1
|
Ferguson JN, Caproni L, Walter J, Shaw K, Arce-Cubas L, Baines A, Thein MS, Mager S, Taylor G, Cackett L, Mathan J, Vath RL, Martin L, Genty B, Pè ME, Lawson T, Dell’Acqua M, Kromdijk J. A deficient CP24 allele defines variation for dynamic nonphotochemical quenching and photosystem II efficiency in maize. THE PLANT CELL 2025; 37:koaf063. [PMID: 40132112 PMCID: PMC12018801 DOI: 10.1093/plcell/koaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/12/2025] [Indexed: 03/27/2025]
Abstract
Maize (Zea mays L.) is a global crop species in which CO2 assimilation occurs via the C4 pathway. C4 photosynthesis is typically more efficient than C3 photosynthesis under warm and dry conditions; however, despite this inherent advantage, considerable variation remains in photosynthetic efficiency for C4 species that could be leveraged to benefit crop performance. Here, we investigate the genetic architecture of nonphotochemical quenching (NPQ) and photosystem II (PSII) efficiency using a combination of high-throughput phenotyping and quantitative trait loci (QTL) mapping in a field-grown Multi-parent Advanced Generation Inter-Cross (MAGIC) mapping population. QTL mapping was followed by the identification of putative candidate genes using a combination of genomics, transcriptomics, protein biochemistry, and targeted physiological phenotyping. We identified four genes with a putative causal role in the observed QTL effects. The highest confidence causal gene was found for a large effect QTL for photosynthetic efficiency on chromosome 10, which was underpinned by allelic variation in the expression of the minor PSII antenna protein light harvesting complex photosystem II subunit (LHCB6 or CP24), mainly driven by poor expression associated with the haplotype of the F7 founder line. The historical role of this line in breeding for early flowering time may suggest that the presence of this deficient allele could be enriched in temperate maize germplasm. These findings advance our understanding of the genetic basis of NPQ and PSII efficiency in C4 plants and highlight the potential for breeding strategies aimed at optimizing photosynthetic efficiency in maize.
Collapse
Affiliation(s)
- John N Ferguson
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Leonardo Caproni
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Julia Walter
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Katie Shaw
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Lucia Arce-Cubas
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Alice Baines
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Min Soe Thein
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Svenja Mager
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Georgia Taylor
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Lee Cackett
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Jyotirmaya Mathan
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Richard L Vath
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
| | - Leo Martin
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies Aix-Marseille, Université Aix-Marseille, Saint-Paul-lez-Durance 13108, France
| | - Bernard Genty
- Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, Institut de Biosciences et Biotechnologies Aix-Marseille, Université Aix-Marseille, Saint-Paul-lez-Durance 13108, France
| | - Mario Enrico Pè
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Matteo Dell’Acqua
- Institute of Plant Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EA, UK
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Salesse-Smith CE, Adar N, Kannan B, Nguyen T, Wei W, Guo M, Ge Z, Altpeter F, Clemente TE, Long SP. Adapting C 4 photosynthesis to atmospheric change and increasing productivity by elevating Rubisco content in sorghum and sugarcane. Proc Natl Acad Sci U S A 2025; 122:e2419943122. [PMID: 39932987 PMCID: PMC11873827 DOI: 10.1073/pnas.2419943122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/20/2024] [Indexed: 02/13/2025] Open
Abstract
Meta-analyses and theory show that with rising atmospheric [CO2], Rubisco has become the greatest limitation to light-saturated leaf CO2 assimilation rates (Asat) in C4 crops. So would transgenically increasing Rubisco increase Asat and result in increased productivity in the field? Here, we successfully overexpressed the Rubisco small subunit (RbcS) with Rubisco accumulation factor 1 (Raf1) in both sorghum and sugarcane, resulting in significant increases in Rubisco content of 13 to 25% and up to 90% respectively. Asat increased 12 to 15% and Rubisco enzyme activity ~40% in three independent transgenic events of both species. Sorghum plants also showed increased speeds of photosynthetic induction and decreased bundle sheath leakiness. These improvements translated into average increases of 15.5% in biomass in field-grown sorghum and a 37 to 81% increase in greenhouse-grown sugarcane. This suggests a potential opportunity to achieve substantial increases in productivity of this key economically important clade of C4 crops, future proofing their value under global atmospheric change.
Collapse
Affiliation(s)
- Coralie E. Salesse-Smith
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL61801
| | - Noga Adar
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Baskaran Kannan
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Institute of Food and Agricultural Science, Gainesville, FL32603
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida, Gainesville, FL32603
| | - Thaibinhduong Nguyen
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Institute of Food and Agricultural Science, Gainesville, FL32603
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida, Gainesville, FL32603
| | - Wei Wei
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Ming Guo
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE68583
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Nebraska-Lincoln, Lincoln, NE68583
| | - Zhengxiang Ge
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE68583
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Nebraska-Lincoln, Lincoln, NE68583
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Institute of Food and Agricultural Science, Gainesville, FL32603
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida, Gainesville, FL32603
| | - Tom E. Clemente
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE68583
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Nebraska-Lincoln, Lincoln, NE68583
| | - Stephen P. Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL61801
- Departments of Plant Biology and of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
3
|
Ding G, Li Z, Iqbal Z, Zhao M, Cui Z, Cao L, Zhou J, Lei L, Luo Y, Bai L, Yang G, Wang R, Li K, Wang X, Liu K, Qu M, Sun S. Identifications of Genes Involved in ABA and MAPK Signaling Pathways Positively Regulating Cold Tolerance in Rice. PLANTS (BASEL, SWITZERLAND) 2025; 14:498. [PMID: 40006757 PMCID: PMC11859393 DOI: 10.3390/plants14040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/26/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Cold stress (CS) significantly impacts rice (Oryza sativa L.) growth during seedling and heading stages. Based on two-year field observations, this study identified two rice lines, L9 (cold stress-sensitive) and LD18 (cold stress-tolerant), showing contrasting CS responses. L9 exhibited a 38% reduction in photosynthetic efficiency, whereas LD18 remained unchanged, correlating with seed rates. Transcriptome analysis identified differentially expressed genes (DEGs) with LD18 showing enriched pathways (carbon fixation, starch/sucrose metabolism, and glutathione metabolism). LD18 displayed dramatically enhanced expression of MAPK-related genes (LOC4342017, LOC9267741, and LOC4342267) and increased ABA signaling genes (LOC4333690, LOC4345611, and LOC4335640) compared with L9 exposed to CS. Results from qPCR confirmed the enhanced expression of the three MAPK-related genes in LD18 with a dramatic reduction in L9 under CS relative to that under CK. We also observed up to 66% reduction in expression levels of the three genes related to the ABA signaling pathway in L9 relative to LD18 under CS. Consistent with the results of photosynthetic efficiency, metabolic analysis suggests pyruvate metabolism, TCA cycle, and carbon metabolism enrichment in LD18 under CS. The study reveals reprogramming of the carbon assimilation metabolic pathways, emphasizing the critical roles of the key DEGs involved in ABA and MAPK signaling pathways in positive regulation of LD18 response to CS, offering the foundation toward cold tolerance breeding through targeted gene editing.
