve plant resistance. Tomato late blight, a destructive plant disease, is caused by the oomycete pathogen Phytophthora infestans, which seriously affects the yield and quality of tomato. Our previous research has shown that Sl-lncRNA47980 is involved in response to P. infestans infection, but its molecular mechanism is unknown. Gain- and loss-of-function experiments revealed that Sl-lncRNA47980 as a positive regulator, played a crucial role in enhancing tomato resistance to P. infestans. The Sl-lncRNA47980-overexpressing transgenic plants exhibited an improved ability to scavenge reactive oxygen species (ROS), decreased contents of endogenous gibberellin (GA) and salicylic acid (SA), and increased contents of jasmonic acid (JA), while silencing of Sl-lncRNA47980 showed an opposite trend in the levels of these hormones. Furthermore, it was found that Sl-lncRNA47980 could upregulate the expression of SlGA2ox4 gene through activation of the promoter of SlGA2ox4 to affect GA content. The increased expression of the tomato GA signaling repressor SlDELLA could activate JA-related genes and inhibit SA-related genes to varying degrees respectively. In addition, exogenous application of GA3 and GA synthesis inhibitor uniconazole could increase disease susceptibility of Sl-lncRNA47980-overexpressing plants and the resistance of Sl-lncRNA47980-silenced plants, respectively, to P. infestans. From thus, it was speculated that Sl-lncRNA47980 conferred tomato resistance to P. infestans, which was related to the decrease in endogenous GA content. Our study provided information to link Sl-lncRNA47980 with changes in ROS accumulation and phytohormone levels in plant immunity, thus providing a new candidate gene for tomato breeding.
Collapse
Affiliation(s)
- Chenglin Su
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhengjie Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zhicheng Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ruiming Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
28
|
Wang Y, Folimonova SY. Long Noncoding RNAs in Plant-Pathogen Interactions. PHYTOPATHOLOGY 2023; 113:1380-1386. [PMID: 36945729 PMCID: PMC10511663 DOI: 10.1094/phyto-02-23-0051-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Long noncoding RNAs (lncRNAs) are commonly defined as transcripts that lack protein-coding capacity and are longer than 200 nucleotides. Since the emergence of next-generation sequencing technologies in this century, thousands of lncRNAs have been identified from nearly all living organisms. Notably, various pathogens also express their own lncRNAs in host cells during infection. In plants, many lncRNAs exhibit dynamic expression patterns in response to environmental stimuli, including pathogen attacks. In contrast to well-established methods in identifying such lncRNAs, the current understanding of lncRNAs' functional mechanisms is in its infancy. Some lncRNAs serve as precursors for generating small RNAs or serve as target mimics to sequester functional small RNAs, which have been extensively reviewed in the literature. This review focuses on the emerging evidence supporting that certain lncRNAs function as negative or positive regulators of plant immunity. A common theme is that those regulations rely on specific interactions between lncRNAs and key regulatory proteins. Viroids as single-stranded circular noncoding RNAs provide a handle to investigate how RNA local motifs render interaction specificity between lncRNAs and regulatory proteins. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Svetlana Y. Folimonova
- Plant Pathology Department, University of Florida, Gainesville, Florida 32611, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
29
|
Li C, Lai X, Yu X, Xiong Z, Chen J, Lang X, Feng H, Wan X, Liu K. Plant long noncoding RNAs: Recent progress in understanding their roles in growth, development, and stress responses. Biochem Biophys Res Commun 2023; 671:270-277. [PMID: 37311264 DOI: 10.1016/j.bbrc.2023.05.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023]
Abstract
Long noncoding RNA (lncRNA) transcripts are longer than 200 nt and are not translated into proteins. LncRNAs function in a wide variety of processes in plants and animals, but, perhaps because of their lower expression and conservation levels, plant lncRNAs had attracted less attention than protein-coding mRNAs. Now, recent studies have made remarkable progress in identifying lncRNAs and understanding their functions. In this review, we discuss a number of lncRNAs that have important functions in growth, development, reproduction, responses to abiotic stresses, and regulation of disease and insect resistance in plants. Additionally, we describe the known mechanisms of action of plant lncRNAs according to their origins within the genome. This review thus provides a guide for identifying and functionally characterizing new lncRNAs in plants.
Collapse
Affiliation(s)
- Chunmei Li
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaofeng Lai
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xuanyue Yu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zhiwen Xiong
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jie Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xingxuan Lang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Haotian Feng
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaorong Wan
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Kai Liu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
30
|
Zhou R, Dong Y, Wang C, Liu J, Liang Q, Meng X, Lang X, Xu S, Liu W, Zhang S, Wang N, Yang KQ, Fang H. LncRNA109897-JrCCR4-JrTLP1b forms a positive feedback loop to regulate walnut resistance against anthracnose caused by Colletotrichum gloeosporioides. HORTICULTURE RESEARCH 2023; 10:uhad086. [PMID: 37786525 PMCID: PMC10541558 DOI: 10.1093/hr/uhad086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/20/2023] [Indexed: 10/04/2023]
Abstract
Walnut anthracnose induced by Colletotrichum gloeosporioides is a disastrous disease that severely restricts the development of the walnut industry in China. Long non-coding RNAs (lncRNAs) are involved in adaptive responses to disease, but their roles in the regulation of walnut anthracnose resistance response are not well defined. In this study, transcriptome analysis demonstrated that a C. gloeosporioides-induced lncRNA, lncRNA109897, located upstream from the target gene JrCCR4, upregulated the expression of JrCCR4. JrCCR4 interacted with JrTLP1b and promoted its transcriptional activity. In turn, JrTLP1b induced the transcription of lncRNA109897 to promote its expression. Meanwhile, transient expression in walnut leaves and stable transformation of Arabidopsis thaliana further proved that lncRNA, JrCCR4, and JrTLP1b improve the resistance of C. gloeosporioides. Collectively, these findings provide insights into the mechanism by which the lncRNA109897-JrCCR4-JrTLP1b transcriptional cascade regulates the resistance of walnut to anthracnose.
