1
|
Liu S, Aishan S, Liu Q, Lv L, Ma K, Fan K, Zhang K, Qin Y, Li G, Hu X, Hu Z, He J, Liu H, Qin R. The chromosome-scale genomes of two cultivated safflowers (Carthamus tinctorius) provide insights into the genetic diversity resulting from domestication. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:97. [PMID: 40208296 DOI: 10.1007/s00122-025-04874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
KEY MESSAGE Two cultivated safflowers from distinct areas elucidate the genetic diversity present in the linoleic acid biosynthesis, flowering time and flavonoid biosynthesis. The process of domestication facilitates the adaptation of crops to agricultural environments. In this study, we selected two representative safflower cultivars that has been domesticated in two distinct areas in China as samples to investigate their genetic diversity due to local environmental adaption. Yunhong-7 is a locally bred safflower (Carthamus tinctorius) cultivar, that has been currently widely cultivated in Yunnan Province, Southwest China, and Anhui-1 is a safflower cultivar that was locally bred in Anhui Province, East China. We firstly generated the chromosome-scale genome assembly for yunhong-7 cultivar by combining PacBio and Hi-C technologies. Through comparative genomic analysis, we identified structural variations (SVs) between yunhong-7 and anhui-1, which revealed their genetic differences in the pathways of fatty acid biosynthesis, circadian rhythm and flavonoid biosynthesis. Subsequently, a total of 40 non-redundant fatty acid desaturase 2 (FAD2) genes (39 for yunhong-7 and 20 for anhui-1) were identified, revealing the presence of copy-number variation and major genes change between yunhong-7 and anhui-1. The presented results suggested that changes in SVs may induce alterations in the expression of flowering-related genes, which could explain the observed early flowering phenotype in yunhong-7 compared to anhui-1. We identified a total of 197 non-redundant UDP-glucuronosyltransferases (UGT) genes. Based on prokaryotic expression system, we investigated the catalytic functions of two unique UGT genes (CtUGT.18 and CtUGT.191). The current study increases our knowledge of genetic diversity among crop cultivars resulting from distinct domestication processes and thus could contribute to the advancement of traits research and the safflower breeding.
Collapse
Affiliation(s)
- Shuo Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Saimire Aishan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Qiuyu Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Lu Lv
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Kang Ma
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Kangjun Fan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Kehui Zhang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yonghua Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Gang Li
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xueli Hu
- Industrial Crop Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Zunhong Hu
- Industrial Crop Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Junwei He
- Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
2
|
Fu Y, Yao M, Qiu P, Song M, Ni X, Niu E, Shi J, Wang T, Zhang Y, Yu H, Qian L. Identification of transcription factor BnHDG4-A08 as a novel candidate associated with the accumulation of oleic, linoleic, linolenic, and erucic acid in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:243. [PMID: 39352575 DOI: 10.1007/s00122-024-04733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/24/2024] [Indexed: 10/03/2024]
Abstract
KEY MESSAGE We screened 47 significantly associated haplotype blocks for oleic, linoleic, linolenic, and erucic acid, with 17 blocks influencing multiple traits. A novel candidate of transcription factor BnHDG4 A08 influencing oleic, linoleic, linolenic, and erucic acid was identified, by a joint strategy of haplotype-based genome-wide association study, genomic resequencing, gene cloning, and co-expression network Fatty acid (FA) composition determines the quality and economic value of rapeseed oil (Brassica napus). However, the molecular network of FAs is unclear. In the current study, multi-strategies of haplotype-based genome-wide association study (GWAS), genomic resequencing, gene cloning, and co-expression network were joint to reveal novel genetic factors influencing FA accumulation in rapeseed. We identified 47 significantly associated haplotype blocks for oleic, linoleic, linolenic, and erucic acid, with 17 blocks influencing multiple traits, using a haplotype-based GWAS with phenotype data from 203 Chinese semi-winter accessions. A total of 61 rapeseed orthologs involved in acyl-lipid metabolism, carbohydrate metabolism, or photosynthesis were identified in these 17 blocks. Among these genes, BnHDG4-A08, encoding a class IV homeodomain leucine-zipper transcription factor, exhibited two single-nucleotide polymorphisms (SNPs) in the exon and intron, with significant associations with oleic, linoleic, linolenic, and erucic acid. Gene cloning further validated two SNPs in the exon of BnHDG4-A08 in a population with 75 accessions, leading to two amino acid changes (T372A and P366L) and significant variation of oleic, linoleic, linolenic, and erucic acid. A competitive allele-specific PCR (KASP) marker based on the SNPs was successfully developed and validated. Moreover, 98 genes exhibiting direct interconnections and high weight values with BnHDG4-A08 were identified through co-expression network analysis using transcriptome data from 13 accessions. Our study identified a novel FA candidate of transcription factor BnHDG4-A08 influencing oleic, linoleic, linolenic, and erucic acid. This gene provides a potential promising gene resource for the novel mechanistic understanding of transcription factors regulating FA accumulation.
