1
|
Chen L, Wang H, Xu T, Liu R, Zhu J, Li H, Zhang H, Tang L, Jing D, Yang X, Guo Q, Wang P, Wang L, Liu J, Duan S, Liu Z, Huang M, Li X, Lu Z. A telomere-to-telomere gap-free assembly integrating multi-omics uncovers the genetic mechanism of fruit quality and important agronomic trait associations in pomegranate. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40318230 DOI: 10.1111/pbi.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 05/07/2025]
Abstract
Pomegranate is an important perennial fruit tree distributed worldwide. Reference genomes with gaps and limit gene identification controlling important agronomic traits hinder its functional genomics and genetic improvements. Here, we reported a telomere-to-telomere (T2T) gap-free genome assembly of the distinctive cultivar 'Moshiliu'. The Moshiliu reference genome was assembled into eight chromosomes without gaps, totalling ~366.71 Mb, with 32 158 predicted protein-coding genes. All 16 telomeres and eight centromeres were characterized; combined with FISH analysis, we revealed the atypical telomere units in pomegranate as TTTTAGGG. Furthermore, a total of 16 loci associated with 15 important agronomic traits were identified based on GWAS of 146 accessions. Gene editing and biochemical experiments demonstrated that a 37.2-Kb unique chromosome translocation disrupting the coding domain sequence of PgANS was responsible for anthocyanin-less, knockout of PgANS in pomegranate exhibited a defect in anthocyanin production; a unique repeat expansion in the promoter of PgANR may affected its expression, resulting in black peel; notably, the G → A transversion located at the 166-bp coding domain of PgNST3, which caused a E56K mutation in the PgNST3 protein, closely linked with soft-seed trait. Overexpression of PgNST3A in tomato presented smaller and softer seed coats. The E56K mutation in PgNST3 protein, eliminated the binding ability of PgNST3 to the PgMYB46 promoter, which subsequently affected the thickness of the inner seed coat of soft-seeded pomegranates. Collectively, the validated gap-free genome, the identified genes controlling important traits and the CRISPR-Cas9-mediated gene knockout system all provided invaluable resources for pomegranate precise breeding.
Collapse
Affiliation(s)
- Lina Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Hao Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Tingtao Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ruitao Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Juanli Zhu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Haoxian Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
- Chuxiong Yunguo Agriculture Technology Research Institute, Chinese Academy of Agricultural Sciences, Chuxiong, Yunnan, China
| | - Huawei Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, China
| | - Liying Tang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Dan Jing
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xuanwen Yang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Qigao Guo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Peng Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Luwei Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Junhao Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Shuyun Duan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhaoning Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Mengchi Huang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaolong Li
- OMIX Technologies Corporation, Chengdu, China
| | - Zhenhua Lu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
- Chuxiong Yunguo Agriculture Technology Research Institute, Chinese Academy of Agricultural Sciences, Chuxiong, Yunnan, China
| |
Collapse
|
2
|
Luo X, Shua Z, Zhao D, Liu B, Luo H, Chen Y, Meng D, Song Z, Yang Q, Wang Z, Tang D, Zhang X, Zhang J, Ma K, Yao W. Genome assembly of pomegranate highlights structural variations driving population differentiation and key loci underpinning cold adaption. HORTICULTURE RESEARCH 2025; 12:uhaf022. [PMID: 40206514 PMCID: PMC11979328 DOI: 10.1093/hr/uhaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/08/2025] [Indexed: 04/11/2025]
Abstract
Cold damage poses a significant challenge to the cultivation of soft-seeded pomegranate varieties, hindering the growth of the pomegranate industry. The genetic basis of cold tolerance in pomegranates has remained elusive, largely due to the lack of high-quality genome assemblies for cold-tolerant varieties and comprehensive population-scale genomic studies. In this study, we addressed these challenges by assembling a high-quality chromosome-level reference genome for 'Sanbai', a pomegranate variety renowned for its freezing resistance, achieving an impressive contig N50 of 15.93 Mb. This robust assembly, enhanced by long-read sequencing of 38 pomegranate accessions, facilitated the identification of 14 239 polymorphic structural variants, revealing their critical roles in genomic diversity and population differentiation related to cold tolerance. Of particular significance was the discovery of a ~ 5.4-Mb inversion on chromosome 1, which emerged as an important factor affecting cold tolerance in pomegranate. Moreover, through the integration of bulked segregant analysis, differential selection analysis, and genetic transformation techniques, we identified and validated the interaction between the PgNAC12 transcription factor and PgCBF1, disclosing their pivotal roles in response to cold stress. These findings mark a significant advancement in pomegranate genomics, offering novel insights into the genetic mechanisms of cold tolerance and providing valuable resources for the genetic improvement of soft-seeded pomegranate varieties.
Collapse
Affiliation(s)
- Xiang Luo
- College of Agriculture, Henan University, No. 379 North Section of Mingli Road, Zhengdong New District, Zhengzhou 450046, Henan, China
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, No. 403 Nanchang Road, Urumqi 830013, Xinjiang, China
| | - Zhenyang Shua
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou 450046, Henan, China
| | - Diguang Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Southern End of Weilai Road, Guancheng District, Zhengzhou 450009, Henan, China
| | - Beibei Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Southern End of Weilai Road, Guancheng District, Zhengzhou 450009, Henan, China
| | - Hua Luo
- Zaozhuang Pomegranate Research Institute, Zaozhuang Pomegranate National Forest Germplasm Resource Bank, Shiliu Avenue, Yicheng District, Zaozhuang 277300, Shandong, China
| | - Ying Chen
- Zaozhuang Pomegranate Research Institute, Zaozhuang Pomegranate National Forest Germplasm Resource Bank, Shiliu Avenue, Yicheng District, Zaozhuang 277300, Shandong, China
| | - Dong Meng
- College of Forestry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Zhihua Song
- College of Forestry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Qing Yang
- College of Forestry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Zicheng Wang
- College of Agriculture, Henan University, No. 379 North Section of Mingli Road, Zhengdong New District, Zhengzhou 450046, Henan, China
| | - Dong Tang
- Bioyi Biotechnology Co., Ltd., No. 888 Gaoxin Avenue, East Lake High-Tech Development Zone, Wuhan 430075, Hubei, China
| | - Xingguo Zhang
- Bioyi Biotechnology Co., Ltd., No. 888 Gaoxin Avenue, East Lake High-Tech Development Zone, Wuhan 430075, Hubei, China
| | - Juan Zhang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Kai Ma
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, No. 403 Nanchang Road, Urumqi 830013, Xinjiang, China
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou 450046, Henan, China
| |
Collapse
|
3
|
Mahajan R, Gupta S, Tanoj N, Sagar T, Kaur S, Hussain S, Kapoor N. Genome assembly, annotation and evolutionary insights from the draft genome of wild pomegranate. PROTOPLASMA 2025; 262:501-514. [PMID: 39623009 DOI: 10.1007/s00709-024-02012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/19/2024] [Indexed: 04/24/2025]
Abstract
Wild pomegranate is a potent medicinal plant known for its medicinal and nutritional attributes. Despite its healing and curative properties, the genome of this wild species remains elusive, thus limiting our understanding on the genetic processes involved in the biosynthesis of functional molecules. This study presents the annotation of a de novo genome assembly of wild pomegranate, with a genome size of 279.0 Mb. From the assembly, 34.8 GB of the data was retained, encompassing 72,055 scaffolds. A total of 49,178 genes were predicted, with an average of 5.36 exons per gene and a GC content of 49%. About 14,400 genes were annotated in biological, cellular and molecular processes related mostly to carbohydrate metabolism, intracellular signal transduction, mRNA binding and DNA helicase activity. KEGG enrichment analysis revealed maximum number of genes associated with biosynthesis of secondary metabolites mainly phenypropanoid pathway, followed by ribosome and plant hormone signal transduction. From the identified functional genes, 230 genes scaffolds encoded for transcription factors belonging to 25 families with highest recorded for MYB gene family. Study of annotated transposable elements unveiled the existence of long terminal repeats and retrotransposons. Additionally, our investigation involves the comparative analysis and identification of orthologous genes among the genomes of wild and cultivated species of Punica granatum and also across selected five plant species Eucalyptus grandis, Vitis vinifera, Jatropha curcas, Theobroma cacao and Gossypium raimondii, revealing the functional and evolutionary dynamics across species. To the best of our knowledge, this is the first report on the genome assembly, annotation and gene prediction in wild pomegranate. Also, information regarding the terpenoid pathway genes has been unravelled for the first time in the present study. Inclusively, the current study offers thorough details on important aspects of the wild pomegranate genome that would be useful in comprehending its genetics and will facilitate discovery of genes against various biotic and abiotic stresses.
Collapse
Affiliation(s)
- Ritu Mahajan
- Plant Molecular Biology Lab, School of Biotechnology, University of Jammu, Jammu, (J&K), 180006, India.
| | - Suruchi Gupta
- Plant Science and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, (J&K), 180001, India
| | - Nipunta Tanoj
- Plant Molecular Biology Lab, School of Biotechnology, University of Jammu, Jammu, (J&K), 180006, India
| | - Tania Sagar
- Plant Molecular Biology Lab, School of Biotechnology, University of Jammu, Jammu, (J&K), 180006, India
| | - Sandeep Kaur
- Plant Molecular Biology Lab, School of Biotechnology, University of Jammu, Jammu, (J&K), 180006, India
| | - Shajaat Hussain
- Plant Molecular Biology Lab, School of Biotechnology, University of Jammu, Jammu, (J&K), 180006, India
| | - Nisha Kapoor
- Plant Molecular Biology Lab, School of Biotechnology, University of Jammu, Jammu, (J&K), 180006, India
| |
Collapse
|
4
|
Meng J, Wang Y, Guo R, Liu J, Jing K, Zuo J, Yuan Y, Jiang F, Dong N. Integrated genomic and transcriptomic analyses reveal the genetic and molecular mechanisms underlying hawthorn peel color and seed hardness diversity. J Genet Genomics 2025:S1673-8527(25)00097-9. [PMID: 40220858 DOI: 10.1016/j.jgg.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Hawthorn (Crataegus pinnatifida) fruit peel color and seed hardness are key traits that significantly impact economic value. We present here the high-quality chromosome-scale genomes of two cultivars, including the hard-seed, yellow-peel C. pinnatifida "Jinruyi" (JRY) and the soft-seed, red-peel C. pinnatifida "Ruanzi" (RZ). The assembled genomes comprising 17 chromosomes are 809.1 Mb and 760.5 Mb in size, achieving scaffold N50 values of 48.5 Mb and 46.8 Mb for JRY and RZ, respectively. Comparative genomic analysis identifies 3.6-3.8 million single nucleotide polymorphisms, 8.5-9.3 million insertions/deletions, and approximately 30 Mb of presence/absence variations across different hawthorn genomes. Through integrating differentially expressed genes and accumulated metabolites, we filter candidate genes CpMYB114 and CpMYB44 associated with differences in hawthorn fruit peel color and seed hardness, respectively. Functional validation confirms that the CpMYB114-CpANS regulates anthocyanin biosynthesis in hawthorn peels, contributing to the observed variation in peel color. CpMYB44-CpCOMT is significantly upregulated in JRY and is verified to promote lignin biosynthesis, resulting in the distinction in seed hardness. Overall, this study reveals the new insights into understanding of distinct peel pigmentation and seed hardness in hawthorn and provides an abundant resource for molecular breeding.
Collapse
Affiliation(s)
- Jiaxin Meng
- Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Yan Wang
- Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Rongkun Guo
- Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Jianyi Liu
- Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Kerui Jing
- Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Jiaqi Zuo
- Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Yanping Yuan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengchao Jiang
- Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China.
| | - Ningguang Dong
- Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China.
| |
Collapse
|
5
|
Qiao Z, Chen Y, Wang X, Li Y, Liu S, Deng F, Liao D, Cai N, Zeng H, Chen J. Genome assembly and multiomic analyses reveal insights into flower and bark colors of Lagerstroemia excelsa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109482. [PMID: 39818068 DOI: 10.1016/j.plaphy.2025.109482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/09/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Lagerstroemia excelsa is a unique plant species from China, holds a significant aesthetic and economic value, and plays a crucial role in landscape architecture and horticulture. Thus far, there is little genetic and genomic information available about this species, which limits its use in development of new cultivars. In this study, a high-quality genome map of L. excelsa was obtained via whole-genome sequencing. Results showed that its genome size is about 330.4 Mb and a scaffold mapping rate is approximately 97.20%, resulting in 24 pseudochromosomes. L. excelsa might have undergone a recent whole-genome triplication event and diverged from the pomegranate about 32.3 million years ago (MYA). Subsequently, the divergence time between L. indica and L. excelsa was around 5.9 MYA. The transcriptomic and metabolomic analyses of L. excelsa and L. indica indicated that the chalcone synthase pathway may play a key role in regulating flower color differentiation between the two species. Additionally, a transcription factor LeMYB103 may be involved in regulating anthocyanin synthesis by interacting with LeMYB66, resulting in the accumulation of anthocyanins in the stem bark. This study is the first step toward genomic analysis of L. excelsa, which may provide a foundation for further molecular investigation of this species and offer valuable insights into the molecular mechanisms underlying the flower and stem bark colors in L. excelsa, two important ornamental traits in Lagerstroemia breeding.
Collapse
Affiliation(s)
- Zhongquan Qiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan, 410004, China
| | - Yi Chen
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan, 410004, China
| | - Xiaoming Wang
- Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan, 410004, China
| | - Yongxin Li
- Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan, 410004, China
| | - Sisi Liu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan, 410004, China; Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan, 410004, China
| | - Fuyuan Deng
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan, 410004, China
| | - Dezhi Liao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan, 410004, China
| | - Neng Cai
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan, 410004, China.
| | - Huijie Zeng
- Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan, 410004, China.