Collapse
Affiliation(s)
- Rui Zhou
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Yuhui Dong
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Changxi Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Jianning Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Qiang Liang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Xiaoye Meng
- Department of Natural Resources Of Shandong Province, Forestry Protection and Development Service Center, Jinan, Shandong, China, 250000
| | - Xinya Lang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Shengyi Xu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Shuhui Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Sciences and Engineering, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Ke Qiang Yang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| | - Hongcheng Fang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Taishan Forest Ecosystem Research Station, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China, 271018
| |
Collapse
|
31
|
Zhao X, Sun X, Chen Y, Wu H, Liu Y, Jiang Y, Xie F, Chen Y. Mining of long non-coding RNAs with target genes in response to rust based on full-length transcriptome in Kentucky bluegrass. FRONTIERS IN PLANT SCIENCE 2023; 14:1158035. [PMID: 37229126 PMCID: PMC10204806 DOI: 10.3389/fpls.2023.1158035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 05/27/2023]
Abstract
Kentucky bluegrass (Poa pratensis L.) is an eminent turfgrass species with a complex genome, but it is sensitive to rust (Puccinia striiformis). The molecular mechanisms of Kentucky bluegrass in response to rust still remain unclear. This study aimed to elucidate differentially expressed lncRNAs (DELs) and genes (DEGs) for rust resistance based on the full-length transcriptome. First, we used single-molecule real-time sequencing technology to generate the full-length transcriptome of Kentucky bluegrass. A total of 33,541 unigenes with an average read length of 2,233 bp were obtained, which contained 220 lncRNAs and 1,604 transcription factors. Then, the comparative transcriptome between the mock-inoculated leaves and rust-infected leaves was analyzed using the full-length transcriptome as a reference genome. A total of 105 DELs were identified in response to rust infection. A total of 15,711 DEGs were detected (8,278 upregulated genes, 7,433 downregulated genes) and were enriched in plant hormone signal transduction and plant-pathogen interaction pathways. Additionally, through co-location and expression analysis, it was found that lncRNA56517, lncRNA53468, and lncRNA40596 were highly expressed in infected plants and upregulated the expression of target genes AUX/IAA, RPM1, and RPS2, respectively; meanwhile, lncRNA25980 decreased the expression level of target gene EIN3 after infection. The results suggest that these DEGs and DELs are important candidates for potentially breeding the rust-resistant Kentucky bluegrass.
Collapse
Affiliation(s)
- Xueying Zhao
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Xiaoyang Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yang Chen
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Hanfu Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yujiao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Fuchun Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yajun Chen
- College of Horticulture, Northeast Agricultural University, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
32
|
Xiao S, Ming Y, Hu Q, Ye Z, Si H, Liu S, Zhang X, Wang W, Yu Y, Kong J, Klosterman SJ, Lindsey K, Zhang X, Aierxi A, Zhu L. GhWRKY41 forms a positive feedback regulation loop and increases cotton defence response against Verticillium dahliae by regulating phenylpropanoid metabolism. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:961-978. [PMID: 36632704 PMCID: PMC10106861 DOI: 10.1111/pbi.14008] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 05/04/2023]
Abstract
Despite the established significance of WRKY proteins and phenylpropanoid metabolism in plant immunity, how WRKY proteins modulate aspects of the phenylpropanoid pathway remains undetermined. To understand better the role of WRKY proteins in plant defence, we identified a cotton (Gossypium hirsutum) protein, GhWRKY41, that is, universally and rapidly induced in three disease-resistant cotton cultivars following inoculation with the plant pathogenic fungus, Verticillium dahliae. We show that overexpression of GhWRKY41 in transgenic cotton and Arabidopsis enhances resistance to V. dahliae, while knock-down increases cotton more susceptibility to the fungus. GhWRKY41 physically interacts with itself and directly activates its own transcription. A genome-wide chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), in combination with RNA sequencing (RNA-seq) analyses, revealed that 43.1% of GhWRKY41-binding genes were up-regulated in cotton upon inoculation with V. dahliae, including several phenylpropanoid metabolism master switches, receptor kinases, and disease resistance-related proteins. We also show that GhWRKY41 homodimer directly activates the expression of GhC4H and Gh4CL, thereby modulating the accumulation of lignin and flavonoids. This finding expands our understanding of WRKY-WRKY protein interactions and provides important insights into the regulation of the phenylpropanoid pathway in plant immune responses by a WRKY protein.
Collapse
Affiliation(s)
- Shenghua Xiao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- State Key Lab for Conservation and Utilization of Subtropical Agri‐Biological Resources, College of AgricultureGuangxi UniversityNanningChina
| | - Yuqing Ming
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Qin Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- State Key Lab for Conservation and Utilization of Subtropical Agri‐Biological Resources, College of AgricultureGuangxi UniversityNanningChina
| | - Zhengxiu Ye
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Huan Si
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Shiming Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xiaojun Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Weiran Wang
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Yu Yu
- Xinjiang Academy of Agricultural & Reclamation SciencesShiheziChina
| | - Jie Kong
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Steven J. Klosterman
- United States Department of AgricultureAgricultural Research ServiceSalinasCAUSA
| | | | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Alifu Aierxi
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
33
|
Abstract
Robust plant immune systems are fine-tuned by both protein-coding genes and non-coding RNAs. Long non-coding RNAs (lncRNAs) refer to RNAs with a length of more than 200 nt and usually do not have protein-coding function and do not belong to any other well-known non-coding RNA types. The non-protein-coding, low expression, and non-conservative characteristics of lncRNAs restrict their recognition. Although studies of lncRNAs in plants are in the early stage, emerging studies have shown that plants employ lncRNAs to regulate plant immunity. Moreover, in response to stresses, numerous lncRNAs are differentially expressed, which manifests the actions of low-expressed lncRNAs and makes plant-microbe/insect interactions a convenient system to study the functions of lncRNAs. Here, we summarize the current advances in plant lncRNAs, discuss their regulatory effects in different stages of plant immunity, and highlight their roles in diverse plant-microbe/insect interactions. These insights will not only strengthen our understanding of the roles and actions of lncRNAs in plant-microbe/insect interactions but also provide novel insight into plant immune responses and a basis for further research in this field.
