1
|
Pramanik K, Goswami AK, Kumar C, Singh R, Prabha R, Jha SK, Thakre M, Goswami S, Aditya K, Maurya A, Chanda S, Mishra P, Sarkar S, Kashyap A. Development of genome-wide SSR markers through in silico mining of guava ( Psidium guajava L.) genome for genetic diversity analysis and transferability studies across species and genera. FRONTIERS IN PLANT SCIENCE 2025; 16:1527866. [PMID: 40353228 PMCID: PMC12062180 DOI: 10.3389/fpls.2025.1527866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/01/2025] [Indexed: 05/14/2025]
Abstract
Guava (Psidium guajava L.) is one of the economically major fruit crops, abundant in nutrients and found growing in tropical-subtropical regions around the world. Ensuring sufficient genomic resources is crucial for crop species to enhance breeding efficiency and facilitate molecular breeding. However, genomic resources, especially microsatellite or simple sequence repeat (SSR) markers, are limited in guava. Therefore, novel genome-wide SSR markers were developed by utilizing chromosome assembly (GCA_016432845.1) of the "New Age" cultivar through GMATA, a comprehensive software. The software evaluated about 397.8 million base pairs (Mbp) of the guava genome sequence, where 87,372 SSR loci were utilized to design primers, ultimately creating 75,084 new SSR markers. After in silico analysis, a total of 75 g-SSR markers were chosen to screen 35 guava genotypes, encompassing wild Psidium species and five jamun genotypes. Of the 72 amplified novel g-SSR markers (FHTGSSRs), 53 showed polymorphism, suggesting significant genetic variation among the guava genotypes, including wild species. The 53 polymorphic g-SSR markers had an average of 3.04 alleles per locus for 35 selected guava genotypes. Besides, in this study, the mean values recorded for major allele frequency, gene diversity, observed heterozygosity, and polymorphism information content were 0.73, 0.38, 0.13, and 0.33, respectively. Among the wild Psidium species studied, the transferability of these novel g-SSR loci across different species was found to be 45.83% to 90.28%. Furthermore, 17 novel g-SSR markers were successfully amplified in all the selected Syzygium genotypes, of which only four markers could differentiate between two Syzygium species. A neighbour-joining (N-J) tree was constructed using 53 polymorphic g-SSR markers and classified 35 guava genotypes into four clades and one outlier, emphasizing the genetic uniqueness of wild Psidium species compared to cultivated genotypes. Model-based structure analysis divided the guava genotypes into two distinct genetic groups, a classification that was strongly supported by Principal Coordinate Analysis (PCoA). In addition, the AMOVA and PCoA analyses also indicated substantial genetic diversity among the selected guava genotypes, including wild Psidium species. Hence, the developed novel genome-wide genomic SSRs could enhance the availability of genomic resources and assist in the molecular breeding of guava.
Collapse
Affiliation(s)
- Kritidipta Pramanik
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amit Kumar Goswami
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chavlesh Kumar
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ratna Prabha
- Agricultural Knowledge Management Unit, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shailendra Kumar Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Madhubala Thakre
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suneha Goswami
- Division of Biochemistry, ICAR- Indian Agricultural Research Institute, New Delhi, India
| | - Kaustav Aditya
- Division of Agricultural Statistics, ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Avantika Maurya
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sagnik Chanda
- Division of Molecular Biology and Biotechnology, ICAR- Indian Agricultural Research Institute, New Delhi, India
| | - Prabhanshu Mishra
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shilpa Sarkar
- Department of Horticulture, PGCA, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Ankita Kashyap
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
2
|
Zadokar A, Sharma P, Sharma R. Comprehensive insights on association mapping in perennial fruit crops breeding - Its implications, current status and future perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112281. [PMID: 39426735 DOI: 10.1016/j.plantsci.2024.112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
In order to provide food and nutritional security for the world's rapidly expanding population, fruit crop researchers have identified two critical priorities: increasing production and preserving fruit quality during the pre- and post-harvest periods. The genetic basis of these complex, commercially important fruit traits which are uniquely regulated by polygenes or multi-allelic genes that interact with one another and the environment can be analyzed with the aid of trait mapping tools. The most interesting trait mapping approach that offers the genetic level investigation for marker-trait associations (MTAs) for these complex fruit traits, without the development of mapping population, is association mapping. This approach was used during the genetic improvement program, emphasizing the obstacles (breeding strategies adopted, generation interval, and their genomic status) pertaining to perennial fruit crops. This method of studying population diversity and linkage disequilibrium in perennial fruit crops has been made possible by recent developments in genotyping, phenotyping, and statistical analysis. Thus, the purpose of this review is to provide an overview of different trait mapping techniques, with a focus on association mapping (method, essential components, viability, constraints, and future perspective) and its advantages, disadvantages, and possibilities for breeding perennial fruit crops.
Collapse
Affiliation(s)
- Ashwini Zadokar
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| | - Parul Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| | - Rajnish Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| |
Collapse
|
3
|
Zhang J, Zhang Y, Zou S, Yang E, Lei Z, Xu T, Feng C. Characterization of the aroma and flavor profiles of guava fruit ( Psidium guajava) during developing by HS-SPME-GC/MS and RNA sequencing. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100228. [PMID: 39582733 PMCID: PMC11583725 DOI: 10.1016/j.fochms.2024.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/20/2024] [Accepted: 11/03/2024] [Indexed: 11/26/2024]
Abstract
The flavor of guava, an important tropical fruit, is influenced by secondary metabolites. However, the mechanisms and processes underlying flavor formation in guava remain unclear. In this study, dynamic changes in volatile organic compounds (VOCs), sugars, and organic acids in guava peel and flesh across different developmental stages were investigated using headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). Here, we identified 90 VOCs, three sugars and eight organic acids. The dynamics of VOCs differ between the flesh and peel. The early developmental stages are more critical in influencing the variation of VOCs in the flesh, while VOC changes in peel occur more progressively across the developmental stages. By integrating transcriptomic and metabolomic analyses, we identified several key genes involved in VOC, sugar, and acid metabolism. This is the first study to describe the expression patterns of these genes throughout guava development, providing new insights into guava flavor development.
Collapse
Affiliation(s)
- Jie Zhang
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Yi Zhang
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Shuaiyu Zou
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Endian Yang
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Ziyi Lei
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Tingting Xu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Chen Feng
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| |
Collapse
|
4
|
Zhao L, Li Z, Jiang S, Xia C, Deng K, Liu B, Wang Z, Liu Q, He M, Zou M, Xia Z. The Telomere-to-Telomere Genome of Jaboticaba Reveals the Genetic Basis of Fruit Color and Citric Acid Content. Int J Mol Sci 2024; 25:11951. [PMID: 39596019 PMCID: PMC11593881 DOI: 10.3390/ijms252211951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Jaboticaba is a typical tropical plant that blossoms and bears fruit on the tree trunks and branches. The fruits resemble grapes in appearance and texture and are also known as "treegrapes". Currently, research on the genomics of jaboticaba is lacking. In this study, we constructed an integrated, telomere-to-telomere (T2T) gap-free reference genome and two nearly complete haploid genomes, thereby providing a high-quality genomic resource. Furthermore, we unveiled the evolutionary history of several species within the Myrtaceae family, highlighting significant expansions in metabolic pathways such as the citric acid cycle, glycolysis/gluconeogenesis, and phenylpropanoid biosynthesis throughout their evolutionary process. Transcriptome analysis of jaboticaba fruits of different colors revealed that the development of fruit skin color in jaboticaba is associated with the phenylpropanoid and flavonoid biosynthesis pathways, with the flavanone 3-hydroxylase (F3H) gene potentially regulating fruit skin color. Additionally, by constructing the regulatory pathway of the citric acid cycle, we found that low citric acid content is correlated with high expression levels of genes such as thiamin diphosphate (ThDP) and low expression of phosphoenolpyruvate carboxykinase (PEPCK), indicating that PEPCK positively regulates citric acid content. These T2T genomic resources will accelerate jaboticaba pepper genetic improvement and help to understand jaboticaba genome evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Meiling Zou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (L.Z.); (Z.L.); (S.J.); (C.X.); (K.D.); (B.L.); (Z.W.); (Q.L.); (M.H.)