Collapse
Affiliation(s)
- Ying Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Min Yao
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Ping Qiu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Maolin Song
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Xiyuan Ni
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Erli Niu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianghua Shi
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tanliu Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaofeng Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huasheng Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Lunwen Qian
- College of Agronomy, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
3
|
Gu J, Guan Z, Jiao Y, Liu K, Hong D. The story of a decade: Genomics, functional genomics, and molecular breeding in Brassica napus. PLANT COMMUNICATIONS 2024; 5:100884. [PMID: 38494786 PMCID: PMC11009362 DOI: 10.1016/j.xplc.2024.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Rapeseed (Brassica napus L.) is one of the major global sources of edible vegetable oil and is also used as a feed and pioneer crop and for sightseeing and industrial purposes. Improvements in genome sequencing and molecular marker technology have fueled a boom in functional genomic studies of major agronomic characters such as yield, quality, flowering time, and stress resistance. Moreover, introgression and pyramiding of key functional genes have greatly accelerated the genetic improvement of important traits. Here we summarize recent progress in rapeseed genomics and genetics, and we discuss effective molecular breeding strategies by exploring these findings in rapeseed. These insights will extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture throughout the world.
Collapse
Affiliation(s)
- Jianwei Gu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Life Science and Technology, Hubei Engineering University, Xiaogan 432100 Hubei, China
| | - Zhilin Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 Hubei, China
| | - Yushun Jiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Yazhouwan National Laboratory, Sanya 572024 Hainan, China.
| |
Collapse
|
4
|
Chen XY, Wu HX, Zhang XH, Guo RH, Li K, Fu YL, Huang Z, Xu AX, Dong JG, Yu CY. Comparative Transcriptomics Uncovers Upstream Factors Regulating BnFAD3 Expression and Affecting Linolenic Acid Biosynthesis in Yellow-Seeded Rapeseed ( Brassica napus L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:760. [PMID: 38592766 PMCID: PMC10974354 DOI: 10.3390/plants13060760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
α-Linolenic acid (ALA) is an important nutrient component in rapeseed oil, and rapeseed breeders want to either restrain or enhance the function of fatty acid desaturases (FADs) in the ALA biosynthesis pathway. To determine the reason for the upregulation of rapeseed BnFAD genes in two high-ALA accessions, R8Q10 and YH25005, we compared their transcriptome profiles in the seed at 24 days after pollination (DAP) with those of two low-ALA lines, A28 and SW. The expression levels of twenty-eight important genes in the seed samples at 20, 27, and 34 DAP were also investigated using an RT-qPCR. The expression levels of genes involved in flavonoid and proanthocyanidin synthesis, including BnCHS, BnCHI, BnDFR, BnFLS1, BnLDOX, BnBAN, BnTT10, and BnTT12 and genes encoding the transcription factors BnTT1, BnTT2, BnTT8, and BnTT16 were lower in R8Q10 and YH25005 than in A28 and SW. The expression levels of genes encoding master transcription factors in embryo development, such as BnLEC1, BnABI3, BnFUS3, BnL1L, BnAREB3, and BnbZIP67, were elevated significantly in the two high-ALA accessions. Combined with previous results in the Arabidopsis and rapeseed literature, we speculated that the yellow-seededness genes could elevate the activity of BnLEC1, BnABI3, BnFUS3, and BnbZIP67, etc., by reducing the expression levels of several transparent testa homologs, resulting in BnFAD3 and BnFAD7 upregulation and the acceleration of ALA synthesis. Yellow-seededness is a favorable factor to promote ALA synthesis in the two high-ALA accessions with the yellow-seeded trait. These findings provide initial insights into the transcriptomic differences between high-/low-ALA germplasms and a theoretic basis for seed quality breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Cheng-Yu Yu
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling 712100, China (Z.H.); (A.-X.X.)
| |
Collapse
|
5
|
Guo J, Zhou X, Chen D, Chen K, Ye C, Liu J, Liu S, Chen Y, Chen G, Liu C. Effect of Fat Content on Rice Taste Quality through Transcriptome Analysis. Genes (Basel) 2024; 15:81. [PMID: 38254970 PMCID: PMC10815682 DOI: 10.3390/genes15010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Rice is an important crop in the word, and fat is one of the main important nutrient components of rice. The lipid content and fatty acid composition of grains significantly influences the quality of rice. In this study, 94 homozygous recombination inbred lines (RILs) were developed and the crude fat content of them displayed a normal distribution ranging from 0.44% to 2.62%. Based on their taste quality, a positive association between fat content and eating quality was revealed. Then, two lines (FH and FL) were selected with similar agronomic characteristics and different lipid content and taste quality for RNA sequencing analysis, and a total of 619 differentiable expressed genes were detected, primarily enriched in metabolic pathways such as starch and sucrose metabolism, fatty acid metabolism, and amino acid metabolism. The expression of two genes related to fatty acid synthesis and elongation was significantly up-regulated, while the expression of three genes related to fatty acid degradation was significantly down-regulated in FH grains. By using liquid chromatography, the relative levels of palmitic acid and oleic acid were discovered significantly higher in FH grains. Additionally, the comparative genomic analysis was conducted to visualize genomic differences of five genes. Ultimately, two genes (Os07g0417200 and Os12g0102100) were selected to be the key gene to affect the lipid metabolism, especially for the synthesis of unsaturated fatty acids, significantly changing the eating quality of rice. These results provide a theoretical basis for improving the taste quality of rice.