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, University of Florida, 2725 S. Binion Road, Apopka, FL, 32703, USA.
| |
Collapse
|
6
|
Li J, Liu X, Cao Z, Yu Q, Li M, Qin G. Pomegranate ATP-binding cassette transporter PgABCG9 plays a negative regulatory role in lignin accumulation. Int J Biol Macromol 2025; 292:139371. [PMID: 39743070 DOI: 10.1016/j.ijbiomac.2024.139371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Seed hardness is an important quality characteristic of pomegranate fruit. The development of seed hardness relies on the deposition of lignin in the inner seed coat, but the underlying molecular mechanisms remain unclear. In this study, we identified a member of ABCG transporters, PgABCG9, which may function in seed hardening by negatively regulating lignin biosynthesis. PgABCG9 was expressed at high levels in the inner seed coats of pomegranate fruit, and its transcript level was negatively correlated with seed hardness. PgABCG9-transgenic Arabidopsis plants exhibited weaker growth and thinner stems than the wild-type. The number of xylem cells, xylem cell wall thickness, and lignin deposition in the PgABCG9 transgenic plants were significantly reduced. In addition, overexpression of PgABCG9 in Arabidopsis enhanced plant tolerance to exogenous monolignols. Targeted metabolite profiling revealed that the contents of metabolites involved in lignin biosynthesis, including monolignols and monolignol precursors, were also reduced in PgABCG9- transgenic plants. We found that PgABCG9 is localized to the Golgi. These findings indicate that PgABCG9 plays a negative regulatory role in lignin biosynthesis and potentially contributes to soft-seed development in pomegranate through a mechanism that includes the reduction of lignin content in the seed coat by sequestration of monolignols in intracellular compartments.
Collapse
Affiliation(s)
- Jiyu Li
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xin Liu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zhen Cao
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Qing Yu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Mingxia Li
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Gaihua Qin
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| |
Collapse
|
7
|
Patankar HV, Rivera LF, Alzahrani FO, Wing RA, Blilou I. A Chromosome level assembly of pomegranate (Punica granatum L.) variety grown in arid environment. Sci Data 2025; 12:73. [PMID: 39814761 PMCID: PMC11735785 DOI: 10.1038/s41597-024-04337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025] Open
Abstract
The pomegranate (Punica granatum L.) is an ancient fruit-bearing tree known for its nutritional and antioxidant properties. They originated from the Middle East in regions having large farms including mountainous regions of Al-Baha in Saudi Arabia. Pomegranates can tolerate arid climates and are considered among the fruits that will play a major role in food security. However, the genomics resources of pomegranate growing in arid regions are scarce. Here, we present a high-quality chromosome-level reference genome using PacBio HiFi long reads. The final assembly was 384.65 Mb with N50 contig size of 43.11 Mb, with 353.42 Mb being anchored on the eight pseudo chromosomes. Annotation revealed that 48.79% of the genome comprises repetitive elements and contains 21,620 protein-coding genes. The new reference genome will contribute to identifying stress resistance traits in pomegranates thriving in arid environments as well as new dietary antioxidants and antimicrobial peptides with pharmaceutical and therapeutic applications.
Collapse
Affiliation(s)
- Himanshu V Patankar
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| | - Luis F Rivera
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | | | - Rod A Wing
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Ikram Blilou
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| |
Collapse
|
8
|
Zhang F, Hao X, Liu J, Hou H, Chen S, Wang C. Herbal Multiomics Provide Insights into Gene Discovery and Bioproduction of Triterpenoids by Engineered Microbes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:47-65. [PMID: 39666531 DOI: 10.1021/acs.jafc.4c08372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Triterpenoids are natural products found in plants that exhibit industrial and agricultural importance. Triterpenoids are typically synthesized through two main pathways: the mevalonate (MVA) and methylerythritol 4-phosphate (MEP) pathways. They then undergo structural diversification with the help of squalene cyclases (OSCs), cytochrome P450 monooxygenases (P450s), UDP glycosyltransferases (UGTs), and acyltransferases (ATs). Advances in multiomics technologies for herbal plants have led to the identification of novel triterpenoid biosynthetic pathways. The application of various analytical techniques facilitates the qualitative and quantitative analysis of triterpenoids. Progress in synthetic biology and metabolic engineering has also facilitated the heterologous production of triterpenoids in microorganisms, such as Escherichia coli and Saccharomyces cerevisiae. This review summarizes recent advances in biotechnological approaches aimed at elucidating the complex pathway of triterpenoid biosynthesis. It also discusses the metabolic engineering strategies employed to increase the level of triterpenoid production in chassis cells.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xuemi Hao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongping Hou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137 Chengdu, Sichuan China
| | - Caixia Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
9
|
Wang J, Chen G. Engineering Saccharomyces cerevisiae for the Production of Punicic Acid-Rich Yeast Biomass. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23917-23927. [PMID: 39431914 DOI: 10.1021/acs.jafc.4c08252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Punicic acid (PuA), an unusual conjugated linolenic acid found in pomegranate, offers diverse health benefits and has potential applications in the food industry. Due to the limited availability of PuA from natural plant sources, there is growing interest in producing it through microbial fermentation. In this study, the yeast Saccharomyces cerevisiae, which is classified as "generally recognized as safe", was engineered to produce PuA using a results-driven approach. Genes potentially involved in PuA synthesis were integrated directly into the yeast genome, targeting Ty retrotransposon sites. Screening of the yeast transformants, followed by optimization of culture conditions, resulted in the production of 26.7% PuA within the yeast's total fatty acids. Further analysis revealed that the strain's triacylglycerol fraction contained over 22% PuA. By incorporating this health-promoting lipid into the nutritional profile of S. cerevisiae, the engineered strain could serve as a sustainable source of yeast biomass with enhanced nutritional value.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
10
|
Wang X, Yang C, Zhu W, Weng Z, Li F, Teng Y, Zhou K, Qian M, Deng Q. Transcriptomic Analysis Reveals the Mechanism of Color Formation in the Peel of an Evergreen Pomegranate Cultivar 'Danruo No.1' During Fruit Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:2903. [PMID: 39458853 PMCID: PMC11511302 DOI: 10.3390/plants13202903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Pomegranate (Punica granatum L.) is an ancient fruit crop that has been cultivated worldwide and is known for its attractive appearance and functional metabolites. Fruit color is an important index of fruit quality, but the color formation pattern in the peel of evergreen pomegranate and the relevant molecular mechanism is still unknown. In this study, the contents of pigments including anthocyanins, carotenoids, and chlorophyll in the peel of 'Danruo No. 1' pomegranate fruit during three developmental stages were measured, and RNA-seq was conducted to screen key genes regulating fruit color formation. The results show that pomegranate fruit turned from green to red during development, with a dramatic increase in a* value, indicating redness and anthocyanins concentration, and a decrease of chlorophyll content. Moreover, carotenoids exhibited a decrease-increase accumulation pattern. Through RNA-seq, totals of 30, 18, and 17 structural genes related to anthocyanin biosynthesis, carotenoid biosynthesis and chlorophyll metabolism were identified from differentially expressed genes (DEGs), respectively. Transcription factors (TFs) such as MYB, bHLH, WRKY and AP2/ERF were identified as key candidates regulating pigment metabolism by K-means analysis and weighted gene co-expression network analysis (WGCNA). The results provide an insight into the theory of peel color formation in evergreen pomegranate fruit.
Collapse
Affiliation(s)
- Xiaowen Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (C.Y.); (W.Z.); (Z.W.); (F.L.); (K.Z.)
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Chengkun Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (C.Y.); (W.Z.); (Z.W.); (F.L.); (K.Z.)
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wencan Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (C.Y.); (W.Z.); (Z.W.); (F.L.); (K.Z.)
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhongrui Weng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (C.Y.); (W.Z.); (Z.W.); (F.L.); (K.Z.)
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Feili Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (C.Y.); (W.Z.); (Z.W.); (F.L.); (K.Z.)
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yuanwen Teng
- Hainan Institute of Zhejiang University, Sanya 572000, China;
| | - Kaibing Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (C.Y.); (W.Z.); (Z.W.); (F.L.); (K.Z.)
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Minjie Qian
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (C.Y.); (W.Z.); (Z.W.); (F.L.); (K.Z.)
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qin Deng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (C.Y.); (W.Z.); (Z.W.); (F.L.); (K.Z.)
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
11
|
Wang Y, Hu Y, Ren H, Zhao X, Yuan Z. Integrated transcriptomic, metabolomic, and functional analyses unravel the mechanism of bagging delaying fruit cracking of pomegranate (Punica granatum L.). Food Chem 2024; 451:139384. [PMID: 38692235 DOI: 10.1016/j.foodchem.2024.139384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
The economic impact of fruit cracking in pomegranate products is substantial. In this study, we present the inaugural comprehensive analysis of transcriptome and metabolome in the outermost pericarp of pomegranate fruit in bagging conditions. Our investigation revealed a notable upregulation of differentially expressed genes (DEGs) associated with the calcium signaling pathway (76.92%) and xyloglucan endotransglucosylase/hydrolase (XTH) genes (87.50%) in the fruit peel of non-cracking fruit under bagging. Metabolomic analysis revealed that multiple phenolics, flavonoids, and tannins were identified in pomegranate. Among these, calmodulin-like 23 (PgCML23) exhibited a significant correlation with triterpenoids and demonstrated a marked upregulation under bagging treatment. The transgenic tomatoes overexpressing PgCML23 exhibited significantly higher cellulose content and xyloglucan endotransglucosylase (XET) enzyme activity in the pericarp at the red ripening stage compared to the wild type. Conversely, water-soluble pectin content, polygalacturonase (PG), and β-galactosidase (β-GAL) enzyme activities were significantly lower in the transgenic tomatoes. Importantly, the heterologous expression of PgCML23 led to a substantial reduction in the fruit cracking rate in tomatoes. Our findings highlight the reduction of fruit cracking in bagging conditions through the manipulation of PgCML23 expression.
Collapse
Affiliation(s)
- Yuying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yaping Hu
- Key Laboratory of Plant Innovation and Utilization, Institute of Subtropical Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Hongfang Ren
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
Qin J, Hou X, Wang H, Yuan T, Wei H, Liu G, Chen Y, Lian B, Zhong F, Zhang J, Yu C. Comparative genomic analysis reveals expansion of the DnaJ gene family in Lagerstroemia indica and its members response to salt stress. Genetica 2024; 152:101-117. [PMID: 38724749 DOI: 10.1007/s10709-024-00208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/18/2024] [Indexed: 06/26/2024]
Abstract
DnaJs/Hsp40s/JPDs are obligate co-chaperones of heat shock proteins (Hsp70), performing crucial biological functions within organisms. A comparative genome analysis of four genomes (Vitis vinifera, Eucalyptus grandis, Lagerstroemia indica, and Punica granatum) revealed that the DnaJ gene family in L. indica has undergone expansion, although not to the extent observed in P. granatum. Inter-genome collinearity analysis of four plants indicates that members belonging to Class A and B are more conserved during evolution. In L. indica, the expanded members primarily belong to Class-C. Tissue expression patterns and the biochemical characterization of LiDnaJs further suggested that DnaJs may be involved in numerous biological processes in L. indica. Transcriptome and qPCR analyses of salt stressed leaves identified at least ten LiDnaJs that responded to salt stress. In summary, we have elucidated the expansion mechanism of the LiDnaJs, which is attributed to a recent whole-genome triplication. This research laid the foundation for functional analysis of LiDnaJs and provides gene resources for breeding salt-tolerant varieties of L. indica.
Collapse
Affiliation(s)
- Jin Qin
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xiaoyu Hou
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Huanzhe Wang
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Tianyi Yuan
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Hui Wei
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Guoyuan Liu
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Bolin Lian
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Fei Zhong
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China.
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China.
| | - Chunmei Yu
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China.
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
13
|
Liu L, Xu S, Zhang L, Zheng J. A Genome-Wide Analysis of the BAM Gene Family and Identification of the Cold-Responsive Genes in Pomegranate ( Punica granatum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1321. [PMID: 38794392 PMCID: PMC11125002 DOI: 10.3390/plants13101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Beta-amylases (BAMs, EC 3.2.1.2), belonging to a multigene family, play a pivotal role in starch breakdown and are also involved in hormonal and stress responses, notably to cold stress. Pomegranate trees (Punica granatum L.) are adapted to warm climates and are sensitive to cold temperatures. In this study, we analyzed eight PgBAM genes from the pomegranate genome dataset. These members unevenly distributed across chromosomes and were categorized into four groups based on their orthologous members. The motif composition was highly consistent among most members. In contrast, exon numbers and arrangements were conserved within groups or subgroups, whereas significant diversity was observed between different groups. A syntenic analysis revealed that three PgBAM members (PgBAM1/4/5) showed a total of 11 syntenic relationships with the BAM members from Arabidopsis, kiwifruit, and Chinese white pear, respectively. Promoter binding motif prediction suggested potential roles for PgBAMs' genes in light, stress, hormones, and development signaling. Gene expression indicated that PgBAM4 was predominantly expressed in leaves, PgBAM7 in flowers, and PgBAM8 in roots and leaves and during fruit ripening, particularly in pericarp development. A transcriptome analysis identified the starch and sucrose metabolism pathway (map00500) as a key factor in the cold stress response of cold-sensitive cultivar 'Tunisia' seedlings. PgBAM4 exhibited remarkable expression and was closely associated with the cold-responsive BAM genes, characterized by a closer phylogenetic relationship, conserved catalytic residues, and similar secondary and tertiary structures. Moreover, the differences in soluble sugar levels and PgBAM4 expression were closely associated with the varying cold stress resistance observed between 'Tunisia' and 'Sanbai' seedlings. Furthermore, yeast one-hybrid assays confirmed that PgCBF7, a critical transcription factor for enhancing freezing tolerance, binds to the promoter region of PgBAM4. Our findings provide a systematic overview of the PgBAM gene family and shed new light on the regulatory mechanisms underlying cold stress tolerance in pomegranate.