| | - Zhiqiang Xia
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (L.Z.); (Z.L.); (S.J.); (C.X.); (K.D.); (B.L.); (Z.W.); (Q.L.); (M.H.)
| |
Collapse
|
5
|
Roy A, Chaurasia H, Kumar B, Kumari N, Jaiswal S, Srivastava M, Iquebal MA, Angadi UB, Kumar D. FEAtl: a comprehensive web-based expression atlas for functional genomics in tropical and subtropical fruit crops. BMC PLANT BIOLOGY 2024; 24:890. [PMID: 39343895 PMCID: PMC11440752 DOI: 10.1186/s12870-024-05595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Fruit crops, including tropical and subtropical fruits like Avocado (Persea americana), Fig (Ficus carica), Date Palm (Phoenix dactylifera), Mango (Mangifera indica), Guava (Psidium guajava), Papaya (Carica papaya), Pineapple (Ananas comosus), and Banana (Musa acuminata) are economically vital, contributing significantly to global agricultural output, as classified by the FAO's World Programme for the Census of Agriculture. Advancements in next-generation sequencing, have transformed fruit crop breeding by providing in-depth genomic and transcriptomic data. RNA sequencing enables high-throughput analysis of gene expression, and functional genomics, crucial for addressing horticultural challenges and enhancing fruit production. The genomic and expression data for key tropical and sub-tropical fruit crops is currently lacking a comprehensive expression atlas, revealing a significant gap in resources for horticulturists who require a unified platform with diverse datasets across various conditions and cultivars. RESULTS The Fruit Expression Atlas (FEAtl), available at http://backlin.cabgrid.res.in/FEAtl/ , is a first-ever extensive and unified expression atlas for tropical and subtropical fruit crops developed using 3-tier architecture. The expressivity of coding and non-coding genes, encompassing 2,060 RNA-Seq samples across 91 tissue types and 177 BioProjects, it provides a comprehensive view of gene expression patterns for different tissues under various conditions. FEAtl features multiple tabs that cater to different aspects of the dataset, namely, Home, About, Analyze, Statistics, and Team and contains seven central functional modules: Transcript Information,Sample Information, Expression Profiles in FPKM and TPM, Functional Analysis, Genes Based on Tau Score, and Search for Specific Gene. The expression of a transcript of interest can be easily queried by searching by tissue ID and transcript type. Expression data can be displayed as a heat map, along with functional descriptions as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. CONCLUSIONS This atlas represents a groundbreaking compilation of a wide array of information pertaining to eight distinct fruit crops and serves as a fundamental resource for comparative analysis among different fruit species and is a catalyst for functional genomic studies. Database availability: http://backlin.cabgrid.res.in/FEAtl/ .
Collapse
Affiliation(s)
- Anupama Roy
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Himanshushekhar Chaurasia
- Mechanical Processing Division (MPD), ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, 400019, India
| | - Baibhav Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Naina Kumari
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Manish Srivastava
- Division of Fruits and Horticultural Technology (FHT), ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mir Asif Iquebal
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Ulavappa B Angadi
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Dinesh Kumar
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
6
|
Oberti H, Gutierrez-Gonzalez J, Pritsch C. A first de novo transcriptome assembly of feijoa (Acca sellowiana [Berg] Burret) reveals key genes involved in flavonoid biosynthesis. THE PLANT GENOME 2024; 17:e20501. [PMID: 39162148 DOI: 10.1002/tpg2.20501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 07/06/2024] [Indexed: 08/21/2024]
Abstract
Acca sellowiana [Berg] Burret, a cultivated fruit tree originating from South America, is gaining the attention of the nutraceutical and pharmaceutical industries due to their high content of flavonoids and other phenolic compounds in fruits, leaves, and flowers. Flavonoids are a diverse group of secondary metabolites with antioxidant, anti-inflammatory, and antimicrobial properties. They also play a crucial role in plant immune response. Despite their importance, the lack of research on A. sellowiana genomics and transcriptomics hinders a deeper understanding of the molecular mechanisms behind flavonoid biosynthesis and its regulation. Here, we de novo assembled and benchmarked 11 A. sellowiana transcriptomes from leaves and floral tissues at three developmental stages using high-throughput sequencing. We selected and annotated the best assembly according to commonly used metrics and databases. This reference transcriptome consisted of 221,649 nonredundant transcripts, of which 107,612 were functionally annotated. We then used this reference transcriptome to explore the expression profiling of key secondary metabolite genes. Transcripts from genes involved in the flavonoid and anthocyanin biosynthesis pathways were identified. We also identified 4068 putative transcription factors, with the most abundant families being bHLH, C2H2, NAC, MYB, and MYB-related. Transcript expression profiling revealed distinct patterns of gene expression during flower development. Particularly, we found 71 differentially expressed transcripts representing 14 enzymes of the flavonoid pathway, suggesting major changes in flavonoid accumulation across floral stages. Our findings will contribute to understanding the genetic basis of flavonoids and provide a foundation for further research and exploitation of the economic potential of this species.
Collapse
Affiliation(s)
- Hector Oberti
- Laboratorio de Biotecnología, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | | | - Clara Pritsch
- Laboratorio de Biotecnología, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
7
|
Qin J, Hou X, Wang H, Yuan T, Wei H, Liu G, Chen Y, Lian B, Zhong F, Zhang J, Yu C. Comparative genomic analysis reveals expansion of the DnaJ gene family in Lagerstroemia indica and its members response to salt stress. Genetica 2024; 152:101-117. [PMID: 38724749 DOI: 10.1007/s10709-024-00208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/18/2024] [Indexed: 06/26/2024]
Abstract
DnaJs/Hsp40s/JPDs are obligate co-chaperones of heat shock proteins (Hsp70), performing crucial biological functions within organisms. A comparative genome analysis of four genomes (Vitis vinifera, Eucalyptus grandis, Lagerstroemia indica, and Punica granatum) revealed that the DnaJ gene family in L. indica has undergone expansion, although not to the extent observed in P. granatum. Inter-genome collinearity analysis of four plants indicates that members belonging to Class A and B are more conserved during evolution. In L. indica, the expanded members primarily belong to Class-C. Tissue expression patterns and the biochemical characterization of LiDnaJs further suggested that DnaJs may be involved in numerous biological processes in L. indica. Transcriptome and qPCR analyses of salt stressed leaves identified at least ten LiDnaJs that responded to salt stress. In summary, we have elucidated the expansion mechanism of the LiDnaJs, which is attributed to a recent whole-genome triplication. This research laid the foundation for functional analysis of LiDnaJs and provides gene resources for breeding salt-tolerant varieties of L. indica.