Collapse
Affiliation(s)
- Guohua Ding
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin 150086, China; (G.D.); (Z.L.); (L.C.); (J.Z.); (L.L.); (Y.L.); (L.B.); (G.Y.)
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Zhugang Li
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin 150086, China; (G.D.); (Z.L.); (L.C.); (J.Z.); (L.L.); (Y.L.); (L.B.); (G.Y.)
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Zubair Iqbal
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China;
| | - Minghui Zhao
- Design and Germplasm Innovation/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110161, China; (M.Z.); (Z.C.)
| | - Zhibo Cui
- Design and Germplasm Innovation/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110161, China; (M.Z.); (Z.C.)
| | - Liangzi Cao
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin 150086, China; (G.D.); (Z.L.); (L.C.); (J.Z.); (L.L.); (Y.L.); (L.B.); (G.Y.)
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Jinsong Zhou
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin 150086, China; (G.D.); (Z.L.); (L.C.); (J.Z.); (L.L.); (Y.L.); (L.B.); (G.Y.)
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Lei Lei
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin 150086, China; (G.D.); (Z.L.); (L.C.); (J.Z.); (L.L.); (Y.L.); (L.B.); (G.Y.)
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Yu Luo
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin 150086, China; (G.D.); (Z.L.); (L.C.); (J.Z.); (L.L.); (Y.L.); (L.B.); (G.Y.)
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Liangming Bai
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin 150086, China; (G.D.); (Z.L.); (L.C.); (J.Z.); (L.L.); (Y.L.); (L.B.); (G.Y.)
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Guang Yang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin 150086, China; (G.D.); (Z.L.); (L.C.); (J.Z.); (L.L.); (Y.L.); (L.B.); (G.Y.)
| | - Rongsheng Wang
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Kun Li
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Xueyang Wang
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Kai Liu
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| | - Mingnan Qu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China;
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Shichen Sun
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin 150086, China; (G.D.); (Z.L.); (L.C.); (J.Z.); (L.L.); (Y.L.); (L.B.); (G.Y.)
- Heilongjiang Academy of Agricultural Sciences/Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China; (R.W.); (K.L.); (X.W.); (K.L.)
| |
Collapse
|
4
|
Lenzen B, Rösch F, Legen J, Ruwe H, Kachariya N, Sattler M, Small I, Schmitz-Linneweber C. The chloroplast RNA-binding protein CP29A supports rbcL expression during cold acclimation. Proc Natl Acad Sci U S A 2025; 122:e2403969122. [PMID: 39879235 PMCID: PMC11804644 DOI: 10.1073/pnas.2403969122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025] Open
Abstract
The chloroplast genome encodes key components of the photosynthetic light reaction machinery as well as the large subunit of the enzyme central for carbon fixation, Ribulose-1,5-bisphosphat-carboxylase/-oxygenase (RuBisCo). Its expression is predominantly regulated posttranscriptionally, with nuclear-encoded RNA-binding proteins (RBPs) playing a key role. Mutants of chloroplast gene expression factors often exhibit impaired chloroplast biogenesis, especially in cold conditions. Low temperatures pose a challenge for plants as this leads to electron imbalances and oxidative damage. A well-known response of plants to this problem is to increase the production of RuBisCo and other Calvin Cycle enzymes in the cold, but how this is achieved is unclear. The chloroplast RBP CP29A has been shown to be essential for cold resistance in growing leaf tissue of Arabidopsis thaliana. Here, we examined CP29A-RNA interaction sites at nucleotide resolution. We found that CP29A preferentially binds to the 5'-untranslated region of rbcL, downstream of the binding site of the pentatricopeptide repeat protein MATURATION OF RBCL 1 (MRL1). MRL1 is an RBP known to be necessary for the accumulation of rbcL. In Arabidopsis mutants lacking CP29A, we were unable to observe significant effects on rbcL, possibly due to CP29A's restricted role in a limited number of cells at the base of leaves. In contrast, CRISPR/Cas9-induced mutants of tobacco NtCP29A exhibit cold-dependent photosynthetic deficiencies throughout the entire leaf blade. This is associated with a parallel reduction in rbcL mRNA and RbcL protein accumulation. Our work indicates that a chloroplast RNA-binding protein contributes to cold acclimation of RbcL production.
Collapse
Affiliation(s)
- Benjamin Lenzen
- Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin10115, Germany
| | - Florian Rösch
- Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin10115, Germany
| | - Julia Legen
- Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin10115, Germany
| | - Hannes Ruwe
- Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin10115, Germany
| | - Nitin Kachariya
- Molecular Targets and Therapeutics Center, Helmholtz Munich, Institute of Structural Biology, Neuherberg85764, Germany
- Department of Bioscience, Bavarian NMR Center, Technical University Munich School of Natural Sciences, Technical University of Munich, Garching85747, Germany
| | - Michael Sattler
- Molecular Targets and Therapeutics Center, Helmholtz Munich, Institute of Structural Biology, Neuherberg85764, Germany
- Department of Bioscience, Bavarian NMR Center, Technical University Munich School of Natural Sciences, Technical University of Munich, Garching85747, Germany
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA6009, Australia
| | - Christian Schmitz-Linneweber
- Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin10115, Germany
| |
Collapse
|
5
|
Salesse‐Smith CE, Wang Y, Long SP. Increasing Rubisco as a simple means to enhance photosynthesis and productivity now without lowering nitrogen use efficiency. THE NEW PHYTOLOGIST 2025; 245:951-965. [PMID: 39688507 PMCID: PMC11711929 DOI: 10.1111/nph.20298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/05/2024] [Indexed: 12/18/2024]
Abstract
Global demand for food may rise by 60% mid-century. A central challenge is to meet this need using less land in a changing climate. Nearly all crop carbon is assimilated through Rubisco, which is catalytically slow, reactive with oxygen, and a major component of leaf nitrogen. Developing more efficient forms of Rubisco, or engineering CO2 concentrating mechanisms into C3 crops to competitively repress oxygenation, are major endeavors, which could hugely increase photosynthetic productivity (≥ 60%). New technologies are bringing this closer, but improvements remain in the discovery phase and have not been reduced to practice. A simpler shorter-term strategy that could fill this time gap, but with smaller productivity increases (c. 10%) is to increase leaf Rubisco content. This has been demonstrated in initial field trials, improving the productivity of C3 and C4 crops. Combining three-dimensional leaf canopies with metabolic models infers that a 20% increase in Rubisco increases canopy photosynthesis by 14% in sugarcane (C4) and 9% in soybean (C3). This is consistent with observed productivity increases in rice, maize, sorghum and sugarcane. Upregulation of Rubisco is calculated not to require more nitrogen per unit yield and although achieved transgenically to date, might be achieved using gene editing to produce transgene-free gain of function mutations or using breeding.