Collapse
Affiliation(s)
| | | | | | - Jie Zheng
- School of Life Science, Huaibei Normal University, Huaibei 235000, China; (L.L.); (S.X.); (L.Z.)
| |
Collapse
|
14
|
Yu C, Liu G, Qin J, Wan X, Guo A, Wei H, Chen Y, Lian B, Zhong F, Zhang J. Genomic and transcriptomic studies on flavonoid biosynthesis in Lagerstroemia indica. BMC PLANT BIOLOGY 2024; 24:171. [PMID: 38443839 PMCID: PMC10913235 DOI: 10.1186/s12870-024-04776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Lagerstroemia indica is a widely cultivated ornamental woody shrub/tree of the family Lythraceae that is used as a traditional medicinal plant in East Asia and Egypt. However, unlike other ornamental woody plants, its genome is not well-investigated, which hindered the discovery of the key genes that regulate important traits and the synthesis of bioactive compounds. RESULTS In this study, the genomic sequences of L. indica were determined using several next-generation sequencing technologies. Altogether, 324.01 Mb sequences were assembled and 98.21% (318.21 Mb) of them were placed in 24 pseudo-chromosomes. The heterozygosity, repeated sequences, and GC residues occupied 1.65%, 29.17%, and 38.64% of the genome, respectively. In addition, 28,811 protein-coding gene models, 327 miRNAs, 552 tRNAs, 214 rRNAs, and 607 snRNAs were identified. The intra- and interspecies synteny and Ks analysis revealed that L. indica exhibits a hexaploidy. The co-expression profiles of the genes involved in the phenylpropanoid (PA) and flavonoid/anthocyanin (ABGs) pathways with the R2R3 MYB genes (137 members) showed that ten R2R3 MYB genes positively regulate flavonoid/anthocyanin biosynthesis. The colors of flowers with white, purple (PB), and deep purplish pink (DPB) petals were found to be determined by the levels of delphinidin-based (Dp) derivatives. However, the substrate specificities of LiDFR and LiOMT probably resulted in the different compositions of flavonoid/anthocyanin. In L. indica, two LiTTG1s (LiTTG1-1 and LiTTG1-2) were found to be the homologs of AtTTG1 (WD40). LiTTG1-1 was found to repress anthocyanin biosynthesis using the tobacco transient transfection assay. CONCLUSIONS This study showed that the ancestor L. indica experienced genome triplication approximately 38.5 million years ago and that LiTTG1-1 represses anthocyanin biosynthesis. Furthermore, several genes such as LiDFR, LiOMTs, and R2R3 LiMYBs are related to anthocyanin biosynthesis. Further studies are required to clarify the mechanisms and alleles responsible for flower color development.
Collapse
Affiliation(s)
- Chunmei Yu
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Guoyuan Liu
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Jin Qin
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Xi Wan
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Anfang Guo
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Hui Wei
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Yanhong Chen
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Bolin Lian
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Fei Zhong
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Jian Zhang
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China.
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China.
| |
Collapse
|
15
|
Feng X, Chen Q, Wu W, Wang J, Li G, Xu S, Shao S, Liu M, Zhong C, Wu CI, Shi S, He Z. Genomic evidence for rediploidization and adaptive evolution following the whole-genome triplication. Nat Commun 2024; 15:1635. [PMID: 38388712 PMCID: PMC10884412 DOI: 10.1038/s41467-024-46080-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Whole-genome duplication (WGD), or polyploidy, events are widespread and significant in the evolutionary history of angiosperms. However, empirical evidence for rediploidization, the major process where polyploids give rise to diploid descendants, is still lacking at the genomic level. Here we present chromosome-scale genomes of the mangrove tree Sonneratia alba and the related inland plant Lagerstroemia speciosa. Their common ancestor has experienced a whole-genome triplication (WGT) approximately 64 million years ago coinciding with a period of dramatic global climate change. Sonneratia, adapting mangrove habitats, experienced extensive chromosome rearrangements post-WGT. We observe the WGT retentions display sequence and expression divergence, suggesting potential neo- and sub-functionalization. Strong selection acting on three-copy retentions indicates adaptive value in response to new environments. To elucidate the role of ploidy changes in genome evolution, we improve a model of the polyploidization-rediploidization process based on genomic evidence, contributing to the understanding of adaptive evolution during climate change.
Collapse
Affiliation(s)
- Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Qipian Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Jiexin Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Guohong Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), 571100, Haikou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China.
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
16
|
Liu C, Zhao H, Li J, Cao Z, Deng B, Liu X, Qin G. Identification of Candidate Expansin Genes Associated with Seed Weight in Pomegranate ( Punica granatum L.). Genes (Basel) 2024; 15:212. [PMID: 38397202 PMCID: PMC10888256 DOI: 10.3390/genes15020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Seed weight is an important target trait in pomegranate breeding and culture. Expansins act by loosening plant cell walls and cellulosic materials, permitting turgor-driven cell enlargement. However, the role of expansin genes (EXPs) in pomegranate seed weight remains elusive. A total of 29 PgrEXPs were identified in the 'Dabenzi' genome. These genes were classified into four subfamilies and 14 subgroups, including 22 PgrEXPAs, 5 PgrEXPBs, 1 PgrEXPLA, and 1 PgrEXPLB. Transcriptome analysis of PgrEXPs in different tissues (root, leaf, flower, peel, and seed testa) in 'Dabenzi', and the seed testa of the hard-seeded pomegranate cultivar 'Dabenzi' and soft-seeded cultivar 'Tunisia' at three development stages showed that three PgrEXPs (PgrEXPA11, PgrEXPA22, PgrEXPA6) were highly expressed throughout seed development, especially in the sarcotesta. SNP/Indel markers of these PgrEXPs were developed and used to genotype 101 pomegranate accessions. The association of polymorphic PgrEXPs with seed weight-related traits (100-seed weight, 100-kernel weight, 100-sarcotesta weight, and the percentage of 100-sarcotesta to 100-seed weight) were analyzed. PgrEXP22 was significantly associated with 100-seed weight and 100-sarcotesta weight and is a likely candidate for regulating seed weight and sarcotesta development in particular. This study provides an effective tool for the genetic improvement of seed weight in pomegranate breeding programs.
Collapse
Affiliation(s)
- Chunyan Liu
- Key Laboratory of Horticultural Crop Germplasma Innovation and Utilisation (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (C.L.); (H.Z.); (J.L.); (Z.C.); (X.L.)
- Key Laboratory of Genetic Improvement and Eco-Physiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Haoyu Zhao
- Key Laboratory of Horticultural Crop Germplasma Innovation and Utilisation (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (C.L.); (H.Z.); (J.L.); (Z.C.); (X.L.)
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China;
| | - Jiyu Li
- Key Laboratory of Horticultural Crop Germplasma Innovation and Utilisation (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (C.L.); (H.Z.); (J.L.); (Z.C.); (X.L.)
- Key Laboratory of Genetic Improvement and Eco-Physiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zhen Cao
- Key Laboratory of Horticultural Crop Germplasma Innovation and Utilisation (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (C.L.); (H.Z.); (J.L.); (Z.C.); (X.L.)
- Key Laboratory of Genetic Improvement and Eco-Physiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Bo Deng
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China;
| | - Xin Liu
- Key Laboratory of Horticultural Crop Germplasma Innovation and Utilisation (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (C.L.); (H.Z.); (J.L.); (Z.C.); (X.L.)
- Key Laboratory of Genetic Improvement and Eco-Physiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Gaihua Qin
- Key Laboratory of Horticultural Crop Germplasma Innovation and Utilisation (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (C.L.); (H.Z.); (J.L.); (Z.C.); (X.L.)
- Key Laboratory of Genetic Improvement and Eco-Physiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
17
|
Zhang H, Zhang H, Wang Y, Wang M, Guo H, Chan Y, Cong R, Zhao S, Xie J. High-quality maple genome reveals duplication-facilitated leaf color diversity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111917. [PMID: 37944703 DOI: 10.1016/j.plantsci.2023.111917] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/05/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Acer truncatum is a horticultural tree species with individuals that display either yellow or red leaves in autumn, giving it high ornamental and economic value. 'Lihong' of A. truncatum is an excellent cultivar due to its characteristic of having autumn leaves that turn a bright and beautiful shade of red, while its closely related cultivar 'Bunge' does not. However, the molecular mechanism underlying the color change in the cultivar 'Lihong' is still unclear. Here, we assembled a high-quality genome sequence of Acer truncatum 'Lihong' (genome size = 688 Mb, scaffold N50 = 9.14 Mb) with 28,438 protein-coding genes predicted. Through comparative genomic analysis, we found that 'Lihong' had experienced more tandem duplication events although it's a high degree of collinearity with 'Bunge'. Especially, the expansion of key enzymes in the anthocyanin synthesis pathway was significantly uneven between the two varieties, with 'Lihong' genome containing a significantly higher number of tandem/dispersed duplication key genes. Further transcriptomic, metabolomic, and molecular functional analyses demonstrated that several UFGT genes, mainly resulting from tandem/dispersed duplication, followed by the promoter sequence variation, may contribute greatly to the leaf color phenotype, which provides new insights into the mechanism of divergent anthocyanin accumulation process in the 'Lihong' and 'Bunge' with yellow leaves in autumn. Further, constitutive expression of two UFGT genes, which showed higher expression in 'Lihong', elevated the anthocyanin content. We proposed that the small-scale duplication events could contribute to phenotype innovation.
Collapse
Affiliation(s)
- Hua Zhang
- Beijing Key Laboratory of Greening Plants Breeding,Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China.
| | - Haoyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Yongge Wang
- Beijing Key Laboratory of Greening Plants Breeding,Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Maoliang Wang
- Beijing Key Laboratory of Greening Plants Breeding,Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Hao Guo
- Heilongjiang Bayi Agricultural University, Heilongjiang, China
| | - Yuan Chan
- Heilongjiang Bayi Agricultural University, Heilongjiang, China
| | - Richen Cong
- Beijing Key Laboratory of Greening Plants Breeding,Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Shiwei Zhao
- Beijing Key Laboratory of Greening Plants Breeding,Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Jianbo Xie
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China; The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, China.
| |
Collapse
|
18
|
Wei X, Chen M, Zhang X, Wang Y, Li L, Xu L, Wang H, Jiang M, Wang C, Zeng L, Xu J. The haplotype-resolved autotetraploid genome assembly provides insights into the genomic evolution and fruit divergence in wax apple ( Syzygium samarangense (Blume) Merr. and Perry). HORTICULTURE RESEARCH 2023; 10:uhad214. [PMID: 38077494 PMCID: PMC10709546 DOI: 10.1093/hr/uhad214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/16/2023] [Indexed: 01/19/2025]
Abstract
Wax apple (Syzygium samarangense) is an economically important fruit crop with great potential value to human health because of its richness in antioxidant substances. Here, we present a haplotype-resolved autotetraploid genome assembly of the wax apple with a size of 1.59 Gb. Comparative genomic analysis revealed three rounds of whole-genome duplication (WGD) events, including two independent WGDs after WGT-γ. Resequencing analysis of 35 accessions partitioned these individuals into two distinct groups, including 28 landraces and seven cultivated species, and several genes subject to selective sweeps possibly contributed to fruit growth, including the KRP1-like, IAA17-like, GME-like, and FLACCA-like genes. Transcriptome analysis of three different varieties during flower and fruit development identified key genes related to fruit size, sugar content, and male sterility. We found that AP2 also affected fruit size by regulating sepal development in wax apples. The expression of sugar transport-related genes (SWEETs and SUTs) was high in 'ZY', likely contributing to its high sugar content. Male sterility in 'Tub' was associated with tapetal abnormalities due to the decreased expression of DYT1, TDF1, and AMS, which affected early tapetum development. The chromosome-scale genome and large-scale transcriptome data presented in this study offer new valuable resources for biological research on S. samarangense and shed new light on fruit size control, sugar metabolism, and male sterility regulatory metabolism in wax apple.
Collapse
Affiliation(s)
- Xiuqing Wei
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Min Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xijuan Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| | - Yinghao Wang
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Liang Li
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| | - Ling Xu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| | - Huanhuan Wang
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Mengwei Jiang
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Caihui Wang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| | - Lihui Zeng
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jiahui Xu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| |
Collapse
|
19
|
Zhu R, Shao S, Xie W, Guo Z, He Z, Li Y, Wang W, Zhong C, Shi S, Xu S. High-quality genome of a pioneer mangrove Laguncularia racemosa explains its advantages for intertidal zone reforestation. Mol Ecol Resour 2023. [PMID: 37688468 DOI: 10.1111/1755-0998.13863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Ecological restoration of mangrove ecosystems that became susceptible to recent habitat perturbations is crucial for tropical coast conservation. The white mangrove Laguncularia racemosa, a pioneer species inhabiting intertidal environments of the Atlantic East Pacific (AEP) region, has been used for reforestation in China for decades. However, the molecular mechanisms underlying its fast growth and high adaptive potential remain unknown. Using PacBio single-molecule real-time sequencing, we completed a high-quality L. racemosa genome assembly covering 1105 Mb with scaffold N50 of 3.46 Mb. Genomic phylogeny shows that L. racemosa invaded intertidal zones during a period of global warming. Multi-level genomic convergence analyses between L. racemosa and three native dominant mangrove clades show that they experienced convergent changes in genes involved in nutrient absorption and high salinity tolerance. This may explain successful L. racemosa adaptation to stressful intertidal environments after introduction. Without recent whole-genome duplications or activated transposable elements, L. racemosa has retained many tandem gene duplications. Some of them are involved in auxin biosynthesis, intense light stress and cold stress response pathways, associated with L. racemosa's ability to grow fast under high light or cold conditions when used for reforestation. In summary, our study identifies shared mechanisms of intertidal environmental adaptation and unique genetic changes underlying fast growth in mangrove-unfavourable conditions and sheds light on the molecular mechanisms of the white mangrove utility in ecological restoration.