Collapse
Affiliation(s)
- Jin Qin
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xiaoyu Hou
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Huanzhe Wang
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Tianyi Yuan
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Hui Wei
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Guoyuan Liu
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Bolin Lian
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Fei Zhong
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China.
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China.
| | - Chunmei Yu
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China.
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, NO.9 Seyuan Road, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
8
|
Pires GP, Fioresi VS, Canal D, Canal DC, Fernandes M, Brustolini OJB, de Avelar Carpinetti P, Ferreira A, da Silva Ferreira MF. Effects of trimer repeats on Psidium guajava L. gene expression and prospection of functional microsatellite markers. Sci Rep 2024; 14:9811. [PMID: 38684872 PMCID: PMC11059378 DOI: 10.1038/s41598-024-60417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Most research on trinucleotide repeats (TRs) focuses on human diseases, with few on the impact of TR expansions on plant gene expression. This work investigates TRs' effect on global gene expression in Psidium guajava L., a plant species with widespread distribution and significant relevance in the food, pharmacology, and economics sectors. We analyzed TR-containing coding sequences in 1,107 transcripts from 2,256 genes across root, shoot, young leaf, old leaf, and flower bud tissues of the Brazilian guava cultivars Cortibel RM and Paluma. Structural analysis revealed TR sequences with small repeat numbers (5-9) starting with cytosine or guanine or containing these bases. Functional annotation indicated TR-containing genes' involvement in cellular structures and processes (especially cell membranes and signal recognition), stress response, and resistance. Gene expression analysis showed significant variation, with a subset of highly expressed genes in both cultivars. Differential expression highlighted numerous down-regulated genes in Cortibel RM tissues, but not in Paluma, suggesting interplay between tissues and cultivars. Among 72 differentially expressed genes with TRs, 24 form miRNAs, 13 encode transcription factors, and 11 are associated with transposable elements. In addition, a set of 20 SSR-annotated, transcribed, and differentially expressed genes with TRs was selected as phenotypic markers for Psidium guajava and, potentially for closely related species as well.
Collapse
Affiliation(s)
- Giovanna Pinto Pires
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Vinicius Sartori Fioresi
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Drielli Canal
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Dener Cezati Canal
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Miquéias Fernandes
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Otávio José Bernardes Brustolini
- Laboratório Nacional de Computação Científica (LNCC). Av. Getulio Vargas, 333, Petrópolis, Rio de Janeiro, Quitandinha, 25651-076, Brazil
| | - Paola de Avelar Carpinetti
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Adésio Ferreira
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Marcia Flores da Silva Ferreira
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil.
| |
Collapse
|
9
|
Chen N, Wei W, Yang Y, Chen L, Shan W, Chen J, Lu W, Kuang J, Wu C. Postharvest Physiology and Handling of Guava Fruit. Foods 2024; 13:805. [PMID: 38472918 DOI: 10.3390/foods13050805] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Guavas are typical tropical fruit with high nutritional and commercial value. Because of their thin skin and high metabolic rate, guavas are highly susceptible to water loss, physical damage, and spoilage, severely limiting their shelf-life. Guavas can typically only be stored for approximately one week at room temperature, making transportation, storage, and handling difficult, resulting in low profit margins in the industry. This review focuses on the physiological and biochemical changes and their molecular mechanisms which occur in postharvest guavas, and summarizes the various management strategies for extending the shelf-life of these sensitive fruits by means of physical and chemical preservation and their combinations. This review also suggests future directions and reference ideas for the development of safe and efficient shelf-life extension techniques.
Collapse
Affiliation(s)
- Nanhui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Lin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chaojie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Yu C, Liu G, Qin J, Wan X, Guo A, Wei H, Chen Y, Lian B, Zhong F, Zhang J. Genomic and transcriptomic studies on flavonoid biosynthesis in Lagerstroemia indica. BMC PLANT BIOLOGY 2024; 24:171. [PMID: 38443839 PMCID: PMC10913235 DOI: 10.1186/s12870-024-04776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Lagerstroemia indica is a widely cultivated ornamental woody shrub/tree of the family Lythraceae that is used as a traditional medicinal plant in East Asia and Egypt. However, unlike other ornamental woody plants, its genome is not well-investigated, which hindered the discovery of the key genes that regulate important traits and the synthesis of bioactive compounds. RESULTS In this study, the genomic sequences of L. indica were determined using several next-generation sequencing technologies. Altogether, 324.01 Mb sequences were assembled and 98.21% (318.21 Mb) of them were placed in 24 pseudo-chromosomes. The heterozygosity, repeated sequences, and GC residues occupied 1.65%, 29.17%, and 38.64% of the genome, respectively. In addition, 28,811 protein-coding gene models, 327 miRNAs, 552 tRNAs, 214 rRNAs, and 607 snRNAs were identified. The intra- and interspecies synteny and Ks analysis revealed that L. indica exhibits a hexaploidy. The co-expression profiles of the genes involved in the phenylpropanoid (PA) and flavonoid/anthocyanin (ABGs) pathways with the R2R3 MYB genes (137 members) showed that ten R2R3 MYB genes positively regulate flavonoid/anthocyanin biosynthesis. The colors of flowers with white, purple (PB), and deep purplish pink (DPB) petals were found to be determined by the levels of delphinidin-based (Dp) derivatives. However, the substrate specificities of LiDFR and LiOMT probably resulted in the different compositions of flavonoid/anthocyanin. In L. indica, two LiTTG1s (LiTTG1-1 and LiTTG1-2) were found to be the homologs of AtTTG1 (WD40). LiTTG1-1 was found to repress anthocyanin biosynthesis using the tobacco transient transfection assay. CONCLUSIONS This study showed that the ancestor L. indica experienced genome triplication approximately 38.5 million years ago and that LiTTG1-1 represses anthocyanin biosynthesis. Furthermore, several genes such as LiDFR, LiOMTs, and R2R3 LiMYBs are related to anthocyanin biosynthesis. Further studies are required to clarify the mechanisms and alleles responsible for flower color development.
Collapse
Affiliation(s)
- Chunmei Yu
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Guoyuan Liu
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Jin Qin
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Xi Wan
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Anfang Guo
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Hui Wei
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Yanhong Chen
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Bolin Lian
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Fei Zhong
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Jian Zhang
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China.