Collapse
Affiliation(s)
- Coralie E. Salesse‐Smith
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUrbanaIL61801USA
| | - Yu Wang
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUrbanaIL61801USA
- School of Life SciencesNanjing UniversityNanjing210008China
| | - Stephen P. Long
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUrbanaIL61801USA
- Departments of Plant Biology and of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
6
|
Božić M, Ignjatović Micić D, Anđelković V, Delić N, Nikolić A. Maize transcriptome profiling reveals low temperatures affect photosynthesis during the emergence stage. FRONTIERS IN PLANT SCIENCE 2025; 16:1527447. [PMID: 39935955 PMCID: PMC11810925 DOI: 10.3389/fpls.2025.1527447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025]
Abstract
Introduction Earlier sowing is a promising strategy of ensuring sufficiently high maize yields in the face of negative environmental factors caused by climate change. However, it leads to the low temperature exposure of maize plants during emergence, warranting a better understanding of their response and acclimation to suboptimal temperatures. Materials and Methods To achieve this goal, whole transcriptome sequencing was performed on two maize inbred lines - tolerant/susceptible to low temperatures, at the 5-day-old seedling stage. Sampling was performed after 6h and 24h of treatment (10/8°C). The data was filtered, mapped, and the identified mRNAs, lncRNAs, and circRNAs were quantified. Expression patterns of the RNAs, as well as the interactions between them, were analyzed to reveal the ones important for low-temperature response. Results and Discussion Genes involved in different steps of photosynthesis were downregulated in both genotypes: psa, psb, lhc, and cab genes important for photosystem I and II functioning, as well as rca, prk, rbcx1 genes necessary for the Calvin cycle. The difference in low-temperature tolerance between genotypes appeared to arise from their ability to mitigate damage caused by photoinhibition: ctpa2, grx, elip, UF3GT genes showed higher expression in the tolerant genotype. Certain identified lncRNAs also targeted these genes, creating an interaction network induced by the treatment (XLOC_016169-rca; XLOC_002167-XLOC_006091-elip2). These findings shed light on the potential mechanisms of low-temperature acclimation during emergence and lay the groundwork for subsequent analyses across diverse maize genotypes and developmental stages. As such, it offers valuable guidance for future research directions in the molecular breeding of low-temperature tolerant maize.
Collapse
Affiliation(s)
- Manja Božić
- Laboratory for Molecular Genetics and Physiology, Research Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Dragana Ignjatović Micić
- Laboratory for Molecular Genetics and Physiology, Research Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Violeta Anđelković
- Gene Bank, Research Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Nenad Delić
- Maize Breeding Group, Breeding Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Ana Nikolić
- Laboratory for Molecular Genetics and Physiology, Research Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| |
Collapse
|
7
|
Li H, Wang Z, Yu Y, Gao W, Zhu J, Zhang H, Li X, Liu Y. Enhancing cold tolerance in tobacco through endophytic symbiosis with Piriformospora indica. FRONTIERS IN PLANT SCIENCE 2024; 15:1459882. [PMID: 39524557 PMCID: PMC11543411 DOI: 10.3389/fpls.2024.1459882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Tobacco, a warm-season crop originating from the Americas, is highly susceptible to cold stress. The utilization of symbiotic fungi as a means to bolster crops' resilience against abiotic stresses has been proven to be a potent strategy. In this study, we investigated the effect of endophytic fungus Piriformospora indica on the cold resistance of tobacco. When exposed to cold stress, the colonization of P.indica in tobacco roots effectively stimulates the activity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). This, in turn, reduces the accumulation of reactive oxygen species (ROS), thereby mitigating oxidative damage. Additionally, P. indica elevates the levels of osmolytes, such as soluble sugars, proline, and soluble proteins, thus facilitating the restoration of osmotic balance. Under cold stress conditions, P. indica also induces the expression of cold-responsive genes. Furthermore, this fungus not only enhances photosynthesis in tobacco by stimulating the synthesis of photosynthetic pigments, strengthening Rubisco activity, and elevating PSII efficiency, but also fortifies tobacco's nitrogen assimilation by inducing the expression of nitrate transporter gene and activating enzymes related to nitrogen assimilation. Consequently, this synergistic optimization of nitrogen and carbon assimilation provides a solid material and energetic foundation for tobacco plants to withstand cold stress. Our study demonstrates that a mycorrhizal association between P. indica and tobacco seedlings provides multifaceted protection to tobacco plants against low-temperature stress and offers a valuable insight into how P. indica enhances the cold tolerance of tobacco.
Collapse
Affiliation(s)
- Han Li
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Zhiyao Wang
- College of Tobacco Science, Guizhou University, Guiyang, China
| | - Yongxu Yu
- Technology Research and Development Center, Zunyi Branch of Guizhou Tobacco Company, Zunyi, China
| | - Weichang Gao
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Jingwei Zhu
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Heng Zhang
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Xiang Li
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, China
- Tobacco Leaf Administration Office, Guizhou Branch Company of China Tobacco Corporation, Guiyang, China
| | - Yanxia Liu
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, Guiyang, China
| |
Collapse
|
8
|
Stirbet A, Guo Y, Lazár D, Govindjee G. From leaf to multiscale models of photosynthesis: applications and challenges for crop improvement. PHOTOSYNTHESIS RESEARCH 2024; 161:21-49. [PMID: 38619700 DOI: 10.1007/s11120-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 04/16/2024]
Abstract
To keep up with the growth of human population and to circumvent deleterious effects of global climate change, it is essential to enhance crop yield to achieve higher production. Here we review mathematical models of oxygenic photosynthesis that are extensively used, and discuss in depth a subset that accounts for diverse approaches providing solutions to our objective. These include models (1) to study different ways to enhance photosynthesis, such as fine-tuning antenna size, photoprotection and electron transport; (2) to bioengineer carbon metabolism; and (3) to evaluate the interactions between the process of photosynthesis and the seasonal crop dynamics, or those that have included statistical whole-genome prediction methods to quantify the impact of photosynthesis traits on the improvement of crop yield. We conclude by emphasizing that the results obtained in these studies clearly demonstrate that mathematical modelling is a key tool to examine different approaches to improve photosynthesis for better productivity, while effective multiscale crop models, especially those that also include remote sensing data, are indispensable to verify different strategies to obtain maximized crop yields.
Collapse
Affiliation(s)
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education Jiangnan University, Wuxi, 214122, China
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký Univesity, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and the Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
9
|
Eshenour K, Hotto A, Michel EJS, Oh ZG, Stern DB. Transgenic expression of Rubisco accumulation factor2 and Rubisco subunits increases photosynthesis and growth in maize. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4024-4037. [PMID: 38696303 DOI: 10.1093/jxb/erae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Carbon assimilation by Rubisco is often a limitation to photosynthesis and therefore plant productivity. We have previously shown that transgenic co-expression of the Rubisco large (LS) and small (SS) subunits along with an essential Rubisco accumulation factor, Raf1, leads to faster growth, increased photosynthesis, and enhanced chilling tolerance in maize (Zea mays). Maize also requires Rubisco accumulation factor2 (Raf2) for full accumulation of Rubisco. Here we have analyzed transgenic maize lines with increased expression of Raf2 or Raf2 plus LS and SS. We show that increasing Raf2 expression alone had minor effects on photosynthesis, whereas expressing Raf2 with Rubisco subunits led to increased Rubisco content, more rapid carbon assimilation, and greater plant height, most notably in plants at least 6 weeks of age. The magnitude of the effects was similar to what was observed previously for expression of Raf1 together with Rubisco subunits. Taken together, this suggests that increasing the amount of either assembly factor with Rubisco subunits can independently enhance Rubisco abundance and some aspects of plant performance. These results could also imply either synergy or a degree of functional redundancy for Raf1 and Raf2, the latter of whose precise role in Rubisco assembly is currently unknown.