Collapse
Affiliation(s)
- Ranran Zhu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Shao Shao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Wei Xie
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Yulong Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Wenqing Wang
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment & Ecology, Xiamen University, Xiamen, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
20
|
Zhou Y, Zheng T, Cai M, Feng L, Chi X, Shen P, Wang X, Wan Z, Yuan C, Zhang M, Han Y, Wang J, Pan H, Cheng T, Zhang Q. Genome assembly and resequencing analyses provide new insights into the evolution, domestication and ornamental traits of crape myrtle. HORTICULTURE RESEARCH 2023; 10:uhad146. [PMID: 37701453 PMCID: PMC10493637 DOI: 10.1093/hr/uhad146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/15/2023] [Indexed: 09/14/2023]
Abstract
Crape myrtle (Lagerstroemia indica) is a globally used ornamental woody plant and is the representative species of Lagerstroemia. However, studies on the evolution and genomic breeding of L. indica have been hindered by the lack of a reference genome. Here we assembled the first high-quality genome of L. indica using PacBio combined with Hi-C scaffolding to anchor the 329.14-Mb genome assembly into 24 pseudochromosomes. We detected a previously undescribed independent whole-genome triplication event occurring 35.5 million years ago in L. indica following its divergence from Punica granatum. After resequencing 73 accessions of Lagerstroemia, the main parents of modern crape myrtle cultivars were found to be L. indica and L. fauriei. During the process of domestication, genetic diversity tended to decrease in many plants, but this was not observed in L. indica. We constructed a high-density genetic linkage map with an average map distance of 0.33 cM. Furthermore, we integrated the results of quantitative trait locus (QTL) using genetic mapping and bulk segregant analysis (BSA), revealing that the major-effect interval controlling internode length (IL) is located on chr1, which contains CDL15, CRG98, and GID1b1 associated with the phytohormone pathways. Analysis of gene expression of the red, purple, and white flower-colour flavonoid pathways revealed that differential expression of multiple genes determined the flower colour of L. indica, with white flowers having the lowest gene expression. In addition, BSA of purple- and green-leaved individuals of populations of L. indica was performed, and the leaf colour loci were mapped to chr12 and chr17. Within these intervals, we identified MYB35, NCED, and KAS1. Our genome assembly provided a foundation for investigating the evolution, population structure, and differentiation of Myrtaceae species and accelerating the molecular breeding of L. indica.
Collapse
Affiliation(s)
- Yang Zhou
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Ming Cai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Lu Feng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Xiufeng Chi
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Ping Shen
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Xin Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Zhiting Wan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
21
|
Omari Alzahrani F. Genome-Wide Analysis and Expression Profiling of Trehalose-6-Phosphate Phosphatase (TPP) in Punica granatum in Response to Abscisic-Acid-Mediated Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3076. [PMID: 37687323 PMCID: PMC10490027 DOI: 10.3390/plants12173076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Trehalose, a nonreducing disaccharide, has been linked to plant growth and development as well as stress response. The enzyme trehalose-6-phosphate phosphatase (TPP) plays a crucial role in the production of trehalose in higher plants. This study identified a total of seven TPP family genes within the pomegranate species (PgTPP1-PgTPP7). Three subgroups of the seven PgTPPs were identified through phylogenetic analysis. The gene length, coding sequence (CD) length, and chromosomal location of the PgTPP genes were studied. In addition, the PgTPP proteins' length, isoelectric point (Ip), grand average of hydropathicity (GRAVY), conserved domains, conserved motifs, synteny, and phylogenetic relationships with Arabidopsis and tomato TPP proteins were examined. The cis-acting elements in the promoter region and the expression of the PgTPP genes under abscisic acid (ABA)-mediated drought stress as well as the differences in expression in the root, flower, and leaf tissues were also assessed. The PgTPP2 and PgTPP5 genes are involved in the response to abscisic-acid-mediated drought stress, as shown by drought-mediated stress transcriptomes. The PgTPP1 and PgTPP2 genes were expressed only in floral tissue and roots, respectively. The remaining PgTPPs did not exhibit any significant alterations in gene expression in roots, flowers, or leaves. The current study has the potential to provide a comprehensive understanding of the biological characteristics of PgTPP proteins in various developmental processes and their role in the pomegranate plant's response to different stressors. However, further research is required to explore their precise biological role. Hence, conducting a comprehensive functional validation study on PgTPPs could contribute to the development of stress-resistant agricultural cultivars.
Collapse
Affiliation(s)
- Fatima Omari Alzahrani
- Department of Biology, Faculty of Sciences, Al-Baha University, Al-Baha 65729, Saudi Arabia
| |
Collapse
|
22
|
Qu M, Fan X, Hao C, Zheng Y, Guo S, Wang S, Li W, Xu Y, Gao L, Chen Y. Chromosome-level assemblies of cultivated water chestnut Trapa bicornis and its wild relative Trapa incisa. Sci Data 2023; 10:407. [PMID: 37355767 PMCID: PMC10290653 DOI: 10.1038/s41597-023-02270-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/26/2023] [Indexed: 06/26/2023] Open
Abstract
Water chestnut (Trapa L.) is a floating-leaved aquatic plant with high edible and medicinal value. In this study, we presented chromosome-level genome assemblies of cultivated large-seed species Trapa bicornis and its wild small-seed relative Trapa incisa by using PacBio HiFi long reads and Hi-C technology. The T. bicornis and T. incisa assemblies consisted of 479.90 Mb and 463.97 Mb contigs with N50 values of 13.52 Mb and 13.77 Mb, respectively, and repeat contents of 62.88% and 62.49%, respectively. A total of 33,306 and 33,315 protein-coding genes were predicted in T. bicornis and T. incisa assemblies, respectively. There were 159,232 structural variants affecting more than 11 thousand genes detected between the two genomes. The phylogenetic analysis indicated that the lineage leading to Trapa was diverged from the lineage to Sonneratia approximately 23 million years ago. These two assemblies provide valuable resources for future evolutionary and functional genomic research and molecular breeding of water chestnut.
Collapse
Affiliation(s)
- Minghao Qu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Plant Germplasm Research Center, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangrong Fan
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- Hubei Key laboratory of Wetland evolution & ecological restoration, Wuhan Botanical Garden, Chinese academy of sciences, Wuhan, Hubei, 430074, China
- Research Center for Ecology, College of Science, Tibet University, Lhasa, Tibet, 850000, China
| | - Chenlu Hao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Plant Germplasm Research Center, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zheng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Sumin Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Plant Germplasm Research Center, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Sen Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Wei Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- Hubei Key laboratory of Wetland evolution & ecological restoration, Wuhan Botanical Garden, Chinese academy of sciences, Wuhan, Hubei, 430074, China
- Research Center for Ecology, College of Science, Tibet University, Lhasa, Tibet, 850000, China
| | - Yanqin Xu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Lei Gao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Plant Germplasm Research Center, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China.
| | - Yuanyuan Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
- Hubei Key laboratory of Wetland evolution & ecological restoration, Wuhan Botanical Garden, Chinese academy of sciences, Wuhan, Hubei, 430074, China.
| |
Collapse
|
23
|
Xia X, Fan M, Liu Y, Chang X, Wang J, Qian J, Yang Y. Genome-wide alternative polyadenylation dynamics underlying plant growth retardant-induced dwarfing of pomegranate. FRONTIERS IN PLANT SCIENCE 2023; 14:1189456. [PMID: 37223801 PMCID: PMC10200943 DOI: 10.3389/fpls.2023.1189456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
Dwarfed stature is a desired agronomic trait for pomegranate (Punica granatum L.), with its advantages such as lower cost and increased yield. A comprehensive understanding of regulatory mechanisms underlying the growth repression would provide a genetic foundation to molecular-assisted dwarfing cultivation of pomegranate. Our previous study induced dwarfed pomegranate seedlings via exogenous application of plant growth retardants (PGRs) and highlighted the important roles of differential expression of plant growth-related genes in eliciting the dwarfed phenotype of pomegranate. Alternative polyadenylation (APA) is an important post-transcriptional mechanism and has been demonstrated to act as a key regulator in plant growth and development. However, no attention has been paid to the role of APA in PGR-induced dwarfing in pomegranate. In this study, we characterized and compared APA-mediated regulation events underlying PGR-induced treatments and normal growth condition. Genome-wide alterations in the usage of poly(A) sites were elicited by PGR treatments, and these changes were involved in modulating the growth and development of pomegranate seedlings. Importantly, ample specificities were observed in APA dynamics among the different PGR treatments, which mirrors their distinct nature. Despite the asynchrony between APA events and differential gene expression, APA was found to regulate transcriptome via influencing microRNA (miRNA)-mediated mRNA cleavage or translation inhibition. A global preference for lengthening of 3' untranslated regions (3' UTRs) was observed under PGR treatments, which was likely to host more miRNA target sites in 3' UTRs and thus suppress the expression of the corresponding genes, especially those associated with developmental growth, lateral root branching, and maintenance of shoot apical meristem. Together, these results highlighted the key role of APA-mediated regulations in fine-tuning the PGR-induced dwarfed stature of pomegranate, which provides new insights into the genetic basis underlying the growth and development of pomegranate.
Collapse
Affiliation(s)
- Xinhui Xia
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Minhong Fan
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yuqi Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Xinyue Chang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Jingting Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Jingjing Qian
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
24
|
Yazıcı K, Gönülkırmaz B, Şahin Çevik M. Development of Molecular Marker Linked to Seed Hardness in Pomegranate Using Bulked Segregant Analysis. Life (Basel) 2023; 13:life13051123. [PMID: 37240768 DOI: 10.3390/life13051123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The pomegranate (Punica granatum L.) is one of the fruit species with the oldest cultural history. There are many traits to determine the quality of pomegranate fruits. Among them, soft-seeded feature of pomegranate fruit is important trait for the market value of the fruit. For this reason, the demand for pomegranate varieties with soft seeds has been increasing, especially in recent years. In this study, molecular markers associated with seed hardness were developed to distinguish pomegranate cultivars with soft-seeded feature based on genomic DNA at the early stages of the pomegranate breeding process. For this purpose, pomegranate genotypes and/or cultivars from the population involved in reciprocal crosses of hard-seeded Ernar, medium-hard-seeded Hicaznar, and soft-seeded Fellahyemez cultivars were grouped as soft-seeded or hard-seeded. Further, leaf samples were collected from individuals belonging to each group. Then, the genomic DNA was isolated from each plant separately, and equal amount of genomic DNA from individuals with the similar seed hardness were mixed for bulked segregant analysis (BSA). The bulked genomic DNAs of opposite characters were analyzed by polymerase chain reaction (PCR) using random decamer primers to develop random amplified polymorphic DNA (RAPD) markers associated with soft-seeded or hard-seeded pomegranates. A total of three RAPD markers were determined to distinguish the individuals having soft- or hard-seeded pomegranate genotypes and/or cultivars. As a result of the comparison of the DNA sequences of these RAPD markers, insertion-deletions (inDels) primers were designed to developed and validate a PCR assay to distinguish the soft- and hard-seeded pomegranate genotypes/cultivars from each other. The molecular markers developed in this study will enable us to distinguish soft-seeded pomegranate types easily in a short time at the early stages of the pomegranate breeding programs.
Collapse
Affiliation(s)
- Keziban Yazıcı
- Department of Horticultural Sciences, Faculty of Agriculture, Recep Tayyip Erdoğan University, Rize 53300, Turkey
| | - Betül Gönülkırmaz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ispara University of Applied Sciences, Isparta 32260, Turkey
| | - Mehtap Şahin Çevik
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ispara University of Applied Sciences, Isparta 32260, Turkey
| |
Collapse
|
25
|
Akparov Z, Hajiyeva S, Abbasov M, Kaur S, Hamwieh A, Alsamman AM, Hajiyev E, Babayeva S, Izzatullayeva V, Mustafayeva Z, Mehdiyeva S, Mustafayev O, Shahmuradov I, Kosarev P, Solovyev V, Salamov A, Jighly A. Two major chromosome evolution events with unrivaled conserved gene content in pomegranate. FRONTIERS IN PLANT SCIENCE 2023; 14:1039211. [PMID: 36993855 PMCID: PMC10040661 DOI: 10.3389/fpls.2023.1039211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
Pomegranate has a unique evolutionary history given that different cultivars have eight or nine bivalent chromosomes with possible crossability between the two classes. Therefore, it is important to study chromosome evolution in pomegranate to understand the dynamics of its population. Here, we de novo assembled the Azerbaijani cultivar "Azerbaijan guloyshasi" (AG2017; 2n = 16) and re-sequenced six cultivars to track the evolution of pomegranate and to compare it with previously published de novo assembled and re-sequenced cultivars. High synteny was observed between AG2017, Bhagawa (2n = 16), Tunisia (2n = 16), and Dabenzi (2n = 18), but these four cultivars diverged from the cultivar Taishanhong (2n = 18) with several rearrangements indicating the presence of two major chromosome evolution events. Major presence/absence variations were not observed as >99% of the five genomes aligned across the cultivars, while >99% of the pan-genic content was represented by Tunisia and Taishanhong only. We also revisited the divergence between soft- and hard-seeded cultivars with less structured population genomic data, compared to previous studies, to refine the selected genomic regions and detect global migration routes for pomegranate. We reported a unique admixture between soft- and hard-seeded cultivars that can be exploited to improve the diversity, quality, and adaptability of local pomegranate varieties around the world. Our study adds body knowledge to understanding the evolution of the pomegranate genome and its implications for the population structure of global pomegranate diversity, as well as planning breeding programs aiming to develop improved cultivars.