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China.
| |
Collapse
|
11
|
Mathiazhagan M, Elangovan D, Chinnaiyan V, Shivashankara KS, Sudhakar Rao DV, Ravishankar KV. A high-density linkage map construction in guava ( Psidium guajava L.) using genotyping by sequencing and identification of QTLs for leaf, peel, and pulp color in an intervarietal mapping population. FRONTIERS IN PLANT SCIENCE 2024; 15:1335715. [PMID: 38476683 PMCID: PMC10927721 DOI: 10.3389/fpls.2024.1335715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
Psidium guajava L. is an important fruit crop in the tropical and subtropical regions of the world. The advanced breeding methods are not employed for important commercial traits like peel and pulp color, seed hardiness, fruit size, etc., due to the scarcity of genome-wide molecular markers and high-density linkage maps. In this study, we employed single-nucleotide polymorphism (SNP) markers and identified quantitative trait loci (QTL) regions that are associated with color traits of leaf, peel, and pulp in the guava intervarietal mapping population. The mapping population was developed from the contrasting genotypes of fruit and leaf color. Variations in color among the segregating hybrids were recorded both visually and using a Color reader. A high-density linkage map of guava was constructed using the SNP markers from genotyping by sequencing (GBS) of 150 hybrid individuals of the cross 'Arka Poorna' (green) x 'Purple Local' (purple). The integrated linkage map consisted of 1426 SNPs mapped on 11 linkage groups (LG), spanning a total distance of around 730 cM with an average of 129.6 markers per LG. Through QTL analysis for color traits, a minor QTL region was identified for visually scored leaf color and peel color on LG1, whereas a major QTL was detected for pulp color in LG4. The Hunter color values (L* and, a*) also had major QTLs with overlapping marker intervals for leaf and peel colors, establishing the association of SNP markers to the trait. The QTLs harbored genes and transcription factors involved in lycopene and anthocyanin pigment biosynthesis. This is the first report of a high-density linkage map based on SNP markers in guava and QTL mapping for color characters in leaf, fruit peel and pulp. The genotyping information generated in this study can aid in genetic engineering and marker-assisted breeding in guava.
Collapse
Affiliation(s)
- Malarvizhi Mathiazhagan
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
- Centre for Post-graduate Studies, Jain (Deemed-to-be) University, Bengaluru, India
| | - Dayanandhi Elangovan
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | - Vasugi Chinnaiyan
- Division of Fruit Crops, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | | | - Darisi Venkata Sudhakar Rao
- Division of Post Harvest Technology and Agricultural Engineering, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | | |
Collapse
|
12
|
Wu P, Li B, Liu Y, Bian Z, Xiong J, Wang Y, Zhu B. Multiple Physiological and Biochemical Functions of Ascorbic Acid in Plant Growth, Development, and Abiotic Stress Response. Int J Mol Sci 2024; 25:1832. [PMID: 38339111 PMCID: PMC10855474 DOI: 10.3390/ijms25031832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Ascorbic acid (AsA) is an important nutrient for human health and disease cures, and it is also a crucial indicator for the quality of fruit and vegetables. As a reductant, AsA plays a pivotal role in maintaining the intracellular redox balance throughout all the stages of plant growth and development, fruit ripening, and abiotic stress responses. In recent years, the de novo synthesis and regulation at the transcriptional level and post-transcriptional level of AsA in plants have been studied relatively thoroughly. However, a comprehensive and systematic summary about AsA-involved biochemical pathways, as well as AsA's physiological functions in plants, is still lacking. In this review, we summarize and discuss the multiple physiological and biochemical functions of AsA in plants, including its involvement as a cofactor, substrate, antioxidant, and pro-oxidant. This review will help to facilitate a better understanding of the multiple functions of AsA in plant cells, as well as provide information on how to utilize AsA more efficiently by using modern molecular biology methods.
Collapse
Affiliation(s)
- Peiwen Wu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Bowen Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Ye Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Zheng Bian
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Jiaxin Xiong
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Yunxiang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Benzhong Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| |
Collapse
|
13
|
Gull S, Ali MM, Ejaz S, Ali S, Rasheed M, Yousef AF, Stępień P, Chen F. Comprehensive genomic exploration of class III peroxidase genes in guava unravels physiology, evolution, and postharvest storage responses. Sci Rep 2024; 14:1446. [PMID: 38228714 PMCID: PMC10791677 DOI: 10.1038/s41598-024-51961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
Peroxidases (PRXs) play multifaceted roles in plant growth, development, and stress responses. Here, we present a comprehensive analysis of the PRX gene family in guava, a globally significant fruit. In the guava genome, we identified 37 PRX genes, a number lower than that of Arabidopsis, suggesting a distinctive gene family expansion pattern. Phylogenetic analysis unveiled close relationships with Arabidopsis PRXs, with 12 PgPRX genes forming ortholog pairs, indicating a specific expansion pattern. Predictions placed most PRX proteins in the chloroplast and extracellular regions. Structural analysis of PgPRX proteins revealed commonalities in domain structures and motif organization. Synteny analysis underscored the dynamic role of segmental duplication in the evolution of guava's PRX genes. We explored the dynamic expression of PgPRX genes across guava tissues, exposing functional diversity. Furthermore, we examined changes in peroxidase levels and gene expressions during postharvest fruit storage, providing insights for preserving fruit quality. This study offers an initial genome-wide identification and characterization of Class III peroxidases in guava, laying the foundation for future functional analyses.
Collapse
Affiliation(s)
- Shaista Gull
- Department of Horticulture, Bahauddin Zakariya University, MultanPunjab, 66000, Pakistan
| | - Muhammad Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaghef Ejaz
- Department of Horticulture, Bahauddin Zakariya University, MultanPunjab, 66000, Pakistan.
| | - Sajid Ali
- Department of Horticulture, Bahauddin Zakariya University, MultanPunjab, 66000, Pakistan
| | - Majeeda Rasheed
- Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Ahmed Fathy Yousef
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Branch Assiut), Assiut, 71524, Egypt
| | - Piotr Stępień
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wrocław University of Environmental and Life Sciences, Ul. Grunwaldzka 53, 50-357, Wrocław, Poland.
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
14
|
Xia F, Li B, Song K, Wang Y, Hou Z, Li H, Zhang X, Li F, Yang L. Polyploid Genome Assembly Provides Insights into Morphological Development and Ascorbic Acid Accumulation of Sauropus androgynus. Int J Mol Sci 2023; 25:300. [PMID: 38203470 PMCID: PMC10778994 DOI: 10.3390/ijms25010300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Sauropus androgynus (S. androgynus) (2n = 4x = 52) is one of the most popular functional leafy vegetables in South and Southeast Asia. With its rich nutritional and pharmaceutical values, it has traditionally had widespread use for dietary and herbal purposes. Here, the genome of S. androgynus was sequenced and assembled, revealing a genome size of 1.55 Gb with 26 pseudo-chromosomes. Phylogenetic analysis traced back the divergence of Sauropus from Phyllanthus to approximately 29.67 million years ago (Mya). Genome analysis revealed that S. androgynus polyploidized around 20.51 Mya and shared a γ event about 132.95 Mya. Gene function analysis suggested that the expansion of pathways related to phloem development, lignin biosynthesis, and photosynthesis tended to result in the morphological differences among species within the Phyllanthaceae family, characterized by varying ploidy levels. The high accumulation of ascorbic acid in S. androgynus was attributed to the high expression of genes associated with the L-galactose pathway and recycling pathway. Moreover, the expanded gene families of S. androgynus exhibited multiple biochemical pathways associated with its comprehensive pharmacological activity, geographic adaptation and distinctive pleasurable flavor. Altogether, our findings represent a crucial genomic asset for S. androgynus, casting light on the intricate ploidy within the Phyllanthaceae family.