Collapse
Affiliation(s)
- Jie Guo
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Xinqiao Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Dagang Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Ke Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Chanjuan Ye
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Juan Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Shaolong Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Youding Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Guorong Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Chuanguang Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| |
Collapse
|
6
|
Zhang L, Liu L, Li H, He J, Chao H, Yan S, Yin Y, Zhao W, Li M. 3D genome structural variations play important roles in regulating seed oil content of Brassica napus. PLANT COMMUNICATIONS 2024; 5:100666. [PMID: 37496273 PMCID: PMC10811347 DOI: 10.1016/j.xplc.2023.100666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
Dissecting the complex regulatory mechanism of seed oil content (SOC) is one of the main research goals in Brassica napus. Increasing evidence suggests that genome architecture is linked to multiple biological functions. However, the effect of genome architecture on SOC regulation remains unclear. Here, we used high-throughput chromatin conformation capture to characterize differences in the three-dimensional (3D) landscape of genome architecture of seeds from two B. napus lines, N53-2 (with high SOC) and Ken-C8 (with low SOC). Bioinformatics analysis demonstrated that differentially accessible regions and differentially expressed genes between N53-2 and Ken-C8 were preferentially enriched in regions with quantitative trait loci (QTLs)/associated genomic regions (AGRs) for SOC. A multi-omics analysis demonstrated that expression of SOC-related genes was tightly correlated with genome structural variations in QTLs/AGRs of B. napus. The candidate gene BnaA09g48250D, which showed structural variation in a QTL/AGR on chrA09, was identified by fine-mapping of a KN double-haploid population derived from hybridization of N53-2 and Ken-C8. Overexpression and knockout of BnaA09g48250D led to significant increases and decreases in SOC, respectively, in the transgenic lines. Taken together, our results reveal the 3D genome architecture of B. napus seeds and the roles of genome structural variations in SOC regulation, enriching our understanding of the molecular mechanisms of SOC regulation from the perspective of spatial chromatin structure.
Collapse
Affiliation(s)
- Libin Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan 430075, China
| | - Huaixin Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Jianjie He
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Hongbo Chao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuxiang Yan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Yontai Yin
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Weiguo Zhao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China.
| |
Collapse
|
7
|
Wang J, Chen H, Li Y, Shi D, Wang W, Yan C, Yuan M, Sun Q, Chen J, Mou Y, Qu C, Shan S. Identification of Quantitative Trait Nucleotides and Development of Diagnostic Markers for Nine Fatty Acids in the Peanut. PLANTS (BASEL, SWITZERLAND) 2023; 13:16. [PMID: 38202325 PMCID: PMC10780752 DOI: 10.3390/plants13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
The cultivated peanut (Arachis hypogaea L.) is an important oilseed crop worldwide, and fatty acid composition is a major determinant of peanut oil quality. In the present study, we conducted a genome-wide association study (GWAS) for nine fatty acid traits using the whole genome sequences of 160 representative Chinese peanut landraces and identified 6-1195 significant SNPs for different fatty acid contents. Particularly for oleic acid and linoleic acid, two peak SNP clusters on Arahy.09 and Arahy.19 were found to contain the majority of the significant SNPs associated with these two fatty acids. Additionally, a significant proportion of the candidate genes identified on Arahy.09 overlap with those identified in early studies, among which three candidate genes are of special interest. One possesses a significant missense SNP and encodes a known candidate gene FAD2A. The second gene is the gene closest to the most significant SNP for linoleic acid. It codes for an MYB protein that has been demonstrated to impact fatty acid biosynthesis in Arabidopsis. The third gene harbors a missense SNP and encodes a JmjC domain-containing protein. The significant phenotypic difference in the oleic acid/linoleic acid between the genotypes at the first and third candidate genes was further confirmed with PARMS analysis. In addition, we have also identified different candidate genes (i.e., Arahy.ZV39IJ, Arahy.F9E3EA, Arahy.X9ZZC1, and Arahy.Z0ELT9) for the remaining fatty acids. Our findings can help us gain a better understanding of the genetic foundation of peanut fatty acid contents and may hold great potential for enhancing peanut quality in the future.
Collapse
Affiliation(s)
- Juan Wang
- Shandong Peanut Research Institute, Qingdao 266100, China; (J.W.)
| | - Haoning Chen
- Shandong Peanut Research Institute, Qingdao 266100, China; (J.W.)
| | - Yuan Li
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, 22100 Lund, Sweden
- Department of Immunotechnology, Lund University, Medicon Village, 22100 Lund, Sweden
| | - Dachuan Shi
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Wenjiao Wang
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Caixia Yan
- Shandong Peanut Research Institute, Qingdao 266100, China; (J.W.)
| | - Mei Yuan
- Shandong Peanut Research Institute, Qingdao 266100, China; (J.W.)