Collapse
Affiliation(s)
- Zeynal Akparov
- Genetic Resources Institute, Ministry of Science and Education, Baku, Azerbaijan
| | - Sabina Hajiyeva
- Genetic Resources Institute, Ministry of Science and Education, Baku, Azerbaijan
| | - Mehraj Abbasov
- Genetic Resources Institute, Ministry of Science and Education, Baku, Azerbaijan
- Research Institute of Fruit and Tea, Ministry of Agriculture, Guba, Azerbaijan
| | - Sukhjiwan Kaur
- Agriculture Victoria, Department of Jobs, Precincts and Regions, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Aladdin Hamwieh
- Department of Biotechnology, International Centre for Agricultural Research in the Dry Areas(ICARDA), Giza, Egypt
| | - Alsamman M. Alsamman
- Department of Genome Mapping, Agriculture Research Center (ARC), Agricultural Genetic Engineering Research Institute (AGERI), Giza, Egypt
| | - Elchin Hajiyev
- Genetic Resources Institute, Ministry of Science and Education, Baku, Azerbaijan
| | - Sevda Babayeva
- Genetic Resources Institute, Ministry of Science and Education, Baku, Azerbaijan
| | - Vusala Izzatullayeva
- Genetic Resources Institute, Ministry of Science and Education, Baku, Azerbaijan
| | - Ziyafat Mustafayeva
- Genetic Resources Institute, Ministry of Science and Education, Baku, Azerbaijan
| | - Sabina Mehdiyeva
- Genetic Resources Institute, Ministry of Science and Education, Baku, Azerbaijan
| | - Orkhan Mustafayev
- Genetic Resources Institute, Ministry of Science and Education, Baku, Azerbaijan
| | - Ilham Shahmuradov
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education, Baku, Azerbaijan
- Institue of Biophysics, Ministry of Science and Education, Baku, Azerbaijan
| | | | | | - Asaf Salamov
- Genetic Resources Institute, Ministry of Science and Education, Baku, Azerbaijan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Abdulqader Jighly
- Agriculture Victoria, Department of Jobs, Precincts and Regions, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| |
Collapse
|
26
|
Li F, Xu S, Xiao Z, Wang J, Mei Y, Hu H, Li J, Liu J, Hou Z, Zhao J, Yang S, Wang J. Gap-free genome assembly and comparative analysis reveal the evolution and anthocyanin accumulation mechanism of Rhodomyrtus tomentosa. HORTICULTURE RESEARCH 2023; 10:uhad005. [PMID: 36938565 PMCID: PMC10022486 DOI: 10.1093/hr/uhad005] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/08/2021] [Indexed: 06/18/2023]
Abstract
Rhodomyrtus tomentosa is an important fleshy-fruited tree and a well-known medicinal plant of the Myrtaceae family that is widely cultivated in tropical and subtropical areas of the world. However, studies on the evolution and genomic breeding of R. tomentosa were hindered by the lack of a reference genome. Here, we presented a chromosome-level gap-free T2T genome assembly of R. tomentosa using PacBio and ONT long read sequencing. We assembled the genome with size of 470.35 Mb and contig N50 of ~43.80 Mb with 11 pseudochromosomes. A total of 33 382 genes and 239.31 Mb of repetitive sequences were annotated in this genome. Phylogenetic analysis elucidated the independent evolution of R. tomentosa starting from 14.37MYA and shared a recent WGD event with other Myrtaceae species. We identified four major compounds of anthocyanins and their synthetic pathways in R. tomentosa. Comparative genomic and gene expression analysis suggested the coloring and high anthocyanin accumulation in R. tomentosa tends to be determined by the activation of anthocyanin synthesis pathway. The positive selection and up-regulation of MYB transcription factors were the implicit factors in this process. The copy number increase of downstream anthocyanin transport-related OMT and GST gene were also detected in R. tomentosa. Expression analysis and pathway identification enriched the importance of starch degradation, response to stimuli, effect of hormones, and cell wall metabolism during the fleshy fruit development in Myrtaceae. Our genome assembly provided a foundation for investigating the origins and differentiation of Myrtaceae species and accelerated the genetic improvement of R. tomentosa.
Collapse
Affiliation(s)
| | | | | | - Jingming Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yu Mei
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou 510640, China
| | - Haifei Hu
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jingyu Li
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou 510640, China
| | - Jieying Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Zhuangwei Hou
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Junliang Zhao
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shaohai Yang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou 510640, China
| | | |
Collapse
|
27
|
Biotechnological interventions in reducing losses of tropical fruits and vegetables. Curr Opin Biotechnol 2023; 79:102850. [PMID: 36481342 DOI: 10.1016/j.copbio.2022.102850] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022]
Abstract
Tropical fruits and vegetables are predominantly cultivated in warm climate zones, resulting in cultivar diversity in terms of structure, features, and physiology. These constitute a variety of bioactive ingredients such as vitamins, minerals, phenolic acids, anthocyanins, flavonoids, fatty acids, fiber, and their distinctive appearances attract customers across the world. The global production of fruit and vegetables has been attained a tremendous increase for the last few decades. However, huge losses at pre- and postharvest levels are major constraints in their judicious use. Traditional breeding strategies were used to minimize these losses, but their functionality is limited due to their time and labor intensiveness. Recent biotechnological, computational, and multiomics approaches not only address the losses concern but also aid in boosting crop productivity and nutritional values. This article emphasizes molecular tools that have been used to reduce losses of tropical fruits and vegetables at pre- and postharvest levels.
Collapse
|
28
|
Li N, Zhou D, Li N, Kong S, Shang J, Zhu W, Wang J, Ma S. Identification of the egusi seed trait locus (eg) and its suppressor gene associated with the thin seed coat trait in watermelon. FRONTIERS IN PLANT SCIENCE 2023; 14:1018975. [PMID: 36794224 PMCID: PMC9923051 DOI: 10.3389/fpls.2023.1018975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Egusi watermelon has a unique egusi seed type, which could be useful for breeding both edible seeds and edible flesh in watermelon. However, the genetic basis of the unique egusi seed type is not clear. In the present study, we first reported that at least two genes with inhibitory epistasis were responsible for the thin seed coat (unique egusi seed type) in watermelon. Inheritance analysis of five populations, including F2, BC, and BCF2, suggested that the thin seed coat trait was controlled by a suppressor gene together with the egusi seed locus (eg) in egusi watermelon. Based on high-throughput sequencing technology, two quantitative trait loci located on chromosome 1 and chromosome 6 were identified for the thin seed coat trait in watermelon. One of the loci, the eg locus on chromosome 6, was finely mapped to a genomic region of 15.7 kb, which contained only one candidate gene. Comparative transcriptome analysis highlighted differentially expressed genes involved in cellulose and lignin synthesis between watermelon genotypes varying in the thickness of the seed coat and provided several potential candidate genes for the thin seed coat trait. Taken together, our data suggest that at least two genes are complementarily involved in the thin seed coat trait and will be useful for cloning novel genes. The results presented here provide a new reference for uncovering egusi seed genetic mechanisms and valuable information for marker-assisted selection in seed coat breeding.
Collapse
Affiliation(s)
- Na Li
- *Correspondence: Na Li, ; Shuangwu Ma,
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Huang W, Guo Y, Lysen C, Wang Y, Tang K, Seabolt MH, Yang F, Cebelinski E, Gonzalez-Moreno O, Hou T, Chen C, Chen M, Wan M, Li N, Hlavsa MC, Roellig DM, Feng Y, Xiao L. Multiple introductions and recombination events underlie the emergence of a hyper-transmissible Cryptosporidium hominis subtype in the USA. Cell Host Microbe 2023; 31:112-123.e4. [PMID: 36521488 PMCID: PMC10124589 DOI: 10.1016/j.chom.2022.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
The parasite Cryptosporidium hominis is a leading cause of the diarrheal disease cryptosporidiosis, whose incidence in the United States has increased since 2005. Here, we show that the newly emerged and hyper-transmissible subtype IfA12G1R5 is now dominant in the United States. In a comparative analysis of 127 newly sequenced and 95 published C. hominis genomes, IfA12G1R5 isolates from the United States place into three of the 14 clusters (Pop6, Pop13, and Pop14), indicating that this subtype has multiple ancestral origins. Pop6 (IfA12G1R5a) has an East Africa origin and has recombined with autochthonous subtypes after its arrival. Pop13 (IfA12G1R5b) is imported from Europe, where it has recombined with the prevalent local subtype, whereas Pop14 (IfA12G1R5c) is a progeny of secondary recombination between Pop6 and Pop13. Selective sweeps in invasion-associated genes have accompanied the emergence of the dominant Pop14. These observations offer insights into the emergence and evolution of hyper-transmissible pathogens.
Collapse
Affiliation(s)
- Wanyi Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yaqiong Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Colleen Lysen
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Yuanfei Wang
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Kevin Tang
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Matthew H Seabolt
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Fengkun Yang
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Elizabeth Cebelinski
- Infectious Disease Laboratory, Minnesota Department of Health, St. Paul, MN 55101, USA
| | | | - Tianyi Hou
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chengyi Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Muchun Wan
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Na Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Michele C Hlavsa
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA.
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
30
|
Identification and Functional Analysis of CAD Gene Family in Pomegranate ( Punica granatum). Genes (Basel) 2022; 14:genes14010026. [PMID: 36672766 PMCID: PMC9858471 DOI: 10.3390/genes14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
[Objective] Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis. The aim of this study was to identify CAD gene family members in pomegranate and its expression correlation with seed hardness. [Methods] Based on the reported CAD sequence of Arabidopsis, the CAD gene family of pomegranate was identified by homologous comparison, and then phylogenetic, molecular characterization, and expression profile analysis were performed. [Results] Pomegranate CAD gene family has 25 members, distributed on seven chromosomes of pomegranate. All pomegranate CAD proteins have similar physical and chemical properties. We divide the family into four groups based on evolutionary relationships. The member of group I, called bona fide CAD, was involved in lignin synthesis. Most of the members of group II were involved in stress resistance. The functions of groups III and IV need to be explored. We found four duplicated modes (whole genome duplication or segmental (WGD), tandem duplication (TD), dispersed duplication (DSD), proximal duplication (PD) in this family; TD (36%) had the largest number of them. We predicted that 20 cis-acting elements were involved in lignin synthesis, stress resistance, and response to various hormones. Gene expression profiles further demonstrated that the PgCAD gene family had multiple functions. [Conclusions] Pomegranate CAD gene family is involved in lignin synthesis of hard-seeded cultivar Hongyushizi and Baiyushizi, but its role in seed hardness of soft-seeded cultivar Tunisia needs to be further studied.
Collapse
|
31
|
Yu C, Ke Y, Qin J, Huang Y, Zhao Y, Liu Y, Wei H, Liu G, Lian B, Chen Y, Zhong F, Zhang J. Genome-wide identification of calcineurin B-like protein-interacting protein kinase gene family reveals members participating in abiotic stress in the ornamental woody plant Lagerstroemia indica. FRONTIERS IN PLANT SCIENCE 2022; 13:942217. [PMID: 36204074 PMCID: PMC9530917 DOI: 10.3389/fpls.2022.942217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Calcineurin B-like protein-interacting protein kinases (CIPKs) play important roles in plant responses to stress. However, their function in the ornamental woody plant Lagerstroemia indica is remains unclear. In this study, the LiCIPK gene family was analyzed at the whole genome level. A total of 37 LiCIPKs, distributed across 17 chromosomes, were identified. Conserved motif analysis indicated that all LiCIPKs possess a protein kinase motif (S_TKc) and C-terminal regulatory motif (NAF), while seven LiCIPKs lack a protein phosphatase interaction (PPI) motif. 3D structure analysis further revealed that the N-terminal and C-terminal 3D-structure of 27 members are situated near to each other, while 4 members have a looser structure, and 6 members lack intact structures. The intra- and interspecies collinearity analysis, synonymous substitution rate (K s ) peaks of duplicated LiCIPKs, revealed that ∼80% of LiCIPKs were retained by the two whole genome duplication (WGD) events that occurred approximately 56.12-61.16 million year ago (MYA) and 16.24-26.34 MYA ago. The promoter of each LiCIPK contains a number of auxin, abscisic acid, gibberellic acid, salicylic acid, and drought, anaerobic, defense, stress, and wound responsive cis-elements. Of the 21 members that were successfully amplified by qPCR, 18 LiCIPKs exhibited different expression patterns under NaCl, mannitol, PEG8000, and ABA treatments. Given that LiCIPK30, the AtSOS2 ortholog, responded to all four types of stress it was selected for functional verification. LiCIPK30 complements the atsos2 phenotype in vivo. 35S:LiCIPK-overexpressing lines exhibit increased leaf area increment, chlorophyll a and b content, reactive oxygen species scavenging enzyme activity, and expression of ABF3 and RD22, while the degree of membrane lipid oxidation decreases under NaCl treatment compared to WT. The evolutionary history, and potential mechanism by which LiCIPK30 may regulate plant tolerance to salt stress were also discussed. In summary, we identified LiCIPK members involved in abiotic stress and found that LiCIPK30 transgenic Arabidopsis exhibits more salt and osmotic stress tolerance than WT. This research provides a theoretical foundation for further investigation into the function of LiCIPKs, and for mining gene resources to facilitate the cultivation and breeding of new L. indica varieties in coastal saline-alkali soil.