Collapse
Affiliation(s)
- Fagang Xia
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.X.); (Y.W.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Li
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Kangkang Song
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Yankun Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.X.); (Y.W.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuangwei Hou
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Haozhen Li
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Xiaohua Zhang
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Fangping Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Long Yang
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| |
Collapse
|
15
|
Wei X, Chen M, Zhang X, Wang Y, Li L, Xu L, Wang H, Jiang M, Wang C, Zeng L, Xu J. The haplotype-resolved autotetraploid genome assembly provides insights into the genomic evolution and fruit divergence in wax apple ( Syzygium samarangense (Blume) Merr. and Perry). HORTICULTURE RESEARCH 2023; 10:uhad214. [PMID: 38077494 PMCID: PMC10709546 DOI: 10.1093/hr/uhad214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/16/2023] [Indexed: 01/19/2025]
Abstract
Wax apple (Syzygium samarangense) is an economically important fruit crop with great potential value to human health because of its richness in antioxidant substances. Here, we present a haplotype-resolved autotetraploid genome assembly of the wax apple with a size of 1.59 Gb. Comparative genomic analysis revealed three rounds of whole-genome duplication (WGD) events, including two independent WGDs after WGT-γ. Resequencing analysis of 35 accessions partitioned these individuals into two distinct groups, including 28 landraces and seven cultivated species, and several genes subject to selective sweeps possibly contributed to fruit growth, including the KRP1-like, IAA17-like, GME-like, and FLACCA-like genes. Transcriptome analysis of three different varieties during flower and fruit development identified key genes related to fruit size, sugar content, and male sterility. We found that AP2 also affected fruit size by regulating sepal development in wax apples. The expression of sugar transport-related genes (SWEETs and SUTs) was high in 'ZY', likely contributing to its high sugar content. Male sterility in 'Tub' was associated with tapetal abnormalities due to the decreased expression of DYT1, TDF1, and AMS, which affected early tapetum development. The chromosome-scale genome and large-scale transcriptome data presented in this study offer new valuable resources for biological research on S. samarangense and shed new light on fruit size control, sugar metabolism, and male sterility regulatory metabolism in wax apple.
Collapse
Affiliation(s)
- Xiuqing Wei
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Min Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xijuan Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| | - Yinghao Wang
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Liang Li
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| | - Ling Xu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| | - Huanhuan Wang
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Mengwei Jiang
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Caihui Wang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| | - Lihui Zeng
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jiahui Xu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
| |
Collapse
|
16
|
Ouadi S, Sierro N, Kessler F, Ivanov NV. Chromosome-scale assemblies of S. malaccense, S. aqueum, S. jambos, and S. syzygioides provide insights into the evolution of Syzygium genomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1248780. [PMID: 37868305 PMCID: PMC10587690 DOI: 10.3389/fpls.2023.1248780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/28/2023] [Indexed: 10/24/2023]
Abstract
Syzygium is a large and diverse tree genus in the Myrtaceae family. Genome assemblies for clove (Syzygium aromaticum, 370 Mb) and sea apple (Syzygium grande, 405 Mb) provided the first insights into the genomic features and evolution of the Syzygium genus. Here, we present additional de novo chromosome-scale genome assemblies for Syzygium malaccense, Syzygium aqueum, Syzygium jambos, and Syzygium syzygioides. Genome profiling analyses show that S. malaccense, like S. aromaticum and S. grande, is diploid (2n = 2x = 22), while the S. aqueum, S. jambos, and S. syzygioides specimens are autotetraploid (2n = 4x = 44). The genome assemblies of S. malaccense (430 Mb), S. aqueum (392 Mb), S. jambos (426 Mb), and S. syzygioides (431 Mb) are highly complete (BUSCO scores of 98%). Comparative genomics analyses showed conserved organization of the 11 chromosomes with S. aromaticum and S. grande, and revealed species-specific evolutionary dynamics of the long terminal repeat retrotransposon elements belonging to the Gypsy and Copia lineages. This set of Syzygium genomes is a valuable resource for future structural and functional comparative genomic studies on Myrtaceae species.
Collapse
Affiliation(s)
- Sonia Ouadi
- Faculty of Sciences, Laboratory of Plant Physiology, University of Neuchâtel, Neuchâtel, Switzerland
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Felix Kessler
- Faculty of Sciences, Laboratory of Plant Physiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Faculty of Sciences, Laboratory of Plant Physiology, University of Neuchâtel, Neuchâtel, Switzerland
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| |
Collapse
|
17
|
Mahajan S, Bisht MS, Chakraborty A, Sharma VK. Genome of Phyllanthus emblica: the medicinal plant Amla with super antioxidant properties. FRONTIERS IN PLANT SCIENCE 2023; 14:1210078. [PMID: 37727852 PMCID: PMC10505619 DOI: 10.3389/fpls.2023.1210078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023]
Abstract
Phyllanthus emblica or Indian gooseberry, commonly known as amla, is an important medicinal horticultural plant used in traditional and modern medicines. It bears stone fruits with immense antioxidant properties due to being one of the richest natural sources of vitamin C and numerous flavonoids. This study presents the first genome sequencing of this species performed using 10x Genomics and Oxford Nanopore Technology. The draft genome assembly was 519 Mbp in size and consisted of 4,384 contigs, N50 of 597 Kbp, 98.4% BUSCO score, and 37,858 coding sequences. This study also reports the genome-wide phylogeny of this species with 26 other plant species that resolved the phylogenetic position of P. emblica. The presence of three ascorbate biosynthesis pathways including L-galactose, galacturonate, and myo-inositol pathways was confirmed in this genome. A comprehensive comparative evolutionary genomic analysis including gene family expansion/contraction and identification of multiple signatures of adaptive evolution provided evolutionary insights into ascorbate and flavonoid biosynthesis pathways and stone fruit formation through lignin biosynthesis. The availability of this genome will be beneficial for its horticultural, medicinal, dietary, and cosmetic applications and will also help in comparative genomics analysis studies.
Collapse
Affiliation(s)
| | | | | | - Vineet K. Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
18
|
Shen C, Li L, Ouyang L, Su M, Guo K. E. urophylla × E. grandis high-quality genome and comparative genomics provide insights on evolution and diversification of eucalyptus. BMC Genomics 2023; 24:223. [PMID: 37118687 PMCID: PMC10148406 DOI: 10.1186/s12864-023-09318-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Eucalyptus urophylla × Eucalyptus grandis, an economically important forest tree, provides important raw material for energy and reduces damage to native forests. However, the absence of a high-quality E. urophylla × E. grandis reference genome has significantly hindered its evolution and genetic analysis. RESULTS We successfully presented a high-quality reference genome of E. urophylla × E. grandis (545.75 Mb; scaffold N50, 51.62 Mb) using a combination of the Illumina, PacBio HiFi, and Hi-C sequencing platforms. A total of 34,502 genes and 58.56% of the repetitive sequences in this genome were annotated. Using genome evolution analyses, we identified a recent whole-genome duplication (WGD) event in E. urophylla × E. grandis. We further found that gene families associated with starch and sucrose metabolism, flavonoid biosynthesis, and plant-pathogen interaction were significantly expanded in E. urophylla × E. grandis. Moreover, comparative genomic and evolutionary analyses showed large structural variations among the different chromosomes of the 34 Eucalyptus accessions, which were divided into six clades. CONCLUSIONS Overall, our findings provide a valuable resource for expanding our understanding of the E. urophylla × E. grandis genome evolution, genetic improvement, and its comparative biology.