Collapse
Affiliation(s)
- Juan Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Wenling Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- HainanYazhou Bay Seed Lab, Sanya, China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
34
|
Zhuo X, Yu Q, Russo R, Zhang Y, Wei X, Wang YZ, Holden PM, Gmitter FG. Role of long non-coding RNA in regulatory network response to Candidatus Liberibacter asiaticus in citrus. FRONTIERS IN PLANT SCIENCE 2023; 14:1090711. [PMID: 36890903 PMCID: PMC9986497 DOI: 10.3389/fpls.2023.1090711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Long non-coding RNAs (lncRNAs) serve as crucial regulators in plant response to various diseases, while none have been systematically identified and characterized in response to citrus Huanglongbing (HLB) caused by Candidatus Liberibacter asiaticus (CLas) bacteria. Here, we comprehensively investigated the transcriptional and regulatory dynamics of the lncRNAs in response to CLas. Samples were collected from leaf midribs of CLas- and mock-inoculated HLB-tolerant rough lemon (Citrus jambhiri) and HLB-sensitive sweet orange (C. sinensis) at week 0, 7, 17, and 34 following inoculation using CLas+ budwood of three biological replicates in the greenhouse. A total of 8,742 lncRNAs, including 2,529 novel lncRNAs, were identified from RNA-seq data with rRNA-removed from strand-specific libraries. Genomic variation analyses of conserved lncRNAs from 38 citrus accessions showed that 26 single nucleotide polymorphisms (SNPs) were significantly correlated with HLB. In addition, lncRNA-mRNA weighted gene co-expression network analysis (WGCNA) showed a significant module correlated with CLas-inoculation in rough lemon. Notably, the most significant LNC_28805 and multiple co-expressed genes related to plant defense in the module were targeted by miRNA5021, suggesting that LNC28805 might compete with endogenous miR5021 to maintain the homeostasis of immune gene expression levels. Candidate WRKY33 and SYP121 genes targeted by miRNA5021 were identified as two key hub genes interacting with bacteria pathogen response genes based on the prediction of protein-protein interaction (PPI) network. These two genes were also found within HLB-associated QTL in linkage group 6. Overall, our findings provide a reference for a better understanding of the role of lncRNAs involved in citrus HLB regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fred G. Gmitter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
35
|
Xue Y, Muhammad S, Yang J, Wang X, Zhao N, Qin B, Qiu Y, Du Z, Ulhassan Z, Zhou W, Liu F, Li R. Comparative transcriptome-wide identification and differential expression of genes and lncRNAs in rice near-isogenic line (KW- Bph36-NIL) in response to BPH feeding. FRONTIERS IN PLANT SCIENCE 2023; 13:1095602. [PMID: 36874914 PMCID: PMC9981640 DOI: 10.3389/fpls.2022.1095602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Brown planthopper (BPH) is the most devastating pest of rice in Asia, causing substantial yield losses and has become a challenging task to be controlled under field conditions. Although extensive measures have been taken over the past decades, which resulted in the evolution of new resistant BPH strains. Therefore, besides other possible approaches, equipping host plants with resistant genes is the most effective and environment-friendly technique for BPH control. Here, we systematically analyzed transcriptome changes in the susceptible rice variety Kangwenqingzhan (KW) and the resistant near-isogenic line (NIL) KW-Bph36-NIL, through RNA-seq, depicting the differential expression profiles of mRNAs and long non-coding RNAs (lncRNAs) in rice before and after BPH feeding. We observed a proportion of genes (1.48%) and (2.74%) were altered in KW and NIL, respectively, indicating different responses of rice strains against BPH feeding. Nevertheless, we characterized 384 differentially expressed long non-coding RNAs (DELs) that can be impacted by the two strains by alternatively changing the expression patterns of the respective coding genes, suggesting their certain involvement in response to BPH feeding. In BPH invasion, KW and NIL responded differently by modifying the synthesis, storage, and transformation of intracellular substances, adjusting the nutrient accumulation and utilization inside and outside the cells. In addition, NIL expressed stronger resistance by acutely up-regulating genes and other transcription factors related to stress resistance and plant immunity. Altogether, our study elaborates valuable insights into the genome-wide DEGs and DELs expression profiles of rice under BPH invasion by high throughput sequencing and further suggests that NILs can be utilized in BPH resistance breeding programs in developing high-resistance rice lines.