Collapse
Affiliation(s)
- Chunmei Yu
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Yongchao Ke
- School of Life Sciences, Nantong University, Nantong, China
| | - Jin Qin
- School of Life Sciences, Nantong University, Nantong, China
| | - Yunpeng Huang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yanchun Zhao
- School of Life Sciences, Nantong University, Nantong, China
| | - Yu Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Hui Wei
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Guoyuan Liu
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Bolin Lian
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Fei Zhong
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| |
Collapse
|
32
|
Roopa Sowjanya P, Shilpa P, Patil GP, Babu DK, Sharma J, Sangnure VR, Mundewadikar DM, Natarajan P, Marathe AR, Reddy UK, Singh VN. Reference quality genome sequence of Indian pomegranate cv. 'Bhagawa' ( Punica granatum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:947164. [PMID: 36186044 PMCID: PMC9521485 DOI: 10.3389/fpls.2022.947164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/07/2022] [Indexed: 06/16/2023]
Abstract
Pomegranate is an important fruit crop for ensuring livelihood and nutrition security in fragile semi-arid regions of the globe having limited irrigation resources. This is a high-value, nutritionally rich, and export-oriented agri-commodity that ensures high returns on investment to growers across the world. Although it is a valuable fruit crop, it has received only a limited genomics research outcome. To fast-track the pomegranate improvement program, de novo whole-genome sequencing of the main Indian cultivar 'Bhagawa' was initiated by the Indian Council of Agricultural Research-National Research Center on Pomegranate (ICAR-NRCP). We have demonstrated that a combination of commercially available technologies from Illumina, PacBio, 10X Genomics, and BioNano Genomics could be used efficiently for sequencing and reference-grade de novo assembly of the pomegranate genome. The research led to a final reference-quality genome assembly for 'Bhagawa' of 346.08 Mb in 342 scaffolds and an average N50 of 16.12 Mb and N90 of 1088.62 Kb. This assembly covered more than 98% of the estimated pomegranate genome size, 352.54 Mb. The LTR assembly index (LAI) value of 10 and 93.68% Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness score over the 1,440 ortholog genes of the completed pomegranate genome indicates the quality of the assembled pomegranate genome. Furthermore, 29,435 gene models were discovered with a mean transcript length of 2,954 bp and a mean coding sequence length 1,090 bp. Four transcript data samples of pomegranate tissues were mapped over the assembled 'Bhagawa' genome up to 95% significant matches, indicating the high quality of the assembled genome. We have compared the 'Bhagawa' genome with the genomes of the pomegranate cultivars 'Dabenzi' and 'Taishanhong.' We have also performed whole-genome phylogenetic analysis using Computational Analysis of Gene Family Evolution (CAFE) and found that Eucalyptus grandis and pomegranate diverged 64 (60-70) million years ago. About 1,573 protein-coding resistance genes identified in the 'Bhagawa' genome were classified into 32 domains. In all, 314 copies of miRNA belonging to 26 different families were identified in the 'Bhagawa' genome. The reference-quality genome assembly of 'Bhagawa' is certainly a significant genomic resource for accelerated pomegranate improvement.
Collapse
Affiliation(s)
| | | | | | | | - Jyotsana Sharma
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | | | | | - Purushothaman Natarajan
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, United States
| | | | - Umesh K. Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, United States
| | | |
Collapse
|
33
|
Li J, Liu C, Yu Q, Cao Z, Yang Y, Jia B, Su Y, Li G, Qin G. Identification of sugar transporter (SWEET) genes involved in pomegranate seed coat sugar accumulation. 3 Biotech 2022; 12:181. [PMID: 35875178 PMCID: PMC9296756 DOI: 10.1007/s13205-022-03248-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/02/2022] [Indexed: 11/30/2022] Open
Abstract
Sugar content of the outer seed coat and hardness of the inner seed coat are important traits of the pomegranate fruit. The translocation of sugars across biological membranes, mediated by SWEET transporters, is critical to seed development. In this study, we identified 16 PgrSWEET genes distributed on six chromosomes in the pomegranate genome. According to the phylogenetic analysis, PgrSWEET proteins were divided into four groups. Tandem and segmental duplications contributed to the expansion of the PgrSWEET family, while functional redundancy and diversification may have occurred among SWEET members according to analyses of evolution and gene expression. RNA-seq and qRT-PCR analyses revealed that PgrSWEET1a and PgrSWEET9 were highly expressed in the inner seed coat, and the expression levels gradually increased during seed development. Moreover, the relative expression levels of PgrSWEET1a and PgrSWEET9 in a hard-seeded cultivar were higher than those in a soft-seeded cultivar, indicating that PgrSWEET1a and PgrSWEET9 might function in the inner seed coat development by accumulating sugar metabolites. We also found that PgrSWEET2 was highly expressed in the outer seed coat during seed development, and the protein was localized to the tonoplast, indicating that PgrSWEET2 is likely a candidate regulating sugar accumulation or reutilization in the vacuoles of the outer seed coat. Genes encoding transcription factors probably regulating the candidate PgrSWEET genes were chosen by co-expression analysis. These results not only helped to characterize PgrSWEET genes but also provided an insight into their functions in relation to seed coat development. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03248-6.
Collapse
Affiliation(s)
- Jiyu Li
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Chunyan Liu
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Qing Yu
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Zhen Cao
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Yuan Yang
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Botao Jia
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Ying Su
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Guixiang Li
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Gaihua Qin
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| |
Collapse
|
34
|
Patil PG, Jamma S, N M, Bohra A, Pokhare S, Dhinesh Babu K, Murkute AA, Marathe RA. Chromosome-specific potential intron polymorphism markers for large-scale genotyping applications in pomegranate. FRONTIERS IN PLANT SCIENCE 2022; 13:943959. [PMID: 36110362 PMCID: PMC9468638 DOI: 10.3389/fpls.2022.943959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Despite the availability of whole genome assemblies, the identification and utilization of gene-based marker systems has been limited in pomegranate. In the present study, we performed a genome-wide survey of intron length (IL) markers in the 36,524 annotated genes of the Tunisia genome. We identified and designed a total of 8,812 potential intron polymorphism (PIP) markers specific to 3,445 (13.40%) gene models that span 8 Tunisia chromosomes. The ePCR validation of all these PIP markers on the Tunisia genome revealed single-locus amplification for 1,233 (14%) markers corresponding to 958 (27.80%) genes. The markers yielding single amplicons were then mapped onto Tunisia chromosomes to develop a saturated linkage map. The functional categorization of 958 genes revealed them to be a part of the nucleus and the cytoplasm having protein binding and catalytic activity, and these genes are mainly involved in the metabolic process, including photosynthesis. Further, through ePCR, 1,233 PIP markers were assayed on multiple genomes, which resulted in the identification of 886 polymorphic markers with an average PIC value of 0.62. In silico comparative mapping based on physically mapped PIP markers indicates a higher synteny of Tunisia with the Dabenzi and Taishanhong genomes (>98%) in comparison with the AG2017 genome (95%). We then performed experimental validation of a subset of 100 PIP primers on eight pomegranate genotypes and identified 76 polymorphic markers, with 15 having PIC values ≥0.50. We demonstrated the potential utility of the developed markers by analyzing the genetic diversity of 31 pomegranate genotypes using 24 PIP markers. This study reports for the first time large-scale development of gene-based and chromosome-specific PIP markers, which would serve as a rich marker resource for genetic variation studies, functional gene discovery, and genomics-assisted breeding of pomegranate.
Collapse
Affiliation(s)
| | - Shivani Jamma
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | - Manjunatha N
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Somnath Pokhare
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | | | | | - Rajiv A. Marathe
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| |
Collapse
|
35
|
Wang L, Wang S, Tong R, Wang S, Yao J, Jiao J, Wan R, Wang M, Shi J, Zheng X. Overexpression of PgCBF3 and PgCBF7 Transcription Factors from Pomegranate Enhances Freezing Tolerance in Arabidopsis under the Promoter Activity Positively Regulated by PgICE1. Int J Mol Sci 2022; 23:ijms23169439. [PMID: 36012703 PMCID: PMC9408969 DOI: 10.3390/ijms23169439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Cold stress limits plant growth, development and yields, and the C-repeat binding factors (CBFs) function in the cold resistance in plants. However, how pomegranate CBF transcription factors respond to cold signal remains unclear. Considering the significantly up-regulated expression of PgCBF3 and PgCBF7 in cold-tolerant Punica granatum ‘Yudazi’ in comparison with cold-sensitive ‘Tunisia’ under 4 °C, the present study focused on the two CBF genes. PgCBF3 was localized in the nucleus, while PgCBF7 was localized in the cell membrane, cytoplasm, and nucleus, both owning transcriptional activation activity in yeast. Yeast one-hybrid and dual-luciferase reporter assay further confirmed that PgICE1 could specifically bind to and significantly enhance the activation activity of the promoters of PgCBF3 and PgCBF7. Compared with the wild-type plants, the PgCBF3 and PgCBF7 transgenic Arabidopsis thaliana lines had the higher survival rate after cold treatment; exhibited increased the contents of soluble sugar and proline, while lower electrolyte leakage, malondialdehyde content, and reactive oxygen species production, accompanying with elevated enzyme activity of catalase, peroxidase, and superoxide dismutase; and upregulated the expression of AtCOR15A, AtCOR47, AtRD29A, and AtKIN1. Collectively, PgCBFs were positively regulated by the upstream PgICE1 and mediated the downstream COR genes expression, thereby enhancing freezing tolerance.
Collapse
|
36
|
Grimplet J. Genomic and Bioinformatic Resources for Perennial Fruit Species. Curr Genomics 2022; 23:217-233. [PMID: 36777875 PMCID: PMC9875543 DOI: 10.2174/1389202923666220428102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022] Open
Abstract
In the post-genomic era, data management and development of bioinformatic tools are critical for the adequate exploitation of genomics data. In this review, we address the actual situation for the subset of crops represented by the perennial fruit species. The agronomical singularity of these species compared to plant and crop model species provides significant challenges on the implementation of good practices generally not addressed in other species. Studies are usually performed over several years in non-controlled environments, usage of rootstock is common, and breeders heavily rely on vegetative propagation. A reference genome is now available for all the major species as well as many members of the economically important genera for breeding purposes. Development of pangenome for these species is beginning to gain momentum which will require a substantial effort in term of bioinformatic tool development. The available tools for genome annotation and functional analysis will also be presented.
Collapse
Affiliation(s)
- Jérôme Grimplet
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Hortofruticultura, Gobierno de Aragón, Avda. Montañana, Zaragoza, Spain
- Instituto Agroalimentario de Aragón–IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet, Zaragoza, Spain
| |
Collapse
|
37
|
Wan R, Song J, Lv Z, Qi X, Han X, Guo Q, Wang S, Shi J, Jian Z, Hu Q, Chen Y. Genome-Wide Identification and Comprehensive Analysis of the AP2/ERF Gene Family in Pomegranate Fruit Development and Postharvest Preservation. Genes (Basel) 2022; 13:895. [PMID: 35627280 PMCID: PMC9141937 DOI: 10.3390/genes13050895] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
Pomegranate (Punica granatum L.) is a kind of fruit with significant economic, ecological and health values. AP2/ERF transcription factors belong to a large group of factors mainly found in plants and play key roles in plant growth and development. However, AP2/ERF genes in pomegranate and their implication in development and postharvest preservation have been little described. In this study, 116 PgAP2/ERF genes in pomegranate were identified and renamed based on their chromosomal distributions. Phylogenetic relationship with genes from other species, structures, duplications, annotations, cis-elements in promoter sequences, and protein-protein interaction networks among PgAP2/ERF proteins were comprehensively explored. Expression analysis revealed several PgAP2/ERFs associated with the phenotypes of pomegranate seed hardness, including PgAP2/ERF5, PgAP2/ERF36, PgAP2/ERF58, and PgAP2/ERF86. Subsequent analysis indicated that many differentially expressed PgAP2/ERF genes are potentially important regulators of pomegranate fruit development. Furthermore, expression of more than one-half of PgAP2/ERFs was repressed in 'Tunisian soft seed' pomegranate fruit under low-temperature cold storage. The results showed that 1-MCP implicated in promoting postharvest preservation of 'Tunisian soft seed' pomegranate upregulated the PgAP2/ERF4, PgAP2/ERF15, PgAP2/ERF26, PgAP2/ERF30, PgAP2/ERF35 and PgAP2/ERF45 genes compared to those under low-temperature cold storage. This indicates that these genes are important candidate genes involved in pomegranate postharvest preservation. In summary, the findings of the present study provide an important basis for characterizing the PgAP2/ERF family genes and provide information on the candidate genes involved in pomegranate fruit development and postharvest preservation.
Collapse
Affiliation(s)
- Ran Wan
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Jinhui Song
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Zhenyang Lv
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Xingcheng Qi
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Xuemeng Han
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Qiang Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Sa Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Jiangli Shi
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Zaihai Jian
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Qingxia Hu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Yanhui Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
- Henan Key Laboratory of Fruit and Cucurbit Biology, College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
38
|
Usha T, Middha SK, Babu D, Goyal AK, Das AJ, Saini D, Sarangi A, Krishnamurthy V, Prasannakumar MK, Saini DK, Sidhalinghamurthy KR. Hybrid Assembly and Annotation of the Genome of the Indian Punica granatum, a Superfood. Front Genet 2022; 13:786825. [PMID: 35646087 PMCID: PMC9130716 DOI: 10.3389/fgene.2022.786825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
The wonder fruit pomegranate (Punica granatum, family Lythraceae) is one of India's economically important fruit crops that can grow in different agro-climatic conditions ranging from tropical to temperate regions. This study reports high-quality de novo draft hybrid genome assembly of diploid Punica cultivar "Bhagwa" and identifies its genomic features. This cultivar is most common among the farmers due to its high sustainability, glossy red color, soft seed, and nutraceutical properties with high market value. The draft genome assembly is about 361.76 Mb (N50 = 40 Mb), ∼9.0 Mb more than the genome size estimated by flow cytometry. The genome is 90.9% complete, and only 26.68% of the genome is occupied by transposable elements and has a relative abundance of 369.93 SSRs/Mb of the genome. A total of 30,803 proteins and their putative functions were predicted. Comparative whole-genome analysis revealed Eucalyptus grandis as the nearest neighbor. KEGG-KASS annotations indicated an abundance of genes involved in the biosynthesis of flavonoids, phenylpropanoids, and secondary metabolites, which are responsible for various medicinal properties of pomegranate, including anticancer, antihyperglycemic, antioxidant, and anti-inflammatory activities. The genome and gene annotations provide new insights into the pharmacological properties of the secondary metabolites synthesized in pomegranate. They will also serve as a valuable resource in mining biosynthetic pathways for key metabolites, novel genes, and variations associated with disease resistance, which can facilitate the breeding of new varieties with high yield and superior quality.