Collapse
Affiliation(s)
- Chao Shen
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Limei Li
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Lejun Ouyang
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China.
| | - Min Su
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Kexin Guo
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| |
Collapse
|
19
|
Detcharoen M, Bumrungsri S, Voravuthikunchai SP. Complete Genome of Rose Myrtle, Rhodomyrtus tomentosa, and Its Population Genetics in Thai Peninsula. PLANTS (BASEL, SWITZERLAND) 2023; 12:1582. [PMID: 37111806 PMCID: PMC10144328 DOI: 10.3390/plants12081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Several parts of rose myrtle, Rhodomyrtus tomentosa, exhibited profound antibacterial and anti-inflammatory activities, suggesting its potential in healthcare and cosmetics applications. During the past few years, the demand for biologically active compounds in the industrial sectors increased. Therefore, gathering comprehensive information on all aspects of this plant species is essential. Here, the genome sequencing using short and long reads was used to understand the genome biology of R. tomentosa. Inter-simple sequence repeats (ISSR) and simple sequence repeats (SSR) markers, and geometric morphometrics of the leaves of R. tomentosa collected across Thai Peninsula, were determined for population differentiation analysis. The genome size of R. tomentosa was 442 Mb, and the divergence time between R. tomentosa and Rhodamnia argentea, the white myrtle of eastern Australia, was around 15 million years. No population structure was observed between R. tomentosa on the eastern and western sides of the Thai Peninsula using the ISSR and SSR markers. However, significant differences in leaf size and shape of R. tomentosa were observed in all locations.
Collapse
Affiliation(s)
- Matsapume Detcharoen
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Sara Bumrungsri
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| |
Collapse
|
20
|
Li F, Xu S, Xiao Z, Wang J, Mei Y, Hu H, Li J, Liu J, Hou Z, Zhao J, Yang S, Wang J. Gap-free genome assembly and comparative analysis reveal the evolution and anthocyanin accumulation mechanism of Rhodomyrtus tomentosa. HORTICULTURE RESEARCH 2023; 10:uhad005. [PMID: 36938565 PMCID: PMC10022486 DOI: 10.1093/hr/uhad005] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/08/2021] [Indexed: 06/18/2023]
Abstract
Rhodomyrtus tomentosa is an important fleshy-fruited tree and a well-known medicinal plant of the Myrtaceae family that is widely cultivated in tropical and subtropical areas of the world. However, studies on the evolution and genomic breeding of R. tomentosa were hindered by the lack of a reference genome. Here, we presented a chromosome-level gap-free T2T genome assembly of R. tomentosa using PacBio and ONT long read sequencing. We assembled the genome with size of 470.35 Mb and contig N50 of ~43.80 Mb with 11 pseudochromosomes. A total of 33 382 genes and 239.31 Mb of repetitive sequences were annotated in this genome. Phylogenetic analysis elucidated the independent evolution of R. tomentosa starting from 14.37MYA and shared a recent WGD event with other Myrtaceae species. We identified four major compounds of anthocyanins and their synthetic pathways in R. tomentosa. Comparative genomic and gene expression analysis suggested the coloring and high anthocyanin accumulation in R. tomentosa tends to be determined by the activation of anthocyanin synthesis pathway. The positive selection and up-regulation of MYB transcription factors were the implicit factors in this process. The copy number increase of downstream anthocyanin transport-related OMT and GST gene were also detected in R. tomentosa. Expression analysis and pathway identification enriched the importance of starch degradation, response to stimuli, effect of hormones, and cell wall metabolism during the fleshy fruit development in Myrtaceae. Our genome assembly provided a foundation for investigating the origins and differentiation of Myrtaceae species and accelerated the genetic improvement of R. tomentosa.
Collapse
Affiliation(s)
| | | | | | - Jingming Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yu Mei
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou 510640, China
| | - Haifei Hu
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jingyu Li
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou 510640, China
| | - Jieying Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Zhuangwei Hou
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Junliang Zhao
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shaohai Yang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou 510640, China
| | | |
Collapse
|
21
|
Silva MA, Soares FAF, Clarindo WR, Mendes LA, Alves LB, Ferreira A, da Silva Ferreira MF. Genomic and epigenomic variation in Psidium species and their outcome under the yield and composition of essential oils. Sci Rep 2023; 13:1385. [PMID: 36697447 PMCID: PMC9876884 DOI: 10.1038/s41598-023-27912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Diploid and polyploid species derived from the euploid series x = 11 occur in the genus Psidium, as well as intraspecific cytotypes. Euploidy in the genus can alter the gene copy number, resulting in several "omics" variations. We revisited the euploidy, reported genomic (nuclear 2C value, GC%, and copy number of secondary metabolism genes) and epigenomic (5-mC%) differences in Psidium, and related them to essential oil yield and composition. Mean 2C values ranged from 0.90 pg (P. guajava) to 7.40 pg (P. gaudichaudianum). 2C value is intraspecifically varied in P. cattleyanum and P. gaudichaudianum, evidencing cytotypes that can be formed from euploid (non-reduced) and/or aneuploid reproductive cells. GC% ranged from 34.33% (P. guineense) to 48.95% (P. myrtoides), and intraspecific variations occurred even for species without 2C value intraspecific variation. Essential oil yield increased in relation to 2C value and to GC%. We showed that P. guajava (diploid) possesses two and P. guineense (tetraploid) four copies of the one specific TPS gene, as well as eight and sixteen copies respectively of the conserved regions that occur in eight TPS genes. We provide a wide "omics'' characterization of Psidium and show the outcome of the genome and epigenome variation in secondary metabolism.
Collapse
Affiliation(s)
- Matheus Alves Silva
- Departamento de Agronomia, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Fernanda Aparecida Ferrari Soares
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Wellington Ronildo Clarindo
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Luiza Alves Mendes
- Departamento de Química, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Luziane Brandão Alves
- Departamento de Agronomia, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Adésio Ferreira
- Departamento de Agronomia, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil
| | - Marcia Flores da Silva Ferreira
- Departamento de Agronomia, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, 29500-000, Brazil.
| |
Collapse
|
22
|
Yan Y, Liu Y, Lu M, Lu C, Ludlow RA, Yang M, Huang W, Liu Z, An H. Gene expression profiling in Rosa roxburghii fruit and overexpressing RrGGP2 in tobacco and tomato indicates the key control point of AsA biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 13:1096493. [PMID: 36704162 PMCID: PMC9871823 DOI: 10.3389/fpls.2022.1096493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Rosa roxburghii Tratt. is an important commercial horticultural crop endemic to China, which is recognized for its extremely high content of L-ascorbic acid (AsA). To understand the mechanisms underlying AsA overproduction in fruit of R. roxburghii, content levels, accumulation rate, and the expression of genes putatively in the biosynthesis of AsA during fruit development have been characterized. The content of AsA increased with fruit weight during development, and AsA accumulation rate was found to be highest between 60 and 90 days after anthesis (DAA), with approximately 60% of the total amount being accumulated during this period. In vitro incubating analysis of 70DAA fruit flesh tissues confirmed that AsA was synthesized mainly via the L-galactose pathway although L-Gulono-1, 4-lactone was also an effective precursor elevating AsA biosynthesis. Furthermore, in transcript level, AsA content was significantly associated with GDP-L-galactose phosphorylase (RrGGP2) gene expression. Virus-induced RrGGP2 silencing reduced the AsA content in R. roxburghii fruit by 28.9%. Overexpressing RrGGP2 increased AsA content by 8-12-fold in tobacco leaves and 2.33-3.11-fold in tomato fruit, respectively, and it showed enhanced resistance to oxidative stress caused by paraquat in transformed tobacco. These results further justified the importance of RrGGP2 as a major control step to AsA biosynthesis in R. roxburghii fruit.