Collapse
Affiliation(s)
- Yanxia Xue
- School of Electrical and Control Engineering, North University of China, Taiyuan, China
| | - Sajid Muhammad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinlian Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Xuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Neng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Yongfu Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Zhimin Du
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zaid Ulhassan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Weijun Zhou
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
36
|
Li Y, Tan Z, Zeng C, Xiao M, Lin S, Yao W, Li Q, Guo L, Lu S. Regulation of seed oil accumulation by lncRNAs in Brassica napus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:22. [PMID: 36765368 PMCID: PMC9921586 DOI: 10.1186/s13068-022-02256-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/28/2022] [Indexed: 02/12/2023]
Abstract
BACKGROUND Studies have indicated that long non-coding RNAs (lncRNAs) play important regulatory roles in many biological processes. However, the regulation of seed oil biosynthesis by lncRNAs remains largely unknown. RESULTS We comprehensively identified and characterized the lncRNAs from seeds in three developing stages in two accessions of Brassica napus (B. napus), ZS11 (high oil content) and WH5557 (low oil content). Finally, 8094 expressed lncRNAs were identified. LncRNAs MSTRG.22563 and MSTRG.86004 were predicted to be related to seed oil accumulation. Experimental results show that the seed oil content is decreased by 3.1-3.9% in MSTRG.22563 overexpression plants, while increased about 2% in MSTRG.86004, compared to WT. Further study showed that most genes related to lipid metabolism had much lower expression, and the content of some metabolites in the processes of respiration and TCA (tricarboxylic acid) cycle was reduced in MSTRG.22563 transgenic seeds. The expression of genes involved in fatty acid synthesis and seed embryonic development (e.g., LEC1) was increased, but genes related to TAG assembly was decreased in MSTRG.86004 transgenic seeds. CONCLUSION Our results suggest that MSTRG.22563 might impact seed oil content by affecting the respiration and TCA cycle, while MSTRG.86004 plays a role in prolonging the seed developmental time to increase seed oil accumulation.
Collapse
Affiliation(s)
- Yuqing Li
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China ,Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Zengdong Tan
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China ,Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Chenghao Zeng
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China ,Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Mengying Xiao
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China ,Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Shengli Lin
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China ,Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Wei Yao
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China ,Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Qing Li
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China ,Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Liang Guo
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China ,Hubei Hongshan Laboratory, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070 China ,grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
37
|
Wang F, Lu T, Zhu L, Cao A, Xie S, Chen X, Shen H, Xie Q, Li R, Zhu J, Jin X, Li H. Multicopper oxidases GbAO and GbSKS are involved in the Verticillium dahliae resistance in Gossypium barbadense. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153887. [PMID: 36543064 DOI: 10.1016/j.jplph.2022.153887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Ascorbate oxidase (AO) and skewed5 (SKU5)-similar (SKS) proteins belong to the multicopper oxidase (MCO) family and play important roles in plants in response to environmental stress via modulation of oxidoreduction homeostasis. Currently, reports on the response of Gossypium barbadense MCO to Verticillium wilt (VW) caused by Verticillium dahliae are still limited. Herein, RNA sequencing of two G. barbadense cultivars of VW-resistant XH21 and VW-susceptible XH7 under V. dahliae treatment, combined with physiological and genetic analysis, was performed to analyze the function and mechanism of multicopper oxidases GbAO and GbSKS involved in V. dahliae resistance. The identified differentially expressed genes are mainly involved in the regulation of oxidoreduction reaction, and extracellular components and signaling. Interestingly, ascorbate oxidase family members were discovered as the most significantly upregulated genes after V. dahliae treatment, including GbAO3A/D, GbSKS3A/D, and GbSKS16A/D. H2O2 and Asc contents, especially reductive Asc in both XH21 and XH7, were shown to be increased. Silenced expression of respective GbAO3A/D, GbSKS3A/D, and GbSKS16A/D in virus-induced gene silencing (VIGS) cotton plants significantly decreased the resistance to V. dahliae, coupled with the reduced contents of pectin and lignin. Our results indicate that AO might be involved in cotton VW resistance via the regulation of cell wall components.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Tianxin Lu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Liping Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Aiping Cao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Shuangquan Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Xifeng Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Rong Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Jianbo Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Xiang Jin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China; College of Science, Qiongtai Normal University, Haikou, 571127, China; Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
38
|
Jiang H, Li Y, Luan M, Huang S, Zhao L, Yang G, Pan G. Single-Molecule Real-Time Sequencing of Full-Length Transcriptome and Identification of Genes Related to Male Development in Cannabis sativa. PLANTS (BASEL, SWITZERLAND) 2022; 11:3559. [PMID: 36559671 PMCID: PMC9782162 DOI: 10.3390/plants11243559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Female Cannabis sativa plants have important therapeutic properties. The sex ratio of the dioecious cannabis is approximately 1:1. Cultivating homozygous female plants by inducing female plants to produce male flowers is of great practical significance. However, the mechanism underlying cannabis male development remains unclear. In this study, single-molecule real-time (SMRT) sequencing was performed using a mixed sample of female and induced male flowers from the ZYZM1 cannabis variety. A total of 15,241 consensus reads were identified, and 13,657 transcripts were annotated across seven public databases. A total of 48 lncRNAs with an average length of 986.54 bp were identified. In total, 8202 transcripts were annotated as transcription factors, the most common of which were bHLH transcription factors. Moreover, tissue-specific expression pattern analysis showed that 13 MADS transcription factors were highly expressed in male flowers. Furthermore, 232 reads of novel genes were predicted and enriched in lipid metabolism, and qRT-PCR results showed that CER1 may be involved in the development of cannabis male flowers. In addition, 1170 AS events were detected, and two AS events were further validated. Taken together, these results may improve our understanding of the complexity of full-length cannabis transcripts and provide a basis for understanding the molecular mechanism of cannabis male development.