Collapse
Affiliation(s)
| | - Amber Hotto
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| | | | - Zhen Guo Oh
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - David B Stern
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Zhai M, Chen Y, Pan X, Chen Y, Zhou J, Jiang X, Zhang Z, Xiao G, Zhang H. OsEIN2-OsEIL1/2 pathway negatively regulates chilling tolerance by attenuating OsICE1 function in rice. PLANT, CELL & ENVIRONMENT 2024; 47:2561-2577. [PMID: 38518060 DOI: 10.1111/pce.14900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Low temperature severely affects rice development and yield. Ethylene signal is essential for plant development and stress response. Here, we reported that the OsEIN2-OsEIL1/2 pathway reduced OsICE1-dependent chilling tolerance in rice. The overexpressing plants of OsEIN2, OsEIL1 and OsEIL2 exhibited severe stress symptoms with excessive reactive oxygen species (ROS) accumulation under chilling, while the mutants (osein2 and oseil1) and OsEIL2-RNA interference plants (OsEIL2-Ri) showed the enhanced chilling tolerance. We validated that OsEIL1 and OsEIL2 could form a heterxodimer and synergistically repressed OsICE1 expression by binding to its promoter. The expression of OsICE1 target genes, ROS scavenging- and photosynthesis-related genes were downregulated by OsEIN2 and OsEIL1/2, which were activated by OsICE1, suggesting that OsEIN2-OsEIL1/2 pathway might mediate ROS accumulation and photosynthetic capacity under chilling by attenuating OsICE1 function. Moreover, the association analysis of the seedling chilling tolerance with the haplotype showed that the lower expression of OsEIL1 and OsEIL2 caused by natural variation might confer chilling tolerance on rice seedlings. Finally, we generated OsEIL2-edited rice with an enhanced chilling tolerance. Taken together, our findings reveal a possible mechanism integrating OsEIN2-OsEIL1/2 pathway with OsICE1-dependent cascade in regulating chilling tolerance, providing a practical strategy for breeding chilling-tolerant rice.
Collapse
Affiliation(s)
- Mingjuan Zhai
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yating Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiaowu Pan
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ying Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiahao Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaodan Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guiqing Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Ludwig M, Hartwell J, Raines CA, Simkin AJ. The Calvin-Benson-Bassham cycle in C 4 and Crassulacean acid metabolism species. Semin Cell Dev Biol 2024; 155:10-22. [PMID: 37544777 DOI: 10.1016/j.semcdb.2023.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
The Calvin-Benson-Bassham (CBB) cycle is the ancestral CO2 assimilation pathway and is found in all photosynthetic organisms. Biochemical extensions to the CBB cycle have evolved that allow the resulting pathways to act as CO2 concentrating mechanisms, either spatially in the case of C4 photosynthesis or temporally in the case of Crassulacean acid metabolism (CAM). While the biochemical steps in the C4 and CAM pathways are known, questions remain on their integration and regulation with CBB cycle activity. The application of omic and transgenic technologies is providing a more complete understanding of the biochemistry of C4 and CAM species and will also provide insight into the CBB cycle in these plants. As the global population increases, new solutions are required to increase crop yields and meet demands for food and other bioproducts. Previous work in C3 species has shown that increasing carbon assimilation through genetic manipulation of the CBB cycle can increase biomass and yield. There may also be options to improve photosynthesis in species using C4 photosynthesis and CAM through manipulation of the CBB cycle in these plants. This is an underexplored strategy and requires more basic knowledge of CBB cycle operation in these species to enable approaches for increased productivity.
Collapse
Affiliation(s)
- Martha Ludwig
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia.
| | - James Hartwell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | | | - Andrew J Simkin
- University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| |
Collapse
|
12
|
Zhou L, Xiang X, Ji D, Chen Q, Ma T, Wang J, Liu C. A Carbonic Anhydrase, ZmCA4, Contributes to Photosynthetic Efficiency and Modulates CO2 Signaling Gene Expression by Interacting with Aquaporin ZmPIP2;6 in Maize. PLANT & CELL PHYSIOLOGY 2024; 65:243-258. [PMID: 37955399 DOI: 10.1093/pcp/pcad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Carbonic anhydrase (CA) catalyzes the reversible CO2 hydration reaction that produces bicarbonate for phosphoenolpyruvate carboxylase (PEPC). This is the initial step for transmitting the CO2 signal in C4 photosynthesis. However, it remains unknown whether the maize (Zea mays L.) CA gene, ZmCA4, plays a role in the maize photosynthesis process. In our study, we found that ZmCA4 was relatively highly expressed in leaves and localized in the chloroplast and the plasma membrane of mesophyll protoplasts. Knock-out of ZmCA4 reduced CA activity, while overexpression of ZmCA4 increased rubisco activity, as well as the quantum yield and relative electron transport rate in photosystem II. Overexpression of ZmCA4 enhanced maize yield-related traits. Moreover, ZmCA4 interacted with aquaporin ZmPIP2;6 in bimolecular fluorescence complementation and co-immunoprecipitation experiments. The double-knock-out mutant for ZmPIP2;6 and ZmCA4 genes showed reductions in its growth, CA and PEPC activities, assimilation rate and photosystem activity. RNA-Seq analysis revealed that the expression of other ZmCAs, ZmPIPs, as well as CO2 signaling pathway homologous genes, and photosynthetic-related genes was all altered in the double-knock-out mutant compared with the wild type. Altogether, our study's findings point to a critical role of ZmCA4 in determining photosynthetic capacity and modulating CO2 signaling regulation via its interaction with ZmPIP2;6, thus providing insight into the potential genetic value of ZmCA4 for maize yield improvement.