Collapse
Affiliation(s)
- Yali Yan
- Engineering Research Center of National Forestry and Grassland Administration for Rosa roxburghii, Agricultural College, Guizhou University, Guiyang, China
| | - Yiyi Liu
- Engineering Research Center of National Forestry and Grassland Administration for Rosa roxburghii, Agricultural College, Guizhou University, Guiyang, China
| | - Min Lu
- Engineering Research Center of National Forestry and Grassland Administration for Rosa roxburghii, Agricultural College, Guizhou University, Guiyang, China
| | - Chen Lu
- Engineering Research Center of National Forestry and Grassland Administration for Rosa roxburghii, Agricultural College, Guizhou University, Guiyang, China
| | | | - Man Yang
- Engineering Research Center of National Forestry and Grassland Administration for Rosa roxburghii, Agricultural College, Guizhou University, Guiyang, China
| | - Wei Huang
- Engineering Research Center of National Forestry and Grassland Administration for Rosa roxburghii, Agricultural College, Guizhou University, Guiyang, China
| | - Zeyang Liu
- Engineering Research Center of National Forestry and Grassland Administration for Rosa roxburghii, Agricultural College, Guizhou University, Guiyang, China
| | - HuaMing An
- Engineering Research Center of National Forestry and Grassland Administration for Rosa roxburghii, Agricultural College, Guizhou University, Guiyang, China
| |
Collapse
|
23
|
Chen X, Xu Y, Wu J, Yu Y, Zou B, Li L. Effects of Pectinase Pre-Treatment on the Physicochemical Properties, Bioactive Compounds, and Volatile Components of Juices from Different Cultivars of Guava. Foods 2023; 12:foods12020330. [PMID: 36673422 PMCID: PMC9858270 DOI: 10.3390/foods12020330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
In this study, the physicochemical properties, antioxidant capacity, and volatile compounds of the juices of different guava cultivars before and after pectinase treatment were evaluated. The results showed that the guava juice of the small fragrant (SF) cultivar exhibited the highest ascorbic acid concentration (1761.09 mg/L), and the highest contents of total phenolics (329.52 mg GAE/L) and total flavonoids (411.13 mg RE/L) were both found in the juice of the watermelon red (WR) cultivar. After pectinase treatment, the juice yield and the titratable acid, sugar components, total phenolics and total flavonoids, and antioxidant capacity levels of the guava juices were all higher than those of the non-pectinase group. However, lower sensory evaluation scores were obtained in the pectinase-treated guava juices. Aldehydes and terpenoids were the main flavor components in the guava juices, which were responsible for the aroma of the juice, while their relative contents were different in the four cultivar guava juices. Furthermore, pectinase treatment could change the amounts and relative contents of volatile compounds in the guava juice. During the pectinase treatment process, the relative contents of the main aroma constituents in the guava juices were significantly decreased. The findings of this research provide valuable information for the processing of guava juice.
Collapse
|
24
|
Chen SH, Martino AM, Luo Z, Schwessinger B, Jones A, Tolessa T, Bragg JG, Tobias PA, Edwards RJ. A high-quality pseudo-phased genome for Melaleuca quinquenervia shows allelic diversity of NLR-type resistance genes. Gigascience 2022; 12:giad102. [PMID: 38096477 PMCID: PMC10720953 DOI: 10.1093/gigascience/giad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/11/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Melaleuca quinquenervia (broad-leaved paperbark) is a coastal wetland tree species that serves as a foundation species in eastern Australia, Indonesia, Papua New Guinea, and New Caledonia. While extensively cultivated for its ornamental value, it has also become invasive in regions like Florida, USA. Long-lived trees face diverse pest and pathogen pressures, and plant stress responses rely on immune receptors encoded by the nucleotide-binding leucine-rich repeat (NLR) gene family. However, the comprehensive annotation of NLR encoding genes has been challenging due to their clustering arrangement on chromosomes and highly repetitive domain structure; expansion of the NLR gene family is driven largely by tandem duplication. Additionally, the allelic diversity of the NLR gene family remains largely unexplored in outcrossing tree species, as many genomes are presented in their haploid, collapsed state. RESULTS We assembled a chromosome-level pseudo-phased genome for M. quinquenervia and described the allelic diversity of plant NLRs using the novel FindPlantNLRs pipeline. Analysis reveals variation in the number of NLR genes on each haplotype, distinct clustering patterns, and differences in the types and numbers of novel integrated domains. CONCLUSIONS The high-quality M. quinquenervia genome assembly establishes a new framework for functional and evolutionary studies of this significant tree species. Our findings suggest that maintaining allelic diversity within the NLR gene family is crucial for enabling responses to environmental stress, particularly in long-lived plants.
Collapse
Affiliation(s)
- Stephanie H Chen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington NSW 2052, Australia
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney NSW 2000, Australia
| | - Alyssa M Martino
- School of Life and Environmental Sciences, The University of Sydney, Camperdown NSW 2006, Australia
| | - Zhenyan Luo
- Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Benjamin Schwessinger
- Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Ashley Jones
- Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Tamene Tolessa
- Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
- School of Environment and Rural Science, University of New England, Armidale NSW 2351, Australia
| | - Jason G Bragg
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney NSW 2000, Australia
- School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington NSW 2052, Australia
| | - Peri A Tobias
- School of Life and Environmental Sciences, The University of Sydney, Camperdown NSW 2006, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington NSW 2052, Australia
- Minderoo OceanOmics Centre at UWA, UWA Oceans Institute, University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
25
|
Aly SH, Eldahshan OA, Al-Rashood ST, Binjubair FA, El Hassab MA, Eldehna WM, Dall’Acqua S, Zengin G. Chemical Constituents, Antioxidant, and Enzyme Inhibitory Activities Supported by In-Silico Study of n-Hexane Extract and Essential Oil of Guava Leaves. Molecules 2022; 27:molecules27248979. [PMID: 36558111 PMCID: PMC9781903 DOI: 10.3390/molecules27248979] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Psidium guajava (Guava tree) is one of the most widely known species in the family Myrtaceae. The Guava tree has been reported for its potential antioxidant, anti-inflammatory, antimicrobial, and cytotoxic activities. In the current study, the chemical compositions of the n-hexane extract and the essential oil of P. guajava were investigated using the GC/MS analysis, along with an evaluation of their antioxidant potential, and an investigation into the enzyme inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BchE), tyrosinase, α-amylase, and α-glucosidase. Moreover, molecular docking of the major identified active sites of the target enzymes were investigated. The chemical characterization of the n-hexane extract and essential oil revealed that squalene (9.76%), α-tocopherol (8.53%), and γ-sitosterol (3.90%) are the major compounds in the n-hexane extract. In contrast, the major constituents of the essential oil are D-limonene (36.68%) and viridiflorol (9.68%). The n-hexane extract showed more antioxidant potential in the cupric reducing antioxidant capacity (CUPRAC), the ferric reducing power (FRAP), and the metal chelating ability (MCA) assays, equivalent to 70.80 ± 1.46 mg TE/g, 26.01 ± 0.97 mg TE/g, and 24.83 ± 0.35 mg EDTAE/g, respectively. In the phosphomolybdenum (PM) assay, the essential oil showed more antioxidant activity equivalent to 2.58 ± 0.14 mmol TE/g. The essential oil demonstrated a potent BChE and tyrosinase inhibitory ability at 6.85 ± 0.03 mg GALAE/g and 61.70 ± 3.21 mg KAE/g, respectively. The α-amylase, and α-glucosidase inhibitory activity of the n-hexane extract and the essential oil varied from 0.52 to 1.49 mmol ACAE/g. Additionally, the molecular docking study revealed that the major compounds achieved acceptable binding scores upon docking with the tested enzymes. Consequently, the P. guajava n-hexane extract and oil can be used as a promising candidate for the development of novel treatment strategies for oxidative stress, neurodegeneration, and diabetes mellitus diseases.