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao 266100, China; (J.W.)
| | - Jing Chen
- Shandong Peanut Research Institute, Qingdao 266100, China; (J.W.)
| | - Yifei Mou
- Shandong Peanut Research Institute, Qingdao 266100, China; (J.W.)
| | - Chunjuan Qu
- Shandong Peanut Research Institute, Qingdao 266100, China; (J.W.)
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao 266100, China; (J.W.)
| |
Collapse
|
8
|
Zhao Q, Wu J, Lan L, Shahid M, Qasim MU, Yu K, Zhang C, Fan C, Zhou Y. Fine mapping and candidate gene analysis of a major QTL for oil content in the seed of Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:256. [PMID: 38010528 DOI: 10.1007/s00122-023-04501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
KEY MESSAGE By integrating QTL fine mapping and transcriptomics, a candidate gene responsible for oil content in rapeseed was identified. The gene is anticipated to primarily function in photosynthesis and photosystem metabolism pathways. Brassica napus is one of the most important oil crops in the world, and enhancing seed oil content is an important goal in its genetic improvement. However, the underlying genetic basis for the important trait remains poorly understood in this crop. We previously identified a major locus, OILA5 responsible for seed oil content on chromosome A5 through genome-wide association study. To better understand the genetics of the QTL, we performed fine mapping of OILA5 with a double haploid population and a BC3F2 segregation population consisting of 6227 individuals. We narrowed down the QTL to an approximate 43 kb region with twelve annotated genes, flanked by markers ZDM389 and ZDM337. To unveil the potential candidate gene responsible for OILA5, we integrated fine mapping data with transcriptome profiling using high and low oil content near-isogenic lines. Among the candidate genes, BnaA05G0439400ZS was identified with high expression levels in both seed and silique tissues. This gene exhibited homology with AT3G09840 in Arabidopsis that was annotated as cell division cycle 48. We designed a site-specific marker based on resequencing data and confirmed its effectiveness in both natural and segregating populations. Our comprehensive results provide valuable genetic information not only enhancing our understanding of the genetic control of seed oil content but also novel germplasm for advancing high seed oil content breeding in B. napus and other oil crops.
Collapse
Affiliation(s)
- Qing Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jian Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China.
| | - Lei Lan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Shahid
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Uzair Qasim
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Kaidi Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
9
|
Bu M, Fan W, Li R, He B, Cui P. Lipid Metabolism and Improvement in Oilseed Crops: Recent Advances in Multi-Omics Studies. Metabolites 2023; 13:1170. [PMID: 38132852 PMCID: PMC10744971 DOI: 10.3390/metabo13121170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Oilseed crops are rich in plant lipids that not only provide essential fatty acids for the human diet but also play important roles as major sources of biofuels and indispensable raw materials for the chemical industry. The regulation of lipid metabolism genes is a major factor affecting oil production. In this review, we systematically summarize the metabolic pathways related to lipid production and storage in plants and highlight key research advances in characterizing the genes and regulatory factors influencing lipid anabolic metabolism. In addition, we integrate the latest results from multi-omics studies on lipid metabolism to provide a reference to better understand the molecular mechanisms underlying oil anabolism in oilseed crops.
Collapse
Affiliation(s)
- Mengjia Bu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Fan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Ruonan Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Bing He
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Peng Cui
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
10
|
Deng M, Chen H, Zhang W, Cahoon EB, Zhou Y, Zhang C. Genetic improvement of tocotrienol content enhances the oxidative stability of canola oil. FRONTIERS IN PLANT SCIENCE 2023; 14:1247781. [PMID: 37790787 PMCID: PMC10543761 DOI: 10.3389/fpls.2023.1247781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/18/2023] [Indexed: 10/05/2023]
Abstract
Background Tocotrienols and tocopherols, which are synthesized in plastids of plant cells with similar functionalities, comprise vitamin E to serve as a potent lipid-soluble antioxidant in plants. The synthesis of tocopherols involves the condensation of homogentisic acid (HGA) and phytyl diphosphate (PDP) under the catalysis of homogentisate phytyltransferase (HPT). Tocotrienol synthesis is initiated by the condensation of HGA and geranylgeranyl diphosphate (GGDP) mediated by homogentisate geranylgeranyl transferase (HGGT). As one of the most important oil crops, canola seed is regarded as an ideal plant to efficiently improve the production of vitamin E tocochromanols through genetic engineering approaches. However, only a modest increase in tocopherol content has been achieved in canola seed to date. Methods In this study, we transformed barley HGGT (HvHGGT) into canola to improve total tocochromanol content in canola seeds. Results and discussion The results showed that the total tocochromanol content in the transgenic canola seeds could be maximally increased by fourfold relative to that in wild-type canola seeds. Notably, no negative impact on important agronomic traits was observed in transgenic canola plants, indicating great application potential of the HvHGGT gene in enhancing tocochromanol content in canola in the future. Moreover, the oil extracted from the transgenic canola seeds exhibited significantly enhanced oxidative stability under high temperature in addition to the increase in total tocochromanol content, demonstrating multiple desirable properties of HvHGGT.