Collapse
Affiliation(s)
- Lian Zhou
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Xiaoqin Xiang
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Dongpu Ji
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Qiulan Chen
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Tengfei Ma
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Jiuguang Wang
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Chaoxian Liu
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| |
Collapse
|
13
|
Lainé CMS, AbdElgawad H, Beemster GTS. Cellular dynamics in the maize leaf growth zone during recovery from chilling depends on the leaf developmental stage. PLANT CELL REPORTS 2024; 43:38. [PMID: 38200224 DOI: 10.1007/s00299-023-03116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/16/2023] [Indexed: 01/12/2024]
Abstract
KEY MESSAGE A novel non-steady-state kinematic analysis shows differences in cell division and expansion determining a better recovery from a 3-day cold spell in emerged compared to non-emerged maize leaves. Zea mays is highly sensitive to chilling which frequently occurs during its seedling stage. Although the direct effect of chilling is well studied, the mechanisms determining the subsequent recovery are still unknown. Our goal is to determine the cellular basis of the leaf growth response to chilling and during recovery of leaves exposed before or after their emergence. We first studied the effect of a 3-day cold spell on leaf growth at the plant level. Then, we performed a kinematic analysis to analyse the dynamics of cell division and elongation during recovery of the 4th leaf after exposure to cold before or after emergence. Our results demonstrated cold more strongly reduced the final length of non-emerged than emerged leaves (- 13 vs. - 18%). This was not related to growth differences during cold, but a faster and more complete recovery of the growth of emerged leaves. This difference was due to a higher cell division rate on the 1st and a higher cell elongation rate on the 2nd day of recovery, respectively. The dynamics of cell division and expansion during recovery determines developmental stage-specific differences in cold tolerance of maize leaves.
Collapse
Affiliation(s)
- Cindy M S Lainé
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, Antwerp University, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, Antwerp University, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, Antwerp University, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
14
|
Jan N, Wani UM, Wani MA, Qazi HA, John R. Comparative physiological, antioxidant and proteomic investigation reveal robust response to cold stress in Digitalis purpurea L. Mol Biol Rep 2023; 50:7319-7331. [PMID: 37439898 DOI: 10.1007/s11033-023-08635-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND OF THE STUDY Digitalis purpurea (L) is an important medicinal plant growing at Alpine region of Himalayas and withstands low temperatures and harsh climatic conditions existing at high altitude. It serves as an ideal plant system to decipher the tolerance to cold stress (CS) in plants from high altitudes. METHODS AND RESULTS To understand the complexity of plant response to CS, we performed a comparative physiological and biochemical study complemented with proteomics in one-month-old D. purpurea grown at 25 °C (control) and 4 °C (CS). We observed an enhanced accumulation of different osmo-protectants (glycine betaine, soluble sugar and proline) and higher transcription (mRNA levels) of various antioxidant enzymes with an increased antioxidant enzyme activity in D. purpurea when exposed to CS. Furthermore, higher concentrations of non-enzymatic antioxidants (flavonoids, phenolics) was also associated with the response to CS. Differential proteomic analysis revealed the role of various proteins primarily involved in redox reactions, protein stabilization, quinone and sterol metabolism involved in CS response in D. purpurea.. CONCLUSION Our results provide a framework for better understanding the physiological and molecular mechanism of CS response in D. purpurea at high altitudes.
Collapse
Affiliation(s)
- Nelofer Jan
- Department of Botany, University of Kashmir, Hazratbal, Srinagar, 190 006, Jammu and Kashmir, India
| | - Umer Majeed Wani
- Department of Botany, University of Kashmir, Hazratbal, Srinagar, 190 006, Jammu and Kashmir, India
| | - Mubashir Ahmad Wani
- Department of Botany, University of Kashmir, Hazratbal, Srinagar, 190 006, Jammu and Kashmir, India
| | - Hilal Ahmad Qazi
- Department of Botany, University of Kashmir, Hazratbal, Srinagar, 190 006, Jammu and Kashmir, India
| | - Riffat John
- Department of Botany, University of Kashmir, Hazratbal, Srinagar, 190 006, Jammu and Kashmir, India.
| |
Collapse
|
15
|
Malakar M, Paiva PDDO, Beruto M, da Cunha Neto AR. Review of recent advances in post-harvest techniques for tropical cut flowers and future prospects: Heliconia as a case-study. FRONTIERS IN PLANT SCIENCE 2023; 14:1221346. [PMID: 37575938 PMCID: PMC10419226 DOI: 10.3389/fpls.2023.1221346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023]
Abstract
Aesthetic attributes and easy-to-grow nature of tropical cut flowers (TCFs) have contributedto their potential for increased production. The dearth of information regarding agronomic practices and lack of planting materials are the key hindrances against their fast expansion. Unconventional high-temperature storage requirements and the anatomy of the peduncle contribute topoor vase life performance, while troublesome packaging and transport due to unusual size and structureprimarily cause post-harvest quality deterioration. Nonetheless, the exotic floral structuresconsequently increase market demand, particularly in temperate countries. This boosts studies aimed at overcoming post-harvest hindrances. While a few TCFs (Anthurium, Strelitzia, Alpinia, and a few orchids) are under the spotlight, many others remain behind the veil. Heliconia, an emerging specialty TCF (False Bird-of-Paradise, family Heliconiaceae), is one of them. The structural uniquenessand dazzling hues of Heliconia genotypes facilitate shifting its position from the back to the forefrontof the world floriculture trade. The unsatisfactory state-of-the-art of Heliconia research and the absence of any review exclusively on it are the key impetus for structuring this review. In addition to the aforementioned setbacks, impaired water uptake capacity after harvest, high chilling sensitivity, and the proneness of xylem ducts to microbial occlusion may be counted as a few additional factors that hinder its commercialization. This review demonstrates the state-of-the-art of post-harvest research while also conceptualizing the implementation of advanced biotechnological aid to alleviate the challenges, primarily focusing on Heliconia (the model crop here) along with some relevant literature on its other allied members. Standard harvesting indices, grading, and packaging are also part of the entire post-harvest operational chain, but since these phases are barely considered in Heliconia and the majority of tropical ornamentals except a few, a comprehensive account of these aspects has also been given. The hypothesized cues to nip chilling injury, resorting to different bio-chemical treatments, nano-based technology, and advanced packaging techniques, may help overcome preservation difficulties and propel its transition from niche to the commercial flower market. In a nutshell, readers will gain a comprehensive overview of how optimum post-harvest handling practices can rewardingly characterize this unique group of TCFs as the most remunerative component.