Collapse
Affiliation(s)
- Hui Jiang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
| | - Ying Li
- State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
| | - Siqi Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
| | - Lining Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
| | - Guang Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Gen Pan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
- State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
39
|
Yu S, Zhang Z, Li J, Zhu Y, Yin Y, Zhang X, Dai Y, Zhang A, Li C, Zhu Y, Fan J, Ruan Y, Dong X. Genome-wide identification and characterization of lncRNAs in sunflower endosperm. BMC PLANT BIOLOGY 2022; 22:494. [PMID: 36271333 PMCID: PMC9587605 DOI: 10.1186/s12870-022-03882-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/13/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), as important regulators, play important roles in plant growth and development. The expression and epigenetic regulation of lncRNAs remain uncharacterized generally in plant seeds, especially in the transient endosperm of the dicotyledons. RESULTS In this study, we identified 11,840 candidate lncRNAs in 12 day-after-pollination sunflower endosperm by analyzing RNA-seq data. These lncRNAs were evenly distributed in all chromosomes and had specific features that were distinct from mRNAs including tissue-specificity expression, shorter and fewer exons. By GO analysis of protein coding genes showing strong correlation with the lncRNAs, we revealed that these lncRNAs potential function in many biological processes of seed development. Additionally, genome-wide DNA methylation analyses revealed that the level of DNA methylation at the transcription start sites was negatively correlated with gene expression levels in lncRNAs. Finally, 36 imprinted lncRNAs were identified including 32 maternally expressed lncRNAs and four paternally expressed lncRNAs. In CG and CHG context, DNA methylation levels of imprinted lncRNAs in the upstream and gene body regions were slightly lower in the endosperm than that in embryo tissues, which indicated that the maternal demethylation potentially induce the paternally bias expression of imprinted lncRNAs in sunflower endosperm. CONCLUSION Our findings not only identified and characterized lncRNAs on a genome-wide scale in the development of sunflower endosperm, but also provide novel insights into the parental effects and epigenetic regulation of lncRNAs in dicotyledonous seeds.
Collapse
Affiliation(s)
- Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Zhichao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Jing Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanbin Zhu
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China
- State Key Laboratory of the Northeast Crop Genetics and Breeding, Shenyang, China
| | - Yanzhe Yin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaoyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yuxin Dai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Jinjuan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China.
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China.
- State Key Laboratory of the Northeast Crop Genetics and Breeding, Shenyang, China.
| |
Collapse
|
40
|
Man M, Zhu Y, Liu L, Luo L, Han X, Qiu L, Li F, Ren M, Xing Y. Defense Mechanisms of Cotton Fusarium and Verticillium Wilt and Comparison of Pathogenic Response in Cotton and Humans. Int J Mol Sci 2022; 23:12217. [PMID: 36293072 PMCID: PMC9602609 DOI: 10.3390/ijms232012217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cotton is an important economic crop. Fusarium and Verticillium are the primary pathogenic fungi that threaten both the quality and sustainable production of cotton. As an opportunistic pathogen, Fusarium causes various human diseases, including fungal keratitis, which is the most common. Therefore, there is an urgent need to study and clarify the resistance mechanisms of cotton and humans toward Fusarium in order to mitigate, or eliminate, its harm. Herein, we first discuss the resistance and susceptibility mechanisms of cotton to Fusarium and Verticillium wilt and classify associated genes based on their functions. We then outline the characteristics and pathogenicity of Fusarium and describe the multiple roles of human neutrophils in limiting hyphal growth. Finally, we comprehensively compare the similarities and differences between animal and plant resistance to Fusarium and put forward new insights into novel strategies for cotton disease resistance breeding and treatment of Fusarium infection in humans.
Collapse
Affiliation(s)
- Mingwu Man
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yaqian Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lulu Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lei Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xinpei Han
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Maozhi Ren
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Yadi Xing
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
41
|
Zhao Z, Zang S, Zou W, Pan YB, Yao W, You C, Que Y. Long Non-Coding RNAs: New Players in Plants. Int J Mol Sci 2022; 23:ijms23169301. [PMID: 36012566 PMCID: PMC9409372 DOI: 10.3390/ijms23169301] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
During the process of growth and development, plants are prone to various biotic and abiotic stresses. They have evolved a variety of strategies to resist the adverse effects of these stresses. lncRNAs (long non-coding RNAs) are a type of less conserved RNA molecules of more than 200 nt (nucleotides) in length. lncRNAs do not code for any protein, but interact with DNA, RNA, and protein to affect transcriptional, posttranscriptional, and epigenetic modulation events. As a new regulatory element, lncRNAs play a critical role in coping with environmental pressure during plant growth and development. This article presents a comprehensive review on the types of plant lncRNAs, the role and mechanism of lncRNAs at different molecular levels, the coordination between lncRNA and miRNA (microRNA) in plant immune responses, the latest research progress of lncRNAs in plant growth and development, and their response to biotic and abiotic stresses. We conclude with a discussion on future direction for the elaboration of the function and mechanism of lncRNAs.
Collapse
Affiliation(s)
- Zhennan Zhao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong-Bao Pan
- Sugarcane Research Unit, USDA-ARS, Houma, LA 70360, USA
| | - Wei Yao
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China
| | - Cuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (C.Y.); (Y.Q.); Tel.: +86-591-8385-2547 (C.Y. & Y.Q.)
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (C.Y.); (Y.Q.); Tel.: +86-591-8385-2547 (C.Y. & Y.Q.)
| |
Collapse
|
42
|
Chen L, Shen E, Zhao Y, Wang H, Wilson I, Zhu QH. The Conservation of Long Intergenic Non-Coding RNAs and Their Response to Verticillium dahliae Infection in Cotton. Int J Mol Sci 2022; 23:ijms23158594. [PMID: 35955726 PMCID: PMC9368808 DOI: 10.3390/ijms23158594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) have been demonstrated to be vital regulators of diverse biological processes in both animals and plants. While many lincRNAs have been identified in cotton, we still know little about the repositories and conservativeness of lincRNAs in different cotton species or about their role in responding to biotic stresses. Here, by using publicly available RNA-seq datasets from diverse sources, including experiments of Verticillium dahliae (Vd) infection, we identified 24,425 and 17,713 lincRNAs, respectively, in Gossypium hirsutum (Ghr) and G. barbadense (Gba), the two cultivated allotetraploid cotton species, and 6933 and 5911 lincRNAs, respectively, in G. arboreum (Gar) and G. raimondii (Gra), the two extant diploid progenitors of the allotetraploid cotton. While closely related subgenomes, such as Ghr_At and Gba_At, tend to have more conserved lincRNAs, most lincRNAs are species-specific. The majority of the synthetic and transcribed lincRNAs (78.2%) have a one-to-one orthologous relationship between different (sub)genomes, although a few of them (0.7%) are retained in all (sub)genomes of the four species. The Vd responsiveness of lincRNAs seems to be positively associated with their conservation level. The major functionalities of the Vd-responsive lincRNAs seem to be largely conserved amongst Gra, Ghr, and Gba. Many Vd-responsive Ghr-lincRNAs overlap with Vd-responsive QTL, and several lincRNAs were predicted to be endogenous target mimicries of miR482/2118, with a pair being highly conserved between Ghr and Gba. On top of the confirmation of the feature characteristics of the lincRNAs previously reported in cotton and other species, our study provided new insights into the conservativeness and divergence of lincRNAs during cotton evolution and into the relationship between the conservativeness and Vd responsiveness of lincRNAs. The study also identified candidate lincRNAs with a potential role in disease response for functional characterization.