Collapse
Affiliation(s)
- Talambedu Usha
- Department of Biochemistry, Bangalore University, Bengaluru, India
| | - Sushil Kumar Middha
- DBT-BIF Facility, Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, Bengaluru, India
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Arvind Kumar Goyal
- Centre for Bamboo Studies, Department of Biotechnology, Bodoland University, Kokrajhar, India
| | | | - Deepti Saini
- Protein Design Private Limited, Bengaluru, India
| | | | | | | | - Deepak Kumar Saini
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
39
|
Harel-Beja R, Ophir R, Sherman A, Eshed R, Rozen A, Trainin T, Doron-Faigenboim A, Tal O, Bar-Yaakov I, Holland D. The Pomegranate Deciduous Trait Is Genetically Controlled by a PgPolyQ- MADS Gene. FRONTIERS IN PLANT SCIENCE 2022; 13:870207. [PMID: 35574086 PMCID: PMC9100744 DOI: 10.3389/fpls.2022.870207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
The pomegranate (Punica granatum L.) is a deciduous fruit tree that grows worldwide. However, there are variants, which stay green in mild winter conditions and are determined evergreen. The evergreen trait is of commercial and scientific importance as it extends the period of fruit production and provides opportunity to identify genetic functions that are involved in sensing environmental cues. Several different evergreen pomegranate accessions from different genetic sources grow in the Israeli pomegranate collection. The leaves of deciduous pomegranates begin to lose chlorophyll during mid of September, while evergreen accessions continue to generate new buds. When winter temperature decreases 10°C, evergreen variants cease growing, but as soon as temperatures arise budding starts, weeks before the response of the deciduous varieties. In order to understand the genetic components that control the evergreen/deciduous phenotype, several segregating populations were constructed, and high-resolution genetic maps were assembled. Analysis of three segregating populations showed that the evergreen/deciduous trait in pomegranate is controlled by one major gene that mapped to linkage group 3. Fine mapping with advanced F3 and F4 populations and data from the pomegranate genome sequences revealed that a gene encoding for a putative and unique MADS transcription factor (PgPolyQ-MADS) is responsible for the evergreen trait. Ectopic expression of PgPolyQ-MADS in Arabidopsis generated small plants and early flowering. The deduced protein of PgPolyQ-MADS includes eight glutamines (polyQ) at the N-terminus. Three-dimensional protein model suggests that the polyQ domain structure might be involved in DNA binding of PgMADS. Interestingly, all the evergreen pomegranate varieties contain a mutation within the polyQ that cause a stop codon at the N terminal. The polyQ domain of PgPolyQ-MADS resembles that of the ELF3 prion-like domain recently reported to act as a thermo-sensor in Arabidopsis, suggesting that similar function could be attributed to PgPolyQ-MADS protein in control of dormancy. The study of the evergreen trait broadens our understanding of the molecular mechanism related to response to environmental cues. This enables the development of new cultivars that are better adapted to a wide range of climatic conditions.
Collapse
Affiliation(s)
- Rotem Harel-Beja
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Newe Ya’ar Research Center, Ramat Yishai, Israel
| | - Ron Ophir
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Amir Sherman
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Ravit Eshed
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Ada Rozen
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Taly Trainin
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Newe Ya’ar Research Center, Ramat Yishai, Israel
| | - Adi Doron-Faigenboim
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, Israel
| | - Ofir Tal
- Institute of Plant Sciences, Newe Ya’ar Research Center, The Agricultural Research Organization - The Volcani Center, Ramat Yishai, Israel
| | - Irit Bar-Yaakov
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Newe Ya’ar Research Center, Ramat Yishai, Israel
| | - Doron Holland
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Newe Ya’ar Research Center, Ramat Yishai, Israel
| |
Collapse
|
40
|
Patil PG, Singh NV, Bohra A, Jamma S, N M, C VS, Karuppannan DB, Sharma J, Marathe RA. Novel miRNA-SSRs for Improving Seed Hardness Trait of Pomegranate (Punica granatum L.). Front Genet 2022; 13:866504. [PMID: 35495126 PMCID: PMC9040167 DOI: 10.3389/fgene.2022.866504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Present research discovered novel miRNA-SSRs for seed type trait from 761 potential precursor miRNA sequences of pomegranate. SSR mining and BLASTx of the unique sequences identified 69 non-coding pre-miRNA sequences, which were then searched for BLASTn homology against Dabenzi genome. Sixty three true pri-miRNA contigs encoding 213 pre-miRNAs were predicted. Analysis of the resulting sequences enabled discovery of SSRs within pri-miRNA (227) and pre-miRNA sequences (79). A total of 132 miRNA-SSRs were developed for seed type trait from 63 true pri-miRNAs, of which 46 were specific to pre-miRNAs. Through ePCR, 123 primers were validated and mapped on eight Tunisia chromosomes. Further, 80 SSRs producing specific amplicons were ePCR-confirmed on multiple genomes i.e. Dabenzi, Taishanhong, AG2017 and Tunisia, yielding a set of 63 polymorphic SSRs (polymorphism information content ≥0.5). Of these, 32 miRNA-SSRs revealed higher polymorphism level (89.29%) when assayed on six pomegranate genotypes. Furthermore, target prediction and network analysis suggested a possible association of miRNA-SSRs i.e. miRNA_SH_SSR69, miRNA_SH_SSR36, miRNA_SH_SSR103, miRNA_SH_SSR35 and miRNA_SH_SSR53 with seed type trait. These miRNA-SSRs would serve as important genomic resource for rapid and targeted improvement of seed type trait of pomegranate.
Collapse
Affiliation(s)
- Prakash Goudappa Patil
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
- *Correspondence: Prakash Goudappa Patil,
| | | | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Shivani Jamma
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | - Manjunatha N
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | - Venkatesh S. C
- Dept. of Biotechnology and Crop Improvement, University of Horticultural Sciences (UHS), Bagalkot, India
| | | | - Jyotsana Sharma
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | - Rajiv A. Marathe
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| |
Collapse
|
41
|
Wang S, Zhang X, Li B, Zhao X, Shen Y, Yuan Z. Genome-wide identification and characterization of bZIP gene family and cloning of candidate genes for anthocyanin biosynthesis in pomegranate (Punica granatum). BMC PLANT BIOLOGY 2022; 22:170. [PMID: 35379169 PMCID: PMC8978422 DOI: 10.1186/s12870-022-03560-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/23/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND The basic leucine zipper (bZIP) transcription factor is one of the most abundant and conserved gene families in eukaryotes. In addition to participating in plant development and growth, bZIP transcription factors play crucial roles in various abiotic stress responses and anthocyanin accumulation. Up to now, analysis of bZIP gene family members in pomegranate (Punica granatum) has not been reported. Three published pomegranate genome sequences provide valuable resources for further gene function analysis. RESULTS Using bioinformatics analysis, 65 PgbZIPs were identified and analyzed from the 'Taishanhong' pomegranate genome. We divided them into 13 groups (A, B, C, D, E, F, G, H, I, J, K, M, and S) according to the phylogenetic relationship with those of Arabidopsis, each containing a different number of genes. The regularity of exon/intron number and distribution was consistent with the classification of groups in the evolutionary tree. Transcriptome analysis of different tissues showed that members of the PgbZIP gene family were differentially expressed in different developmental stages and tissues of pomegranate. Among them, we selected PgbZIP16 and PgbZIP34 as candidate genes which affect anthocyanin accumulation. The full-length CDS region of PgbZIP16 and PgbZIP34 were cloned from pomegranate petals by homologous cloning technique, encoding 170 and 174 amino acids, which were 510 bp and 522 bp, respectively. Subcellular localization assays suggested that both PgbZIP16 and PgbZIP34 were nucleus-localized. Real-time quantitative PCR (qPCR) was used to explore the expression of PgbZIP16 and PgbZIP34 in the petals of three kinds of ornamental pomegranates at the full flowering stage. The results demonstrated that the expression of PgbZIP16 in red petals was 5.83 times of that in white petals, while PgbZIP34 was 3.9 times. The results of transient expression in tobacco showed that consistent trends were observed in anthocyanin concentration and expression levels of related genes, which both increased and then decreased. Both PgbZIP16 and PgbZIP34 could promote anthocyanin accumulation in tobacco leaves. We obtained transgenic strains overexpressing PgbZIP16, and the histochemical staining for GUS activity showed that overexpressed PgbZIP16 seedlings were expressed in the stem. Transgenic experiments indicated that overexpression of PgbZIP16 significantly upregulated UF3GT, ANS and DFR genes in Arabidopsis and enhanced anthocyanin accumulation. CONCLUSIONS The whole genome identification, gene structure, phylogeny, gene cloning, subcellular location and functional verification of the pomegranate bZIP gene family provide a theoretical foundation for the functional study of the PgbZIP gene family and candidate genes for anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Sha Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xinhui Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Bianbian Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yu Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
42
|
Systematic Analysis and Expression Profiles of the 4-Coumarate: CoA Ligase (4CL) Gene Family in Pomegranate ( Punica granatum L.). Int J Mol Sci 2022; 23:ijms23073509. [PMID: 35408870 PMCID: PMC8999076 DOI: 10.3390/ijms23073509] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
4-Coumarate:CoA ligase (4CL, EC6.2.1.12), located at the end of the phenylpropanoid metabolic pathway, regulates the metabolic direction of phenylpropanoid derivatives and plays a pivotal role in the biosynthesis of flavonoids, lignin, and other secondary metabolites. In order to understand the molecular characteristics and potential biological functions of the 4CL gene family in the pomegranate, a bioinformatics analysis was carried out on the identified 4CLs. In this study, 12 Pg4CLs were identified in the pomegranate genome, which contained two conserved amino acid domains: AMP-binding domain Box I (SSGTTGLPKGV) and Box II (GEICIRG). During the identification, it was found that Pg4CL2 was missing Box II. The gene cloning and sequencing verified that this partial amino acid deletion was caused by genome sequencing and splicing errors, and the gene cloning results corrected the Pg4CL2 sequence information in the ‘Taishanhong’ genome. According to the phylogenetic tree, Pg4CLs were divided into three subfamilies, and each subfamily had 1, 1, and 10 members, respectively. Analysis of cis-acting elements found that all the upstream sequences of Pg4CLs contained at least one phytohormone response element. An RNA-seq and protein interaction network analysis suggested that Pg4CL5 was highly expressed in different tissues and may participate in lignin synthesis of pomegranate. The expression of Pg4CL in developing pomegranate fruits was analyzed by quantitative real-time PCR (qRT-PCR), and the expression level of Pg4CL2 demonstrated a decreasing trend, similar to the trend of flavonoid content, indicating Pg4CL2 may involve in flavonoid synthesis and pigment accumulation. Pg4CL3, Pg4CL7, Pg4CL8, and Pg4CL10 were almost not expressed or lowly expressed, the expression level of Pg4CL4 was higher in the later stage of fruit development, suggesting that Pg4CL4 played a crucial role in fruit ripening. The expression levels of 4CL genes were significantly different in various fruit development stages. The results laid the foundation for an in-depth analysis of pomegranate 4CL gene functions.
Collapse
|
43
|
Qian J, Wang N, Ren W, Zhang R, Hong X, Chen L, Zhang K, Shu Y, Hu N, Yang Y. Molecular Dissection Unveiling Dwarfing Effects of Plant Growth Retardants on Pomegranate. FRONTIERS IN PLANT SCIENCE 2022; 13:866193. [PMID: 35360308 PMCID: PMC8961278 DOI: 10.3389/fpls.2022.866193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 05/31/2023]
Abstract
Dwarfed stature is a desired trait for modern orchard production systems. One effective strategy for dwarfing cultivation is exogenously applying plant growth retardants (PGRs) to plants. However, for many economic fruit trees, the current knowledge on the regulatory mechanisms underlying the dwarfing effect of PGRs is limited, which largely restricts the agricultural application of PGRs. In this study, we exogenously applied three kinds of PGRs [paclobutrazol, daminozide (B9), and mannitol] to the seedlings of pomegranate (Punica granatum L.) and performed comparative transcriptome analysis to elucidate the molecular features of PGR-induced dwarfing in pomegranates. Our results showed that all the three PGRs could significantly suppress plant growth of pomegranate. The inhibition of auxin biosynthetic processes, as well as auxin-mediated shoot development, may be considered as the main reason for the dwarfing. Besides that, different PGRs were also found to induce dwarfing via specific mechanisms, for example, cellular response to strigolactone was particularly suppressed by the application of paclobutrazol, while the level of carbohydrate homeostasis and metabolism were downregulated in conditions of either B9 or mannitol treatments. Furthermore, exogenous PGR application was supposed to cause adverse impacts on the normal physiological process of pomegranate seedlings, which may bring extra burden to pomegranate plants. These novel findings unveiled the genetic basis underlying the dwarfing in pomegranates, which provides deeper insights into PGR-mediated dwarfing cultivation of pomegranates.
Collapse
Affiliation(s)
- Jingjing Qian
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Ning Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Wenxu Ren
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Rufan Zhang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Xiyao Hong
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Lingyue Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Kaijing Zhang
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Yingjie Shu
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Nengbing Hu
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Identification, Analysis and Gene Cloning of the SWEET Gene Family Provide Insights into Sugar Transport in Pomegranate ( Punica granatum). Int J Mol Sci 2022; 23:ijms23052471. [PMID: 35269614 PMCID: PMC8909982 DOI: 10.3390/ijms23052471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
Members of the sugars will eventually be exported transporter (SWEET) family regulate the transport of different sugars through the cell membrane and control the distribution of sugars inside and outside the cell. The SWEET gene family also plays important roles in plant growth and development and physiological processes. So far, there are no reports on the SWEET family in pomegranate. Meanwhile, pomegranate is rich in sugar, and three published pomegranate genome sequences provide resources for the study of the SWEET gene family. 20 PgSWEETs from pomegranate and the known Arabidopsis and grape SWEETs were divided into four clades (Ⅰ, Ⅱ, Ⅲ and Ⅳ) according to the phylogenetic relationships. PgSWEETs of the same clade share similar gene structures, predicting their similar biological functions. RNA-Seq data suggested that PgSWEET genes have a tissue-specific expression pattern. Foliar application of tripotassium phosphate significantly increased the total soluble sugar content of pomegranate fruits and leaves and significantly affected the expression levels of PgSWEETs. The plant growth hormone regulator assay also significantly affected the PgSWEETs expression both in buds of bisexual and functional male flowers. Among them, we selected PgSWEET17a as a candidate gene that plays a role in fructose transport in leaves. The 798 bp CDS sequence of PgSWEET17a was cloned, which encodes 265 amino acids. The subcellular localization of PgSWEET17a showed that it was localized to the cell membrane, indicating its involvement in sugar transport. Transient expression results showed that tobacco fructose content was significantly increased with the up-regulation of PgSWEET17a, while both sucrose and glucose contents were significantly down-regulated. The integration of the PgSWEET phylogenetic tree, gene structure and RNA-Seq data provide a genome-wide trait and expression pattern. Our findings suggest that tripotassium phosphate and plant exogenous hormone treatments could alter PgSWEET expression patterns. These provide a reference for further functional verification and sugar metabolism pathway regulation of PgSWEETs.