Collapse
Affiliation(s)
- Moumita Malakar
- Department of Horticulture & Floriculture, Central University of Tamil Nadu, Thiruvarur, India
| | | | - Margherita Beruto
- International Society for Horticultural Science (ISHS), Ornamental Plant Division, San Remo, Italy
| | | |
Collapse
|
16
|
Zhao X, Ma K, Li Z, Li W, Zhang X, Liu S, Meng R, Lu B, Li X, Ren J, Zhang L, Yuan X. Transcriptome Analysis Reveals Brassinolide Signaling Pathway Control of Foxtail Millet Seedling Starch and Sucrose Metabolism under Freezing Stress, with Implications for Growth and Development. Int J Mol Sci 2023; 24:11590. [PMID: 37511348 PMCID: PMC10380969 DOI: 10.3390/ijms241411590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Low-temperature stress limits the growth and development of foxtail millet. Freezing stress caused by sudden temperature drops, such as late-spring coldness, often occurs in the seedling stage of foxtail millet. However, the ability and coping strategies of foxtail millet to cope with such stress are not clear. In the present study, we analyzed the self-regulatory mechanisms of freezing stress in foxtail millet. We conducted a physiological study on foxtail millet leaves at -4 °C for seven different durations (0, 2, 4, 6, 8, 10, and 12 h). Longer freezing time increased cell-membrane damage, relative conductance, and malondialdehyde content. This led to osmotic stress in the leaves, which triggered an increase in free proline, soluble sugar, and soluble protein contents. The increases in these substances helped to reduce the damage caused by stress. The activities of superoxide dismutase, peroxidase, and catalase increased reactive oxygen species (ROS) content. The optimal time point for the response to freezing stress was 8 h after exposure. The transcriptome analysis of samples held for 8 h at -4 °C revealed 6862 differentially expressed genes (DEGs), among which the majority are implicated in various pathways, including the starch and sucrose metabolic pathways, antioxidant enzyme pathways, brassinolide (BR) signaling pathway, and transcription factors, according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. We investigated possible crosstalk between BR signals and other pathways and found that BR signaling molecules were induced in response to freezing stress. The beta-amylase (BAM) starch hydrolase signal was enhanced by the BR signal, resulting in the accelerated degradation of starch and the formation of sugars, which served as emerging ROS scavengers and osmoregulators to resist freezing stress. In conclusion, crosstalk between BR signal transduction, and both starch and sucrose metabolism under freezing stress provides a new perspective for improving freezing resistance in foxtail millet.
Collapse
Affiliation(s)
- Xiatong Zhao
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Ke Ma
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Zhong Li
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Weidong Li
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Xin Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Shaoguang Liu
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Ru Meng
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Boyu Lu
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Xiaorui Li
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Jianhong Ren
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Liguang Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| |
Collapse
|
17
|
Soualiou S, Duan F, Li X, Zhou W. Nitrogen supply alleviates cold stress by increasing photosynthesis and nitrogen assimilation in maize seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3142-3162. [PMID: 36847687 DOI: 10.1093/jxb/erad073] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/23/2023] [Indexed: 05/21/2023]
Abstract
Cold stress inhibits the early growth of maize, leading to reduced productivity. Nitrogen (N) is an essential nutrient that stimulates maize growth and productivity, but the relationship between N availability and cold tolerance is poorly characterized. Therefore, we studied the acclimation of maize under combined cold stress and N treatments. Exposure to cold stress caused a decline in growth and N assimilation, but increased abscisic acid (ABA) and carbohydrate accumulation. The application of different N concentrations from the priming stage to the recovery period resulted in the following observations: (i) high N supply alleviated cold stress-dependent growth inhibition, as shown by increased biomass, chlorophyll and Rubisco content and PSII efficiency; (ii) cold stress-induced ABA accumulation was repressed under high N, presumably due to enhanced stomatal conductance; (iii) the mitigating effects of high N on cold stress could be due to the increased activities of N assimilation enzymes and improved redox homeostasis. After cold stress, the ability of maize seedlings to recover increased under high N treatment, indicating the potential role of high N in the cold stress tolerance of maize seedlings.
Collapse
Affiliation(s)
- Soualihou Soualiou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Beijing 100081, China
| | - Fengying Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Beijing 100081, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Beijing 100081, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences Beijing 100081, China
| |
Collapse
|
18
|
Soualiou S, Duan F, Li X, Zhou W. CROP PRODUCTION UNDER COLD STRESS: An understanding of plant responses, acclimation processes, and management strategies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:47-61. [PMID: 36099808 DOI: 10.1016/j.plaphy.2022.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
In the context of climate change, the magnitude and frequency of temperature extremes (low and high temperatures) are increasing worldwide. Changes to the lower extremes of temperature, known as cold stress (CS), are one of the recurrent stressors in many parts of the world, severely limiting agricultural production. A series of plant reactions to CS could be generalized into morphological, physiological, and biochemical responses based on commonalities among crop plants. However, the differing originality of crops revealed varying degrees of sensitivity to cold and, therefore, exhibited large differences in these responses among the crops. This review discusses the vegetative and reproductive growth effects of CS and highlights the species-specific aspect of each growth stage whereby the reproductive growth CS appears more detrimental in rice and wheat, with marginal yield losses. To mitigate CS negative effects, crop plants have evolved cold-acclimation mechanisms (with differing capability), characterized by specific protein accumulation, membrane modification, regulation of signaling pathways, osmotic regulation, and induction of endogenous hormones. In addition, we reviewed a comprehensive account of management strategies for regulating tolerance mechanisms of crop plants under CS.
Collapse
Affiliation(s)
- Soualihou Soualiou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fengying Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
19
|
Song Q, Zhang S, Bai C, Shi Q, Wu D, Liu Y, Han X, Li T, Yong JWH. Exogenous Ca 2+ priming can improve peanut photosynthetic carbon fixation and pod yield under early sowing scenarios in the field. FRONTIERS IN PLANT SCIENCE 2022; 13:1004721. [PMID: 36247552 PMCID: PMC9557924 DOI: 10.3389/fpls.2022.1004721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Harnessing cold-resilient and calcium-enriched peanut production technology are crucial for high-yielding peanut cultivation in high-latitude areas. However, there is limited field data about how exogenous calcium (Ca2+) application would improve peanut growth resilience during exposure to chilling stress at early sowing (ES). To help address this problem, a two-year field study was conducted to assess the effects of exogenous foliar Ca2+ application on photosynthetic carbon fixation and pod yield in peanuts under different sowing scenarios. We measured plant growth indexes, leaf photosynthetic gas exchange, photosystems activities, and yield in peanuts. It was indicated that ES chilling stress at the peanut seedling stage led to the reduction of Pn, gs, Tr, Ls, WUE, respectively, and the excessive accumulation of non-structural carbohydrates in leaves, which eventually induced a chilling-dependent feedback inhibition of photosynthesis due mainly to weaken growth/sink demand. While exogenous Ca2+ foliar application improved the export of nonstructural carbohydrates, and photosynthetic capacity, meanwhile activated cyclic electron flow, thereby enhancing growth and biomass accumulation in peanut seedlings undergoing ES chilling stress. Furthermore, ES combined with exogenous Ca2+ application can significantly enhance plant chilling resistance and peanut yield ultimately in the field. In summary, the above results demonstrated that exogenous foliar Ca2+ application restored the ES-linked feedback inhibition of photosynthesis, enhancing the growth/sink demand and the yield of peanuts.
Collapse
Affiliation(s)
- Qiaobo Song
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Chunming Bai
- Research Institute of Sorghum, Liaoning Academy of Agricultural Sciences, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Qingwen Shi
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Di Wu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Xiaori Han
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Tianlai Li
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
20
|
Chilling Tolerance in Maize: Insights into Advances—Toward Physio-Biochemical Responses’ and QTL/Genes’ Identification. PLANTS 2022; 11:plants11162082. [PMID: 36015386 PMCID: PMC9415788 DOI: 10.3390/plants11162082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 12/04/2022]
Abstract
Maize, a major staple cereal crop in global food supply, is a thermophilic and short-day C4 plant sensitive to low-temperature stress. A low temperature is among the most severe agro-meteorological hazards in maize-growing areas. This review covers the latest research and progress in the field of chilling tolerance in maize in the last 40 years. It mainly focuses on how low-temperature stress affects the maize membrane and antioxidant systems, photosynthetic physiology, osmoregulatory substances and hormone levels. In addition, the research progress in identifying cold-tolerance QTLs (quantitative trait loci) and genes to genetically improve maize chilling toleranceis comprehensively discussed. Based on previous research, this reviewprovides anoutlook on potential future research directions and offers a reference for researchers in the maize cold-tolerance-related field.