Collapse
Affiliation(s)
- Li Chen
- School of Life Sciences, Westlake University, Hangzhou 310024, China;
| | - Enhui Shen
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China;
| | - Yunlei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.Z.); (H.W.)
| | - Hongmei Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.Z.); (H.W.)
| | - Iain Wilson
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia;
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia;
- Correspondence:
| |
Collapse
|
43
|
Liu N, Xu Y, Li Q, Cao Y, Yang D, Liu S, Wang X, Mi Y, Liu Y, Ding C, Liu Y, Li Y, Yuan YW, Gao G, Chen J, Qian W, Zhang X. A lncRNA fine-tunes salicylic acid biosynthesis to balance plant immunity and growth. Cell Host Microbe 2022; 30:1124-1138.e8. [DOI: 10.1016/j.chom.2022.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/07/2022] [Accepted: 06/17/2022] [Indexed: 11/03/2022]
|
44
|
Tian J, Zhang G, Zhang F, Ma J, Wen C, Li H. Genome-Wide Identification of Powdery Mildew Responsive Long Non-Coding RNAs in Cucurbita pepo. Front Genet 2022; 13:933022. [PMID: 35846119 PMCID: PMC9283782 DOI: 10.3389/fgene.2022.933022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
Cucurbita pepo L. is an essential economic vegetable crop worldwide, and its production is severely affected by powdery mildew (PM). However, our understanding of the molecular mechanism of PM resistance in C. pepo is very limited. Long non-coding RNAs (lncRNAs) play an important role in regulating plant responses to biotic stress. Here, we systematically identified 2,363 reliably expressed lncRNAs from the leaves of PM-susceptible (PS) and PM-resistant (PR) C. pepo. The C. pepo lncRNAs are shorter in length and expressed at a lower level than the protein-coding transcripts. Among the 2,363 lncRNAs, a total of 113 and 146 PM-responsive lncRNAs were identified in PS and PR, respectively. Six PM-responsive lncRNAs were predicted as potential precursors of microRNAs (miRNAs). In addition, 58 PM-responsive lncRNAs were predicted as targets of miRNAs and one PM-responsive lncRNA was predicted as an endogenous target mimic (eTM). Furthermore, a total of 5,200 potential cis target genes and 5,625 potential trans target genes were predicted for PM-responsive lncRNAs. Functional enrichment analysis showed that these potential target genes are involved in different biological processes, such as the plant-pathogen interaction pathway, MAPK signaling pathway, and plant hormone signal transduction pathway. Taken together, this study provides a comprehensive view of C. pepo lncRNAs and explores the putative functions of PM-responsive lncRNAs, thus laying the foundation for further study of the regulatory mechanisms of lncRNAs responding to PM.
Collapse
Affiliation(s)
- Jiaxing Tian
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Guoyu Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Fan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Jian Ma
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Haizhen Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| |
Collapse
|
45
|
Zhang L, Liu J, Cheng J, Sun Q, Zhang Y, Liu J, Li H, Zhang Z, Wang P, Cai C, Chu Z, Zhang X, Yuan Y, Shi Y, Cai Y. lncRNA7 and lncRNA2 modulate cell wall defense genes to regulate cotton resistance to Verticillium wilt. PLANT PHYSIOLOGY 2022; 189:264-284. [PMID: 35134243 PMCID: PMC9070856 DOI: 10.1093/plphys/kiac041] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/26/2021] [Indexed: 05/13/2023]
Abstract
In plants, long noncoding RNAs (lncRNAs) regulate disease resistance against fungi and other pathogens. However, the specific mechanism behind this regulation remains unclear. In this study, we identified disease resistance-related lncRNAs as well as their regulating genes and assessed their functions by infection of cotton (Gossypium) chromosome segment substitution lines with Verticillium dahliae. Our results demonstrated that lncRNA7 and its regulating gene Pectin methylesterase inhibitor 13 (GbPMEI13) positively regulated disease resistance via the silencing approach, while ectopic overexpression of GbPMEI13 in Arabidopsis (Arabidopsis thaliana) promoted growth and enhanced resistance to V. dahliae. In contrast, lncRNA2 and its regulating gene Polygalacturonase 12 (GbPG12) negatively regulated resistance to V. dahliae. We further found that fungal disease-related agents, including the pectin-derived oligogalacturonide (OG), could downregulate the expression of lncRNA2 and GbPG12, leading to pectin accumulation. Conversely, OG upregulated the expression of lncRNA7, which encodes a plant peptide phytosulfokine (PSK-α), which was confirmed by lncRNA7 overexpression and Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS) experiments. We showed that PSK-α promoted 3-Indoleacetic acid (IAA) accumulation and activated GbPMEI13 expression through Auxin Response Factor 5. Since it is an inhibitor of pectin methylesterase (PME), GbPMEI13 promotes pectin methylation and therefore increases the resistance to V. dahliae. Consistently, we also demonstrated that GbPMEI13 inhibits the mycelial growth and spore germination of V. dahliae in vitro. In this study, we demonstrated that lncRNA7, lncRNA2, and their regulating genes modulate cell wall defense against V. dahliae via auxin-mediated signaling, providing a strategy for cotton breeding.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
- College of life science and agricultural engineering, Nanyang Normal
University, Nanyang 473000, China
| | - Jinlei Liu
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
| | - Jieru Cheng
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
| | - Quan Sun
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
- Chongqing Key Laboratory of Big Data for Bio Intelligence, College of
Bioinformation, Chongqing University of Posts and Telecommunications,