Collapse
|
45
|
Kumawat S, Sharma Y, Vats S, Sudhakaran S, Sharma S, Mandlik R, Raturi G, Kumar V, Rana N, Kumar A, Sonah H, Deshmukh R. Understanding the role of SWEET genes in fruit development and abiotic stress in pomegranate (Punica granatum L.). Mol Biol Rep 2022; 49:1329-1339. [PMID: 34855106 DOI: 10.1007/s11033-021-06961-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The Sugar Will Eventually Be Exported Transporters (SWEET), consisting of the MtN3 and salvia domain, are sugar transporters having an active role in diverse activities in plants such as pollen nutrition, phloem loading, nectar secretion, reproductive tissue development, and plant-pathogen interaction. The SWEET genes have been characterized only in a few fruit crop species. METHODS AND RESULTS In this study, a total of 15 SWEET genes were identified in the pomegranate (Punica granatum) genome. The gene structure, transmembrane (TM) helices, domain architecture, and phylogenetic relationships of these genes were evaluated using computational approaches. Genes were further classified as Semi-SWEETs or SWEETs based on the TM domains. Similarly, pomegranate, Arabidopsis, rice, and soybean SWEETs were studied together to classify into major groups. In addition, analysis of RNAseq transcriptome data was performed to study SWEEET gene expression dynamics in different tissue. The expression suggests that SWEETs are mostly expressed in pomegranate peel. In addition, PgSWEET13 was found to be differentially expressed under high salinity stress in pomegranate. Further, quantitative PCR analysis confirmed the expression of four candidate genes in leaf and stem tissues. CONCLUSION The information provided here will help to understand the role of SWEET genes in fruit development and under abiotic stress conditions in pomegranate.
Collapse
Affiliation(s)
- Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Sreeja Sudhakaran
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Shivani Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Virender Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Nitika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Amit Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Sector 80, SAS Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
46
|
Liu L, Zheng J. Identification and expression analysis of the sucrose synthase gene family in pomegranate ( Punica granatum L.). PeerJ 2022; 10:e12814. [PMID: 35047243 PMCID: PMC8757371 DOI: 10.7717/peerj.12814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/29/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Sucrose synthase (SUS, EC 2.4.1.13) is one of the major enzymes of sucrose metabolism in higher plants. It has been associated with C allocation, biomass accumulation, and sink strength. The SUS gene families have been broadly explored and characterized in a number of plants. The pomegranate (Punica granatum) genome is known, however, it lacks a comprehensive study on its SUS genes family. METHODS PgSUS genes were identified from the pomegranate genome using a genome-wide search method. The PgSUS gene family was comprehensively analyzed by physicochemical properties, evolutionary relationship, gene structure, conserved motifs and domains, protein structure, syntenic relationships, and cis-acting elements using bioinformatics methods. The expression pattern of the PgSUS gene in different organs and fruit development stages were assayed with RNA-seq obtained from the NCBI SRA database as well as real-time quantitative polymerase chain reaction (qPCR). RESULTS Five pomegranate SUS genes, located on four different chromosomes, were divided into three subgroupsaccording to the classification of other seven species. The PgSUS family was found to be highly conserved during evolution after studying the gene structure, motifs, and domain analysis. Furthermore, the predicted PgSUS proteins showed similar secondary and tertiary structures. Syntenic analysis demonstrated that four PgSUS genes showed syntenic relationships with four species, with the exception of PgSUS2. Predictive promoter analysis indicated that PgSUS genes may be responsive to light, hormone signaling, and stress stimulation. RNA-seq analysis revealed that PgSUS1/3/4 were highly expressed in sink organs, including the root, flower, and fruit, and particularly in the outer seed coats. qPCR analysis showed also that PgSUS1, PgSUS3, and PgSUS4 were remarkably expressed during fruit seed coat development. Our results provide a systematic overview of the PgSUS gene family in pomegranate, developing the framework for further research and use of functional PgSUS genes.
Collapse
Affiliation(s)
- Longbo Liu
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Jie Zheng
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
47
|
Yu C, Lian B, Fang W, Guo A, Ke Y, Jiang Y, Chen Y, Liu G, Zhong F, Zhang J. Transcriptome-based analysis reveals that the biosynthesis of anthocyanins is more active than that of flavonols and proanthocyanins in the colorful flowers of Lagerstroemia indica. Biol Futur 2021; 72:473-488. [PMID: 34554492 DOI: 10.1007/s42977-021-00094-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/16/2021] [Indexed: 11/30/2022]
Abstract
Mechanisms associated with the control of flower color in crape myrtle varieties have yet to be sufficiently elucidated, which has tended to hamper the use of modern molecular and genetic strategies in the breeding programs for this plant. The whole transcriptome of four L. indica varieties characterized by different flower colors (white, light purple, deep purplish pink, and strong red) was sequenced, and we performed bioinformatic, quantitative PCR, and co-expression analyses of R2R3 MYB transcription factor and anthocyanin/flavonol pathway genes. We obtained a total of 49,980 transcripts with full-length coding sequences. Both transcriptome and qPCR analyses revealed that anthocyanin/flavonol pathway genes were differentially expressed among the four different flowers types, with the expression of LiPAL, LiCHS, LiCHI, LiDFR, LiANS/LDOX, and LiUFGT being induced in colorful flowers, whereas that of LiF3´5´H, LiFLS, and LiLAR was found to be inhibited. Base on phylogenetic analysis, seven R2R3 MYB transcriptional factors were identified as putative regulators of flower color. The molecular characteristics and co-expression patterns indicated that these MYBs differentially modulate their target genes, with two probably acting as activators, three as repressors, and one contributing to the regulation of vacuolar pH. The findings of this study indicate that the anthocyanin biosynthesis is more active than the flavonol and proanthocyanin in the colorful flowers. These observations provide new genomic information on L. indica and contribute gene resources for the flower color-targeted breeding of crape myrtle.
Collapse
Affiliation(s)
- Chunmei Yu
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China
| | - Bolin Lian
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China
| | - Wei Fang
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China
| | - Anfang Guo
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China
| | - Yongchao Ke
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China
| | - Yuna Jiang
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China
| | - Yanhong Chen
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China
| | - Guoyuan Liu
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China
| | - Fei Zhong
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China
| | - Jian Zhang
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, 226019, Jiangsu Province, China.
| |
Collapse
|
48
|
Liu J, Qin G, Liu C, Liu X, Zhou J, Li J, Lu B, Zhao J. Genome-wide identification of candidate aquaporins involved in water accumulation of pomegranate outer seed coat. PeerJ 2021; 9:e11810. [PMID: 34316414 PMCID: PMC8286702 DOI: 10.7717/peerj.11810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/27/2021] [Indexed: 01/25/2023] Open
Abstract
Aquaporins (AQPs) are a class of highly conserved integral membrane proteins that facilitate the uptake and transport of water and other small molecules across cell membranes. However, little is known about AQP genes in pomegranate (Punica granatum L.) and their potential role in water accumulation of the outer seed coat. We identified 38 PgrAQP genes in the pomegranate genome and divided them into five subfamilies based on a comparative analysis. Purifying selection played a role in the evolution of PgrAQP genes and a whole-genome duplication event in Myrtales may have contributed to the expansion of PgrTIP, PgrSIP, and PgrXIP genes. Transcriptome data analysis revealed that the PgrAQP genes exhibited different tissue-specific expression patterns. Among them, the transcript abundance of PgrPIPs were significantly higher than that of other subfamilies. The mRNA transcription levels of PgrPIP1.3, PgrPIP2.8, and PgrSIP1.2 showed a significant linear relationship with water accumulation in seed coats, indicating that PgrPIP1.3/PgrPIP2.8 located in the plasma membrane and PgrSIP1.2 proteins located on the tonoplast may be involved in water accumulation and contribute to the cell expansion of the outer seed coat, which then develops into juicy edible flesh. Overall, our results provided not only information on the characteristics and evolution of PgrAQPs, but also insights on the genetic improvement of outer seed coats.
Collapse
Affiliation(s)
- Jianjian Liu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China.,Institute of Horticultural Research (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province), Anhui Academy of Agricultural Sciences, Hefei, China
| | - Gaihua Qin
- Institute of Horticultural Research (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province), Anhui Academy of Agricultural Sciences, Hefei, China.,Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Chunyan Liu
- Institute of Horticultural Research (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province), Anhui Academy of Agricultural Sciences, Hefei, China.,Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiuli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiyu Li
- Institute of Horticultural Research (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province), Anhui Academy of Agricultural Sciences, Hefei, China.,Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Bingxin Lu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Jianrong Zhao
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
49
|
Trainin T, Harel-Beja R, Bar-Ya’akov I, Ben-Simhon Z, Yahalomi R, Borochov-Neori H, Ophir R, Sherman A, Doron-Faigenboim A, Holland D. Fine Mapping of the "black" Peel Color in Pomegranate ( Punica granatum L.) Strongly Suggests That a Mutation in the Anthocyanidin Reductase ( ANR) Gene Is Responsible for the Trait. FRONTIERS IN PLANT SCIENCE 2021; 12:642019. [PMID: 33719321 PMCID: PMC7947214 DOI: 10.3389/fpls.2021.642019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/03/2021] [Indexed: 05/17/2023]
Abstract
Anthocyanins are important dietary and health-promoting substances present in high quantities in the peel and arils of the pomegranate (Punica granatum L.) fruit. Yet, there is a high variation in the content of anthocyanin among different pomegranate varieties. The 'Black' pomegranate variety (P.G.127-28) found in Israel contains exceptionally high levels of anthocyanins in its fruit peel which can reach up to two orders of magnitude higher content as compared to that of other pomegranate varieties' peel anthocyanins. Biochemical analysis reveals that delphinidin is highly abundant in the peel of 'Black' variety. The pattern of anthocyanin accumulation in the fruit peel during fruit development of 'Black' variety differs from that of other pomegranates. High anthocyanin levels are maintained during all developmental stages. Moreover, the accumulation of anthocyanin in the fruit peel of 'Black' variety is not dependent on light. Genetic analysis of an F2 population segregating for the "black" phenotype reveals that it is determined by a single recessive gene. Genetic mapping of the F2 population using single nucleotide polymorphism (SNP) markers identified few markers tightly linked to the "black" phenotype. Recombination analysis of the F2 population and F3 populations narrowed the "black" trait to an area of 178.5 kb on the draft genome sequence of pomegranate cv. 'Dabenzi.' A putative anthocyanidin reductase (ANR) gene is located in this area. Only pomegranate varieties displaying the "black" trait carry a base pair deletion toward the end of the gene, causing a frame shift resulting in a shorter protein. We propose that this mutation in the ANR gene is responsible for the different anthocyanin composition and high anthocyanin levels of the "black" trait in pomegranate.
Collapse
Affiliation(s)
- Taly Trainin
- Unit of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Newe Ya’ar Research Center, Ramat Yishay, Israel
| | - Rotem Harel-Beja
- Unit of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Newe Ya’ar Research Center, Ramat Yishay, Israel
| | - Irit Bar-Ya’akov
- Unit of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Newe Ya’ar Research Center, Ramat Yishay, Israel
| | - Zohar Ben-Simhon
- Unit of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Newe Ya’ar Research Center, Ramat Yishay, Israel
| | - Rami Yahalomi
- Unit of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Newe Ya’ar Research Center, Ramat Yishay, Israel
| | | | - Ron Ophir
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Amir Sherman
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Adi Doron-Faigenboim
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Doron Holland
- Unit of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Newe Ya’ar Research Center, Ramat Yishay, Israel
- *Correspondence: Doron Holland,
| |
Collapse
|
50
|
Cheng QQ, Ouyang Y, Tang ZY, Lao CC, Zhang YY, Cheng CS, Zhou H. Review on the Development and Applications of Medicinal Plant Genomes. FRONTIERS IN PLANT SCIENCE 2021; 12:791219. [PMID: 35003182 PMCID: PMC8732986 DOI: 10.3389/fpls.2021.791219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/23/2021] [Indexed: 05/04/2023]
Abstract
With the development of sequencing technology, the research on medicinal plants is no longer limited to the aspects of chemistry, pharmacology, and pharmacodynamics, but reveals them from the genetic level. As the price of next-generation sequencing technology becomes affordable, and the long-read sequencing technology is established, the medicinal plant genomes with large sizes have been sequenced and assembled more easily. Although the review of plant genomes has been reported several times, there is no review giving a systematic and comprehensive introduction about the development and application of medicinal plant genomes that have been reported until now. Here, we provide a historical perspective on the current situation of genomes in medicinal plant biology, highlight the use of the rapidly developing sequencing technologies, and conduct a comprehensive summary on how the genomes apply to solve the practical problems in medicinal plants, like genomics-assisted herb breeding, evolution history revelation, herbal synthetic biology study, and geoherbal research, which are important for effective utilization, rational use and sustainable protection of medicinal plants.
Collapse
Affiliation(s)
- Qi-Qing Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yue Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zi-Yu Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Chi-Chou Lao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yan-Yu Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Chun-Song Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Joint Laboratory for Translational Cancer Research of Chinese Medicine, The Ministry of Education of the People’s Republic of China, Macau University of Science and Technology, Taipa, Macao SAR, China
- *Correspondence: Hua Zhou,
| |
Collapse
|