Collapse
|
21
|
Sharwood RE, Quick WP, Sargent D, Estavillo GM, Silva-Perez V, Furbank RT. Mining for allelic gold: finding genetic variation in photosynthetic traits in crops and wild relatives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3085-3108. [PMID: 35274686 DOI: 10.1093/jxb/erac081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Improvement of photosynthetic traits in crops to increase yield potential and crop resilience has recently become a major breeding target. Synthetic biology and genetic technologies offer unparalleled opportunities to create new genetics for photosynthetic traits driven by existing fundamental knowledge. However, large 'gene bank' collections of germplasm comprising historical collections of crop species and their relatives offer a wealth of opportunities to find novel allelic variation in the key steps of photosynthesis, to identify new mechanisms and to accelerate genetic progress in crop breeding programmes. Here we explore the available genetic resources in food and fibre crops, strategies to selectively target allelic variation in genes underpinning key photosynthetic processes, and deployment of this variation via gene editing in modern elite material.
Collapse
Affiliation(s)
- Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - W Paul Quick
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Demi Sargent
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | | | | | - Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
22
|
Wu J, Nadeem M, Galagedara L, Thomas R, Cheema M. Effects of Chilling Stress on Morphological, Physiological, and Biochemical Attributes of Silage Corn Genotypes during Seedling Establishment. PLANTS (BASEL, SWITZERLAND) 2022; 11:1217. [PMID: 35567218 PMCID: PMC9101286 DOI: 10.3390/plants11091217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Chilling stress is one of the major abiotic stresses which hinder seedling emergence and growth. Herein, we investigated the effects of chilling/low temperature stress on the morphological, physiological, and biochemical attributes of two silage corn genotypes during the seedling establishment phase. The experiment was conducted in a growth chamber, and silage corn seedlings of Yukon-R and A4177G-RIB were grown at optimum temperature up to V3 stage and then subjected to five temperature regimes (25 °C as control, 20 °C, 15 °C, 10 °C, and 5 °C) for 5 days. After the temperature treatment, the morphological, physiological, and biochemical parameters were recorded. Results indicated that temperatures of 15 °C and lower significantly affected seedling growth, photosynthesis system, reactive oxygen species (ROS) accumulation, and antioxidant enzyme activities. Changes in seedlings’ growth parameters were in the order of 25 °C > 20 °C > 15 °C > 10 °C > 5 °C, irrespective of genotypes. The chlorophyll content, photosynthetic rate, and maximal photochemical efficiency of PS-II (Fv/Fm) were drastically decreased under chilling conditions. Moreover, chilling stress induced accumulation of hydrogen peroxide (H2O2)and malonaldehyde (MDA) contents. Increased proline content and enzymatic antioxidants, including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxide (APX), were found to alleviate oxidative damage under chilling stress. However, the genotype of Yukon-R exhibited better adaption to chilling stress than A4177G3-RIB. Yukon-R showed significantly higher proline content and enzymatic antioxidant activities than A4177G3-RIB under severe chilling conditions (temperature ≤ 10 °C). Similarly, Yukon-R expressed low temperature-induced ROS accumulation. Furthermore, the interaction effects were found between temperature treatment and genotype on the ROS accumulation, proline content and antioxidant enzyme activities. In summary, the present study indicated that Yukon-R has shown better adaptation and resilience against chilling temperature stress, and therefore could be considered a potential candidate genotype to be grown in the boreal climate.
Collapse
Affiliation(s)
- Jiaxu Wu
- Correspondence: (J.W.); (M.N.); (M.C.)
| | | | | | | | | |
Collapse
|
23
|
Effects of the Chloroplast Fructose-1,6-Bisphosphate Aldolase Gene on Growth and Low-Temperature Tolerance of Tomato. Int J Mol Sci 2022; 23:ijms23020728. [PMID: 35054921 PMCID: PMC8775715 DOI: 10.3390/ijms23020728] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
Tomato (Solanum lycopersicum) is one of the most important greenhouse vegetables, with a large cultivated area across the world. However, in northern China, tomato plants often suffer from low-temperature stress in solar greenhouse cultivation, which affects plant growth and development and results in economic losses. We previously found that a chloroplast aldolase gene in tomato, SlFBA4, plays an important role in the Calvin-Benson cycle (CBC), and its expression level and activity can be significantly altered when subjected to low-temperature stress. To further study the function of SlFBA4 in the photosynthesis and chilling tolerance of tomato, we obtained transgenic tomato plants by the over-expression and RNA interference (RNAi) of SlFBA4. The over-expression of SlFBA4 led to higher fructose-1,6-bisphosphate aldolase activity, net photosynthetic rate (Pn) and activity of other enzymes in the CBC than wild type. Opposite results were observed in the RNAi lines. Moreover, an increase in thousand-seed weight, plant height, stem diameter and germination rate in optimal and sub-optimal temperatures was observed in the over-expression lines, while opposite effects were observed in the RNAi lines. Furthermore, over-expression of SlFBA4 increased Pn and enzyme activity and decreased malonaldehyde (MDA) content under chilling conditions. On the other hand, Pn and MDA content were more severely influenced by chilling stress in the RNAi lines. These results indicate that SlFBA4 plays an important role in tomato growth and tolerance to chilling stress.
Collapse
|
24
|
Jueterbock A, Duarte B, Coyer J, Olsen JL, Kopp MEL, Smolina I, Arnaud-Haond S, Hu ZM, Hoarau G. Adaptation of Temperate Seagrass to Arctic Light Relies on Seasonal Acclimatization of Carbon Capture and Metabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:745855. [PMID: 34925400 PMCID: PMC8675887 DOI: 10.3389/fpls.2021.745855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Due to rising global surface temperatures, Arctic habitats are becoming thermally suitable for temperate species. Whether a temperate species can immigrate into an ice-free Arctic depends on its ability to tolerate extreme seasonal fluctuations in daylength. Thus, understanding adaptations to polar light conditions can improve the realism of models predicting poleward range expansions in response to climate change. Plant adaptations to polar light have rarely been studied and remain unknown in seagrasses. If these ecosystem engineers can migrate polewards, seagrasses will enrich biodiversity, and carbon capture potential in shallow coastal regions of the Arctic. Eelgrass (Zostera marina) is the most widely distributed seagrass in the northern hemisphere. As the only seagrass species growing as far north as 70°N, it is the most likely candidate to first immigrate into an ice-free Arctic. Here, we describe seasonal (and diurnal) changes in photosynthetic characteristics, and in genome-wide gene expression patterns under strong annual fluctuations of daylength. We compared PAM measurements and RNA-seq data between two populations at the longest and shortest day of the year: (1) a Mediterranean population exposed to moderate annual fluctuations of 10-14 h daylength and (2) an Arctic population exposed to high annual fluctuations of 0-24 h daylength. Most of the gene expression specificities of the Arctic population were found in functions of the organelles (chloroplast and mitochondrion). In winter, Arctic eelgrass conserves energy by repressing respiration and reducing photosynthetic energy fluxes. Although light-reactions, and genes involved in carbon capture and carbon storage were upregulated in summer, enzymes involved in CO2 fixation and chlorophyll-synthesis were upregulated in winter, suggesting that winter metabolism relies not only on stored energy resources but also on active use of dim light conditions. Eelgrass is unable to use excessive amounts of light during summer and demonstrates a significant reduction in photosynthetic performance under long daylengths, possibly to prevent photoinhibition constrains. Our study identified key mechanisms that allow eelgrass to survive under Arctic light conditions and paves the way for experimental research to predict whether and up to which latitude eelgrass can potentially migrate polewards in response to climate change.