Chongqing 400065, China
| | - Yu Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
| | - Jinggao Liu
- Southern Plains Agricultural Research Center, Agricultural Research
Service, USDA, College Station, Texas 77845, USA
| | - Huimin Li
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
| | - Ping Wang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
| | - Chaowei Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
| | - Zongyan Chu
- Kaifeng Academy of Agriculture and Forestry, Kaifeng 475000,
China
| | - Xiao Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and
Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research,
Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and
Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research,
Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yingfan Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant
Stress Biology, School of Life Sciences, School of Computer and Information
Engineering, Henan University, Kaifeng 475001, China
| |
Collapse
|
46
|
Zamora-Ballesteros C, Martín-García J, Suárez-Vega A, Diez JJ. Genome-wide identification and characterization of Fusarium circinatum-responsive lncRNAs in Pinus radiata. BMC Genomics 2022; 23:194. [PMID: 35264109 PMCID: PMC8908662 DOI: 10.1186/s12864-022-08408-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
Background One of the most promising strategies of Pine Pitch Canker (PPC) management is the use of reproductive plant material resistant to the disease. Understanding the complexity of plant transcriptome that underlies the defence to the causal agent Fusarium circinatum, would greatly facilitate the development of an accurate breeding program. Long non-coding RNAs (lncRNAs) are emerging as important transcriptional regulators under biotic stresses in plants. However, to date, characterization of lncRNAs in conifer trees has not been reported. In this study, transcriptomic identification of lncRNAs was carried out using strand-specific paired-end RNA sequencing, from Pinus radiata samples inoculated with F. circinatum at an early stage of infection. Results Overall, 13,312 lncRNAs were predicted through a bioinformatics approach, including long intergenic non-coding RNAs (92.3%), antisense lncRNAs (3.3%) and intronic lncRNAs (2.9%). Compared with protein-coding RNAs, pine lncRNAs are shorter, have lower expression, lower GC content and harbour fewer and shorter exons. A total of 164 differentially expressed (DE) lncRNAs were identified in response to F. circinatum infection in the inoculated versus mock-inoculated P. radiata seedlings. The predicted cis-regulated target genes of these pathogen-responsive lncRNAs were related to defence mechanisms such as kinase activity, phytohormone regulation, and cell wall reinforcement. Co-expression network analysis of DE lncRNAs, DE protein-coding RNAs and lncRNA target genes also indicated a potential network regulating pectinesterase activity and cell wall remodelling. Conclusions This study presents the first comprehensive genome-wide analysis of P. radiata lncRNAs and provides the basis for future functional characterizations of lncRNAs in relation to pine defence responses against F. circinatum. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08408-9.
Collapse
Affiliation(s)
- Cristina Zamora-Ballesteros
- Department of Vegetal Production and Forest Resources, University of Valladolid, Av Madrid 44, 34004 Palencia, Spain. .,Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain.
| | - Jorge Martín-García
- Department of Vegetal Production and Forest Resources, University of Valladolid, Av Madrid 44, 34004 Palencia, Spain.,Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, University of León, Campus de Vegazana s/n, 24071 León, Spain
| | - Julio Javier Diez
- Department of Vegetal Production and Forest Resources, University of Valladolid, Av Madrid 44, 34004 Palencia, Spain.,Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain
| |
Collapse
|
47
|
Liu H, Hu Y, Yuan K, Feng C, He Q, Sun L, Wang Z. Genome-wide identification of lncRNAs, miRNAs, mRNAs and their regulatory networks involved in tapping panel dryness in rubber tree (Hevea brasiliensis). TREE PHYSIOLOGY 2022; 42:629-645. [PMID: 34533196 DOI: 10.1093/treephys/tpab120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Noncoding RNAs (ncRNAs) play pivotal roles in various biological processes in plants. However, the role of ncRNAs in tapping panel dryness (TPD) of rubber tree (Hevea brasiliensis Muell. Arg.) is largely unknown. Here, the whole transcriptome analyses of bark tissues from healthy and TPD trees were performed to identify differentially expressed long ncRNAs (DELs), microRNAs/miRNAs (DEMs), genes (DEGs) and their regulatory networks involved in TPD. A total of 263 DELs, 174 DEMs and 1574 DEGs were identified in the bark of TPD tree compared with that of healthy tree. Kyoto Encyclopedia of Genes and Genomes analysis revealed that most of the DEGs and targets of DELs and DEMs were mainly enriched in metabolic pathways, biosynthesis of secondary metabolites and plant hormone signal transduction. Additionally, the majority of DEGs and DELs related to rubber biosynthesis were downregulated in TPD trees. Furthermore, 98 DEGs and 44 DELs were targeted by 54 DEMs, 190 DEGs were identified as putative targets of 56 DELs, and 2 and 44 DELs were predicted as precursors and endogenous target mimics of 2 and 6 DEMs, respectively. Based on these, the DEL-DEM-DEG regulatory network involved in TPD was constructed, and 13 hub DELs, 3 hub DEMs and 2 hub DEGs were identified. The results provide novel insights into the regulatory roles of ncRNAs underlying TPD and lay a foundation for future functional characterization of long ncRNAs, miRNAs and genes involved in TPD in rubber tree.