Collapse
Affiliation(s)
- Min Deng
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhang
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Yongming Zhou
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyu Zhang
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Gill RA, Helal MMU, Tang M, Hu M, Tong C, Liu S. High-Throughput Association Mapping in Brassica napus L.: Methods and Applications. Methods Mol Biol 2023; 2638:67-91. [PMID: 36781636 DOI: 10.1007/978-1-0716-3024-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Oil seed rape (Braasica napus L.) is ranked second among oil seed crops cultivated globally for edible oil for human, and seed cake for animal consumption. Recent genetic and genomics advancements highlighted the diversity that exists within B. napus, which is largely discovered using the most promising genetic markers called single nucleotide polymorphism (SNP). Their calling rate is also enhanced to ~100 folds after the continuous advancements in the next generation sequencing (NGS) technologies. As the high throughput of NGS resulted in multi-Giga bases data, the detailed quality control (QC) prior to downstream analyses is a pre-requisite. It mainly involved the removal of false positives, missing proportions, filtering of low-quality SNPs, and adjustments of minor-allele frequency and heterozygosity. After marker-trait association, for conformation of target SNPs, validations of SNPs can be performed using various methods, especially allele-specific PCR assay-based methods have been utilized for SNP genotyping of genes targeting agronomic traits and somaclonal variations occurred during transgenic studies. In the present study, the authors mainly argue on the genotypic progress, and pipelines/methods that are being used for detection, calling, filtering, and validation of SNPs. Also, insight is provided into the application of SNPs in linkage and association mapping, including QTL mapping and genome-wide association studies targeting mainly developmental traits related to the root system and plant architecture, flowering time, silique, and oil quality. Briefly, the present study provides the recent information and recommendations on the SNP genotyping methods and its applications, which can be useful for marker-assisted breeding in B. napus and other crops.
Collapse
Affiliation(s)
- Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Md Mostofa Uddin Helal
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Minqiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Ming Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chaobo Tong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
12
|
Liu H, Lin B, Ren Y, Hao P, Huang L, Xue B, Jiang L, Zhu Y, Hua S. CRISPR/Cas9-mediated editing of double loci of BnFAD2 increased the seed oleic acid content of rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1034215. [PMID: 36483970 PMCID: PMC9723152 DOI: 10.3389/fpls.2022.1034215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Seed oleic acid is an important quality trait sought in rapeseed breeding programs. Many methods exist to increase seed oleic acid content, such as the CRISPR/Cas9-mediated genome editing system, yet there is no report on seed oleic acid content improvement via this system's precise editing of the double loci of BnFAD2. Here, a precise CRISPR/Cas9-mediated genome editing of the encoded double loci (A5 and C5) of BnFAD2 was established. The results demonstrated high efficiency of regeneration and transformation, with the rapeseed genotype screened in ratios of 20.18% and 85.46%, respectively. The total editing efficiency was 64.35%, whereas the single locus- and double locus-edited ratios were 21.58% and 78.42%, respectively. The relative proportion of oleic acid with other fatty acids in seed oil of mutants was significantly higher for those that underwent the editing on A5 copy than that on C5 copy, but it was still less than 80%. For double locus-edited mutants, their relative proportion of oleic acid was more than 85% in the T1 and T4 generations. A comparison of the sequences between the double locus-edited mutants and reference showed that no transgenic border sequences were detected from the transformed vector. Analysis of the BnFAD2 sequence on A5 and C5 at the mutated locus of double loci mutants uncovered evidence for base deletion and insertion, and combination. Further, no editing issue of FAD2 on the copy of A1 was detected on the three targeted editing regions. Seed yield, yield component, oil content, and relative proportion of oleic acid between one selected double loci-edited mutant and wild type were also compared. These results showed that although the number of siliques per plant of the wild type was significantly higher than those of the mutant, the differences in seed yield and oil content were not significant between them, albeit with the mutant having a markedly higher relative proportion of oleic acid. Altogether, our results confirmed that the established CRISPR/Cas9-mediated genome editing of double loci (A5 and C5) of the BnFAD2 can precisely edit the targeted genes, thereby enhancing the seed oleic acid content to a far greater extent than can a single locus-editing system.
Collapse
Affiliation(s)
- Han Liu
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Department of Seed Management, Yongding Agriculture and Rural Bureau of Longyan, Longyan, China
| | - Baogang Lin
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Yun Ren
- Huzhou Agricultural Science and Technology Development Center, Institution of Crop Science, Huzhou, China
| | - Pengfei Hao
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Lan Huang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Bowen Xue
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Lixi Jiang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yang Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuijin Hua
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
13
|
Tan M, Niu J, Peng DZ, Cheng Q, Luan MB, Zhang ZQ. Clone and Function Verification of the OPR gene in Brassica napus Related to Linoleic Acid Synthesis. BMC PLANT BIOLOGY 2022; 22:192. [PMID: 35410118 PMCID: PMC9003975 DOI: 10.1186/s12870-022-03549-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/16/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Fatty acid composition and content affect rapeseed oil quality. Fatty acid synthesis-related genes in rapeseed have been studied globally by researchers. Nevertheless, rapeseed oil is mainly composed of seven different fatty acids (FA), and each fatty acid was regulated by different genes. Furthermore, different FA affect each other, which needs continuous and in-depth research to obtain more clear results in Brassica napus. RESULTS In this paper, broad-scale miRNA expression profiles were constructed and 21 differentially expressed miRNAs were detected. GO enrichment analysis showed that most up-regulated proteins were involved in transcription factor activity and catalytic activity. KEGG pathway enrichment analysis indicated that 20 pathways involving 36 target genes were enriched, of which the bna00592 pathway may be involved in fatty acid metabolism. The results were verified using a quantitative real-time PCR (RT-qPCR) analysis, we found that the target gene of bna-miR156b > c > g was the OPR (12-oxo-phytodienoic acid reductase). Four copies of OPR gene were found, and the over-expression vectors (pCAMBIA1300-35 s-OPR and pCAMBIA1300-RNAi-OPR) were constructed to verify their functions. In T1 and T2 generation, the content of linoleic acid (LA) increased significantly in OE but deceased in OPRi. CONCLUSIONS This is the first study to provide four copies of the OPR gene that regulates LA metabolism, can be used for the molecular mechanism of LA and optimizing fatty acid profiles in oilseed for breeding programs.