Collapse
Affiliation(s)
- Alexander Jueterbock
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Bernardo Duarte
- Marine and Environmental Sciences Centre, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
- Departamento de Biologia Vegetal da Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - James Coyer
- Shoals Marine Laboratory, University of New Hampshire, Durham, NH, United States
| | - Jeanine L. Olsen
- Ecological Genetics-Genomics Group, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | | | - Irina Smolina
- Marine Molecular Ecology Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Sophie Arnaud-Haond
- UMR MARBEC Marine Biodiversity Exploitation and Conservation, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Zi-Min Hu
- Ocean School, Yantai University, Yantai, China
| | - Galice Hoarau
- Marine Molecular Ecology Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
25
|
Iñiguez C, Aguiló-Nicolau P, Galmés J. Improving photosynthesis through the enhancement of Rubisco carboxylation capacity. Biochem Soc Trans 2021; 49:2007-2019. [PMID: 34623388 DOI: 10.1042/bst20201056] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
Rising human population, along with the reduction in arable land and the impacts of global change, sets out the need for continuously improving agricultural resource use efficiency and crop yield (CY). Bioengineering approaches for photosynthesis optimization have largely demonstrated the potential for enhancing CY. This review is focused on the improvement of Rubisco functioning, which catalyzes the rate-limiting step of CO2 fixation required for plant growth, but also catalyzes the ribulose-bisphosphate oxygenation initiating the carbon and energy wasteful photorespiration pathway. Rubisco carboxylation capacity can be enhanced by engineering the Rubisco large and/or small subunit genes to improve its catalytic traits, or by engineering the mechanisms that provide enhanced Rubisco expression, activation and/or elevated [CO2] around the active sites to favor carboxylation over oxygenation. Recent advances have been made in the expression, assembly and activation of foreign (either natural or mutant) faster and/or more CO2-specific Rubisco versions. Some components of CO2 concentrating mechanisms (CCMs) from bacteria, algae and C4 plants has been successfully expressed in tobacco and rice. Still, none of the transformed plant lines expressing foreign Rubisco versions and/or simplified CCM components were able to grow faster than wild type plants under present atmospheric [CO2] and optimum conditions. However, the results obtained up to date suggest that it might be achievable in the near future. In addition, photosynthetic and yield improvements have already been observed when manipulating Rubisco quantity and activation degree in crops. Therefore, engineering Rubisco carboxylation capacity continues being a promising target for the improvement in photosynthesis and yield.
Collapse
Affiliation(s)
- Concepción Iñiguez
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
- Department of Ecology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Pere Aguiló-Nicolau
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| |
Collapse
|
26
|
Sales CRG, Wang Y, Evers JB, Kromdijk J. Improving C4 photosynthesis to increase productivity under optimal and suboptimal conditions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5942-5960. [PMID: 34268575 PMCID: PMC8411859 DOI: 10.1093/jxb/erab327] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/09/2021] [Indexed: 05/05/2023]
Abstract
Although improving photosynthetic efficiency is widely recognized as an underutilized strategy to increase crop yields, research in this area is strongly biased towards species with C3 photosynthesis relative to C4 species. Here, we outline potential strategies for improving C4 photosynthesis to increase yields in crops by reviewing the major bottlenecks limiting the C4 NADP-malic enzyme pathway under optimal and suboptimal conditions. Recent experimental results demonstrate that steady-state C4 photosynthesis under non-stressed conditions can be enhanced by increasing Rubisco content or electron transport capacity, both of which may also stimulate CO2 assimilation at supraoptimal temperatures. Several additional putative bottlenecks for photosynthetic performance under drought, heat, or chilling stress or during photosynthetic induction await further experimental verification. Based on source-sink interactions in maize, sugarcane, and sorghum, alleviating these photosynthetic bottlenecks during establishment and growth of the harvestable parts are likely to improve yield. The expected benefits are also shown to be augmented by the increasing trend in planting density, which increases the impact of photosynthetic source limitation on crop yields.
Collapse
Affiliation(s)
- Cristina R G Sales
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Yu Wang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jochem B Evers
- Centre for Crops Systems Analysis (WUR), Wageningen University, Wageningen, The Netherlands
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
27
|
Donovan S, Mao Y, Orr DJ, Carmo-Silva E, McCormick AJ. CRISPR-Cas9-Mediated Mutagenesis of the Rubisco Small Subunit Family in Nicotiana tabacum. Front Genome Ed 2020; 2:605614. [PMID: 34713229 PMCID: PMC8525408 DOI: 10.3389/fgeed.2020.605614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022] Open
Abstract
Engineering the small subunit of the key CO2-fixing enzyme Rubisco (SSU, encoded by rbcS) in plants currently poses a significant challenge, as many plants have polyploid genomes and SSUs are encoded by large multigene families. Here, we used CRISPR-Cas9-mediated genome editing approach to simultaneously knock-out multiple rbcS homologs in the model tetraploid crop tobacco (Nicotiana tabacum cv. Petit Havana). The three rbcS homologs rbcS_S1a, rbcS_S1b and rbcS_T1 account for at least 80% of total rbcS expression in tobacco. In this study, two multiplexing guide RNAs (gRNAs) were designed to target homologous regions in these three genes. We generated tobacco mutant lines with indel mutations in all three genes, including one line with a 670 bp deletion in rbcS-T1. The Rubisco content of three selected mutant lines in the T1 generation was reduced by ca. 93% and mutant plants accumulated only 10% of the total biomass of wild-type plants. As a second goal, we developed a proof-of-principle approach to simultaneously introduce a non-native rbcS gene while generating the triple SSU knockout by co-transformation into a wild-type tobacco background. Our results show that CRISPR-Cas9 is a viable tool for the targeted mutagenesis of rbcS families in polyploid species and will contribute to efforts aimed at improving photosynthetic efficiency through expression of superior non-native Rubisco enzymes in plants.
Collapse
Affiliation(s)
- Sophie Donovan
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yuwei Mao
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Douglas J. Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | | | - Alistair J. McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|