Collapse
Affiliation(s)
- Hui Liu
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yiyu Hu
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Kun Yuan
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chengtian Feng
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qiguang He
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Liang Sun
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhenhui Wang
- Hainan Provincial Key Laboratory of Tropical Crops Cultivation and Physiology, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
48
|
Kong X, Wang H, Zhang M, Chen X, Fang R, Yan Y. A SA-regulated lincRNA promotes Arabidopsis disease resistance by modulating pre-rRNA processing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111178. [PMID: 35151436 DOI: 10.1016/j.plantsci.2022.111178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Regulation of gene expression at translational level has been shown critical for plant defense against pathogen infection. Pre-rRNA processing is essential for ribosome biosynthesis and thus affects protein translation. It remains unknown if plants modulate pre-rRNA processing as a translation regulatory mechanism for disease resistance. In this study, we show a 5' snoRNA capped and 3' polyadenylated (SPA) lincRNA named SUNA1 promotes disease resistance involved in modulating pre-rRNA processing in Arabidopsis. SUNA1 expression is highly induced by Pst DC3000 infection, which is impaired in SA biosynthesis-defective mutant sid2 and signaling mutant npr1. Consistently, SA triggers SUNA1 expression dependent on NPR1. Functional analysis indicates that SUNA1 plays a positive role in Arabidopsis defense against Pst DC3000 relying on its snoRNA signature motifs. Potential mechanism study suggests that the nucleus-localized SUNA1 interacts with the nucleolar methyltransferase fibrillarin to modulate SA-controlled pre-rRNA processing, then enhancing the translational efficiency (TE) of some defense genes in Arabidopsis response to Pst DC3000 infection. NPR1 appears to have similar effects as SUNA1 on pre-rRNA processing and TE of defense genes. Together, these studies reveal one kind of undescribed antibacterial translation regulatory mechanism, in which SA-NPR1-SUNA1 signaling cascade controls pre-rRNA processing and TE of certain defense genes in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoyu Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huacai Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Mengting Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; National Plant Gene Research Center, Beijing, China.
| | - Yongsheng Yan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
49
|
Zou X, Ali F, Jin S, Li F, Wang Z. RNA-Seq with a novel glabrous-ZM24fl reveals some key lncRNAs and the associated targets in fiber initiation of cotton. BMC PLANT BIOLOGY 2022; 22:61. [PMID: 35114937 PMCID: PMC8815142 DOI: 10.1186/s12870-022-03444-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/24/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cotton fiber is an important natural resource for textile industry and an excellent model for cell biology study. Application of glabrous mutant cotton and high-throughput sequencing facilitates the identification of key genes and pathways for fiber development and cell differentiation and elongation. LncRNA is a type of ncRNA with more than 200 nt in length and functions in the ways of chromatin modification, transcriptional and post-transcriptional modification, and so on. However, the detailed lncRNA and associated mechanisms for fiber initiation are still unclear in cotton. RESULTS In this study, we used a novel glabrous mutant ZM24fl, which is endowed with higher somatic embryogenesis, and functions as an ideal receptor for cotton genetic transformation. Combined with the high-throughput sequencing, fatty acid pathway and some transcription factors such as MYB, ERF and bHLH families were identified the important roles in fiber initiation; furthermore, 3,288 lncRNAs were identified, and some differentially expressed lncRNAs were also analyzed. From the comparisons of ZM24_0 DPA vs ZM24_-2 DPA and fl_0 DPA vs ZM24_0 DPA, one common lncRNA MSTRG 2723.1 was found that function upstream of fatty acid metabolism, MBY25-mediating pathway, and pectin metabolism to regulate fiber initiation. In addition, other lncRNAs MSTRG 3390.1, MSTRG 48719.1, and MSTRG 31176.1 were also showed potential important roles in fiber development; and the co-expression analysis between lncRNAs and targets showed the distinct models of different lncRNAs and complicated interaction between lncRNAs in fiber development of cotton. CONCLUSIONS From the above results, a key lncRNA MSTRG 2723.1 was identified that might mediate some key genes transcription of fatty acid metabolism, MYB25-mediating pathway, and pectin metabolism to regulate fiber initiation of ZM24 cultivar. Co-expression analysis implied that some other important lncRNAs (e.g., MSTRG 3390.1, MSTRG 48719.1, and MSTRG 31176.1) were also showed the different regulatory model and interaction between them, which proposes some valuable clues for the lncRNAs associated mechanisms in fiber development.
Collapse
Affiliation(s)
- Xianyan Zou
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Faiza Ali
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
50
|
Liu W, Cui J, Luan Y. Overexpression of lncRNA08489 enhances tomato immunity against Phytophthora infestans by decoying miR482e-3p. Biochem Biophys Res Commun 2022; 587:36-41. [PMID: 34864393 DOI: 10.1016/j.bbrc.2021.11.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 01/18/2023]
Abstract
LncRNAs are widely involved in various biological processes of plants. Recent evidences indicated that lncRNAs could act as competing endogenous RNAs (ceRNAs) to adsorb complementary miRNAs in a type of target mimicry, thereby indirectly regulating the target genes of miRNAs. In this study, a lncRNA, lncRNA08489 was identified to be the ceRNA of miR482e-3p in tomato plants. The expression patterns of lncRNA08489 and miR482e-3p showed opposite trends after tomato plants infected with Phytophthora infestans. In tomato leaves overexpressing lncRNA08489 (OE08489), the expression level of miR482e-3p decreased and its target gene, NBS-LRR increased. After infection with P. infestans, the resistance of OE08489 plants was stronger than that of the wild type, and the reactive oxygen species (ROS) scavenging ability of OE08489 plants was significantly improved. Taken together, these results indicated that lncRNA08489 acted as a ceRNA to decoy miR482e-3p and regulate the expression of NBS-LRR to enhance tomato resistance through ROS-scavenging system.
Collapse
Affiliation(s)
- Weiwei Liu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Cui
- College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|