Collapse
Affiliation(s)
- Min Tan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Juan Niu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Duo Zi Peng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Qian Cheng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Ming Bao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China.
| | - Zhen Qian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
14
|
Raboanatahiry N, Chao H, He J, Li H, Yin Y, Li M. Construction of a Quantitative Genomic Map, Identification and Expression Analysis of Candidate Genes for Agronomic and Disease-Related Traits in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:862363. [PMID: 35360294 PMCID: PMC8963808 DOI: 10.3389/fpls.2022.862363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 06/12/2023]
Abstract
Rapeseed is the second most important oil crop in the world. Improving seed yield and seed oil content are the two main highlights of the research. Unfortunately, rapeseed development is frequently affected by different diseases. Extensive research has been made through many years to develop elite cultivars with high oil, high yield, and/or disease resistance. Quantitative trait locus (QTL) analysis has been one of the most important strategies in the genetic deciphering of agronomic characteristics. To comprehend the distribution of these QTLs and to uncover the key regions that could simultaneously control multiple traits, 4,555 QTLs that have been identified during the last 25 years were aligned in one unique map, and a quantitative genomic map which involved 128 traits from 79 populations developed in 12 countries was constructed. The present study revealed 517 regions of overlapping QTLs which harbored 2,744 candidate genes and might affect multiple traits, simultaneously. They could be selected to customize super-rapeseed cultivars. The gene ontology and the interaction network of those candidates revealed genes that highly interacted with the other genes and might have a strong influence on them. The expression and structure of these candidate genes were compared in eight rapeseed accessions and revealed genes of similar structures which were expressed differently. The present study enriches our knowledge of rapeseed genome characteristics and diversity, and it also provided indications for rapeseed molecular breeding improvement in the future.
Collapse
Affiliation(s)
- Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Plant monounsaturated fatty acids: Diversity, biosynthesis, functions and uses. Prog Lipid Res 2021; 85:101138. [PMID: 34774919 DOI: 10.1016/j.plipres.2021.101138] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
Monounsaturated fatty acids are straight-chain aliphatic monocarboxylic acids comprising a unique carbon‑carbon double bond, also termed unsaturation. More than 50 distinct molecular structures have been described in the plant kingdom, and more remain to be discovered. The evolution of land plants has apparently resulted in the convergent evolution of non-homologous enzymes catalyzing the dehydrogenation of saturated acyl chain substrates in a chemo-, regio- and stereoselective manner. Contrasted enzymatic characteristics and different subcellular localizations of these desaturases account for the diversity of existing fatty acid structures. Interestingly, the location and geometrical configuration of the unsaturation confer specific characteristics to these molecules found in a variety of membrane, storage, and surface lipids. An ongoing research effort aimed at exploring the links existing between fatty acid structures and their biological functions has already unraveled the importance of several monounsaturated fatty acids in various physiological and developmental contexts. What is more, the monounsaturated acyl chains found in the oils of seeds and fruits are widely and increasingly used in the food and chemical industries due to the physicochemical properties inherent in their structures. Breeders and plant biotechnologists therefore develop new crops with high monounsaturated contents for various agro-industrial purposes.
Collapse
|
16
|
Hu D, Jing J, Snowdon RJ, Mason AS, Shen J, Meng J, Zou J. Exploring the gene pool of Brassica napus by genomics-based approaches. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1693-1712. [PMID: 34031989 PMCID: PMC8428838 DOI: 10.1111/pbi.13636] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 05/08/2023]
Abstract
De novo allopolyploidization in Brassica provides a very successful model for reconstructing polyploid genomes using progenitor species and relatives to broaden crop gene pools and understand genome evolution after polyploidy, interspecific hybridization and exotic introgression. B. napus (AACC), the major cultivated rapeseed species and the third largest oilseed crop in the world, is a young Brassica species with a limited genetic base resulting from its short history of domestication, cultivation, and intensive selection during breeding for target economic traits. However, the gene pool of B. napus has been significantly enriched in recent decades that has been benefit from worldwide effects by the successful introduction of abundant subgenomic variation and novel genomic variation via intraspecific, interspecific and intergeneric crosses. An important question in this respect is how to utilize such variation to breed crops adapted to the changing global climate. Here, we review the genetic diversity, genome structure, and population-level differentiation of the B. napus gene pool in relation to known exotic introgressions from various species of the Brassicaceae, especially those elucidated by recent genome-sequencing projects. We also summarize progress in gene cloning, trait-marker associations, gene editing, molecular marker-assisted selection and genome-wide prediction, and describe the challenges and opportunities of these techniques as molecular platforms to exploit novel genomic variation and their value in the rapeseed gene pool. Future progress will accelerate the creation and manipulation of genetic diversity with genomic-based improvement, as well as provide novel insights into the neo-domestication of polyploid crops with novel genetic diversity from reconstructed genomes.
Collapse
Affiliation(s)
- Dandan Hu
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinjie Jing
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Rod J. Snowdon
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Annaliese S. Mason
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
- Plant Breeding DepartmentINRESThe University of BonnBonnGermany
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinling Meng
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jun Zou
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
17
|
Fu Y, Mason AS, Zhang Y, Yu H. Identification and Development of KASP Markers for Novel Mutant BnFAD2 Alleles Associated With Elevated Oleic Acid in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:715633. [PMID: 34381489 PMCID: PMC8350730 DOI: 10.3389/fpls.2021.715633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/21/2021] [Indexed: 05/25/2023]
Abstract
The fatty acid desaturase FAD2 genes are the main contributors to oleic acid content, and different FAD2 alleles can result in different oleic acid contents in rapeseed oil. Hence, identification of allelic variation in FAD2 is an extremely desirable breeding goal. By performing QTL mapping using 190 F2:3 lines genotyped by genome-wide single nucleotide polymorphism (SNP) markers assayed by the Brassica 60 K Infinium BeadChip Array, four quantitative trait loci (QTL) for C18:1 content were mapped on chromosomes A01, A05, A09 and C05 over 3 years in a population segregating for oleic acid content. Two BnFAD2 genes on A05 and C05 were anchored within the QTL intervals, explaining 45-52 and 15-44% of the observed variation for C18:1 content. Sequence polymorphisms between the corresponding coding regions of the parental lines found two single-nucleotide polymorphisms (SNPs) in BnFAD2.A05 and BnFAD2.C05, respectively, which led to the amino acid changes (C421T and G1073E) in the corresponding proteins. The mutation sites of Bnfad2.A05 and Bnfad2.C05 alleles were located within the second H-box and near the third H-box motif of the protein, respectively, and were found to be novel mutant alleles. Lines resulting from the combination of these two alleles contained up to 88% oleic acid in their seed oil, compared with 63% in wild-type controls. Two competitive allele-specific PCR (KASP) markers based on these two mutation sites were successfully developed and validated in segregating F2 populations. These markers will facilitate breeding for ultra-high seed oleic acid content in oilseed rape.
Collapse
Affiliation(s)
- Ying Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Yaofeng Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huasheng Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
18
|
Tang S, Liu DX, Lu S, Yu L, Li Y, Lin S, Li L, Du Z, Liu X, Li X, Ma W, Yang QY, Guo L. Development and screening of EMS mutants with altered seed oil content or fatty acid composition in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1410-1422. [PMID: 33048384 DOI: 10.1111/tpj.15003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Brassica napus is an important oilseed crop in the world, and the mechanism of seed oil biosynthesis in B. napus remains unclear. In order to study the mechanism of oil biosynthesis and generate germplasms for breeding, an ethyl methanesulfonate (EMS) mutant population with ~100 000 M2 lines was generated using Zhongshuang 11 as the parent line. The EMS-induced genome-wide mutations in M2-M4 plants were assessed. The average number of mutations including single nucleotide polymorphisms and insertion/deletion in M2-M4 was 21 177, 28 675 and 17 915, respectively. The effects of the mutations on gene function were predicted in M2-M4 mutants, respectively. We screened the seeds from 98 113 M2 lines, and 9415 seed oil content and fatty acid mutants were identified. We further confirmed 686 mutants with altered seed oil content and fatty acid in advanced generation (M4 seeds). Five representative M4 mutants with increased oleic acid were re-sequenced, and the potential causal variations in FAD2 and ROD1 genes were identified. This study generated and screened a large scale of B. napus EMS mutant population, and the identified mutants could provide useful genetic resources for the study of oil biosynthesis and genetic improvement of seed oil content and fatty acid composition of B. napus in the future.
Collapse
Affiliation(s)
- Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dong-Xu Liu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liangqian Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengli Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Long Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuolin Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Qing-Yong Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
19
|
Identification of potential QTLs and genes associated with seed composition traits in peanut (Arachis hypogaea L.) using GWAS and RNA-Seq analysis. Gene 2020; 769:145215. [PMID: 33038422 DOI: 10.1016/j.gene.2020.145215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 11/21/2022]
Abstract
Cultivated peanut (Arachis hypogaea L.) is a major oilseed crop providing edible oil and protein. Oil quality is determined by fatty acid composition including the ratio of oleic acid (C18:1) and linoleic acid (C18:2). A genome-wide association study with 13,382 single nucleotide polymorphisms (SNPs) was conducted to investigate the genetics basis of oil, protein, eight fatty acid concentrations, and O/L ratio (ratio of oleic and linoleic acid) using a diverse panel of 120 genotypes mainly selected from the U.S. peanut mini core collection grown in two years. A total of 178 significant quantitative trait loci (QTLs) associated with those seed composition traits were identified with phenotypic variation explained (PVE) from 18.35% to 27.56%. RNA-Seq analysis identified 282 DEGs (differentially expressed genes) within the 1 Mb of the significant QTLs for seed composition traits. Among those 282 genes, sixteen candidate genes for seed fatty acid metabolism and protein synthesis were screened according to the gene functions.
Collapse
|
20
|
Qasim MU, Zhao Q, Shahid M, Samad RA, Ahmar S, Wu J, Fan C, Zhou Y. Identification of QTLs Containing Resistance Genes for Sclerotinia Stem Rot in Brassica napus Using Comparative Transcriptomic Studies. FRONTIERS IN PLANT SCIENCE 2020; 11:776. [PMID: 32655594 PMCID: PMC7325899 DOI: 10.3389/fpls.2020.00776] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/15/2020] [Indexed: 05/21/2023]
Abstract
Sclerotinia stem rot is a major disease in Brassica napus that causes yield losses of 10-20% and reaching 80% in severely infected fields. SSR not only causes yield reduction but also causes low oil quality by reducing fatty acid content. There is a need to identify resistant genetic sources with functional significance for the breeding of SSR-resistant cultivars. In this study, we identified 17 QTLs involved in SSR resistance in three different seasons using SNP markers and disease lesion development after artificial inoculation. There were no common QTLs in all 3 years, but there were three QTLs that appeared in two seasons covering all seasons with a shared QTL. The QTLs identified in the 2 years were SRA9a, SRC2a and SRC3a with phenotypic effect variances of 14.75 and 11.57% for SRA9a, 7.49 and 10.38% for SRC3a and 7.73 and 6.81% for SRC2a in their 2 years, respectively. The flowering time was also found to have a negative correlation with disease resistance, i.e., early-maturing lines were more susceptible to disease. The stem width has shown a notably weak effect on disease development, causing researchers to ignore its effect. Given that flowering time is an important factor in disease resistance, we used comparative RNA-sequencing analysis of resistant and susceptible lines with consistent performance in 3 years with almost the same flowering time to identify the resistance genes directly involved in resistance within the QTL regions. Overall, there were more genes differentially expressed in resistant lines 19,970 than in susceptible lines 3936 compared to their mock-inoculated lines, demonstrating their tendency to cope with disease. We identified 36 putative candidate genes from the resistant lines that were upregulated in resistant lines compared to resistant mock and susceptible lines that might be involved in resistance to SSR.
Collapse
Affiliation(s)
- Muhammad Uzair Qasim
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Shahid
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rana Abdul Samad
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sunny Ahmar
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Yongming Zhou,
| |
Collapse
|
21
|
Lu S, Aziz M, Sturtevant D, Chapman KD, Guo L. Heterogeneous Distribution of Erucic Acid in Brassica napus Seeds. FRONTIERS IN PLANT SCIENCE 2019; 10:1744. [PMID: 32082336 PMCID: PMC7001127 DOI: 10.3389/fpls.2019.01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/11/2019] [Indexed: 05/03/2023]
Abstract
Brassica napus (B. napus) is the world's most widely grown temperate oilseed crop. Although breeding for human consumption has led to removal of erucic acid from refined canola oils, there is renewed interest in the industrial uses of erucic acid derived from B. napus, and there is a rich germplasm available for use. Here, low- and high-erucic acid accessions of B. napus seeds were examined for the distribution of erucic acid-containing lipids and the gene transcripts encoding the enzymes involved in pathways for its incorporation into triacylglycerols (TAGs) across the major tissues of the seeds. In general, the results indicate that a heterogeneous distribution of erucic acid across B. napus seed tissues was contributed by two isoforms (out of six) of FATTY ACYL COA ELONGASE (FAE1) and a combination of phospholipid:diacylglycerol acyltransferase (PDAT)- and diacylglycerol acyltransferase (DGAT)-mediated incorporation of erucic acid into TAGs in cotyledonary tissues. An absence of the expression of these two FAE1 isoforms accounted for the absence of erucic acid in the TAGs of the low-erucic accession.
Collapse
Affiliation(s)
- Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Mina Aziz
- Center for Plant Lipid Research and Department of Biological Sciences, University of North Texas, Denton, TX, United States
- BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Drew Sturtevant
- Center for Plant Lipid Research and Department of Biological Sciences, University of North Texas, Denton, TX, United States
- BioDiscovery Institute, University of North Texas, Denton, TX, United States
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kent D. Chapman
- Center for Plant Lipid Research and Department of Biological Sciences, University of North Texas, Denton, TX, United States
- BioDiscovery Institute, University of North Texas, Denton, TX, United States
- *Correspondence: Kent D. Chapman, ; Liang Guo,
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Kent D. Chapman, ; Liang Guo,
| |
Collapse
|