Collapse
Affiliation(s)
- Shaza H. Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Omayma A. Eldahshan
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (O.A.E.); (G.Z.)
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Faizah A. Binjubair
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
- Correspondence: (O.A.E.); (G.Z.)
| |
Collapse
|
26
|
The Current Developments in Medicinal Plant Genomics Enabled the Diversification of Secondary Metabolites' Biosynthesis. Int J Mol Sci 2022; 23:ijms232415932. [PMID: 36555572 PMCID: PMC9781956 DOI: 10.3390/ijms232415932] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Medicinal plants produce important substrates for their adaptation and defenses against environmental factors and, at the same time, are used for traditional medicine and industrial additives. Plants have relatively little in the way of secondary metabolites via biosynthesis. Recently, the whole-genome sequencing of medicinal plants and the identification of secondary metabolite production were revolutionized by the rapid development and cheap cost of sequencing technology. Advances in functional genomics, such as transcriptomics, proteomics, and metabolomics, pave the way for discoveries in secondary metabolites and related key genes. The multi-omics approaches can offer tremendous insight into the variety, distribution, and development of biosynthetic gene clusters (BGCs). Although many reviews have reported on the plant and medicinal plant genome, chemistry, and pharmacology, there is no review giving a comprehensive report about the medicinal plant genome and multi-omics approaches to study the biosynthesis pathway of secondary metabolites. Here, we introduce the medicinal plant genome and the application of multi-omics tools for identifying genes related to the biosynthesis pathway of secondary metabolites. Moreover, we explore comparative genomics and polyploidy for gene family analysis in medicinal plants. This study promotes medicinal plant genomics, which contributes to the biosynthesis and screening of plant substrates and plant-based drugs and prompts the research efficiency of traditional medicine.
Collapse
|
27
|
Fernandes Santos CA, Rodrigues da Costa S, Silva Boiteux L, Grattapaglia D, Silva-Junior OB. Genetic associations with resistance to Meloidogyne enterolobii in guava (Psidium sp.) using cross-genera SNPs and comparative genomics to Eucalyptus highlight evolutionary conservation across the Myrtaceae. PLoS One 2022; 17:e0273959. [PMID: 36322533 PMCID: PMC9629644 DOI: 10.1371/journal.pone.0273959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Tropical fruit tree species constitute a yet untapped supply of outstanding diversity of taste and nutritional value, barely developed from the genetics standpoint, with scarce or no genomic resources to tackle the challenges arising in modern breeding practice. We generated a de novo genome assembly of the Psidium guajava, the super fruit “apple of the tropics”, and successfully transferred 14,268 SNP probesets from Eucalyptus to Psidium at the nucleotide level, to detect genomic loci linked to resistance to the root knot nematode (RKN) Meloidogyne enterolobii derived from the wild relative P. guineense. Significantly associated loci with resistance across alternative analytical frameworks, were detected at two SNPs on chromosome 3 in a pseudo-assembly of Psidium guajava genome built using a syntenic path approach with the Eucalyptus grandis genome to determine the order and orientation of the contigs. The P. guineense-derived resistance response to RKN and disease onset is conceivably triggered by mineral nutrients and phytohormone homeostasis or signaling with the involvement of the miRNA pathway. Hotspots of mapped resistance quantitative trait loci and functional annotation in the same genomic region of Eucalyptus provide further indirect support to our results, highlighting the evolutionary conservation of genomes across genera of Myrtaceae in the adaptation to pathogens. Marker assisted introgression of the resistance loci mapped should accelerate the development of improved guava cultivars and hybrid rootstocks.
Collapse
Affiliation(s)
| | - Soniane Rodrigues da Costa
- Graduate program in Genetic Resources, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | | | - Dario Grattapaglia
- Embrapa Genetic Resources and Biotechnology (CENARGEN), Brasília, Distrito Federal, Brazil
- * E-mail:
| | | |
Collapse
|
28
|
Wang Z, Li Y, Sun P, Zhu M, Wang D, Lu Z, Hu H, Xu R, Zhang J, Ma J, Liu J, Yang Y. A high-quality Buxus austro-yunnanensis (Buxales) genome provides new insights into karyotype evolution in early eudicots. BMC Biol 2022; 20:216. [PMID: 36195948 PMCID: PMC9533543 DOI: 10.1186/s12915-022-01420-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Eudicots are the most diverse group of flowering plants that compromise five well-defined lineages: core eudicots, Ranunculales, Proteales, Trochodendrales, and Buxales. However, the phylogenetic relationships between these five lineages and their chromosomal evolutions remain unclear, and a lack of high-quality genome analyses for Buxales has hindered many efforts to address this knowledge gap. RESULTS Here, we present a high-quality chromosome-level genome of Buxus austro-yunnanensis (Buxales). Our phylogenomic analyses revealed that Buxales and Trochodendrales are genetically similar and classified as sisters. Additionally, both are sisters to the core eudicots, while Ranunculales was found to be the first lineage to diverge from these groups. Incomplete lineage sorting and hybridization were identified as the main contributors to phylogenetic discordance (34.33%) between the lineages. In fact, B. austro-yunnanensis underwent only one whole-genome duplication event, and collinear gene phylogeny analyses suggested that separate independent polyploidizations occurred in the five eudicot lineages. Using representative genomes from these five lineages, we reconstructed the ancestral eudicot karyotype (AEK) and generated a nearly gapless karyotype projection for each eudicot species. Within core eudicots, we recovered one common chromosome fusion event in asterids and malvids, respectively. Further, we also found that the previously reported fused AEKs in Aquilegia (Ranunculales) and Vitis (core eudicots) have different fusion positions, which indicates that these two species have different karyotype evolution histories. CONCLUSIONS Based on our phylogenomic and karyotype evolution analyses, we revealed the likely relationships and evolutionary histories of early eudicots. Ultimately, our study expands genomic resources for early-diverging eudicots.
Collapse
Affiliation(s)
- Zhenyue Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ying Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Pengchuan Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mingjia Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Dandan Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Zhiqiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Hongyin Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Renping Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianxiang Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Yongzhi Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
| |
Collapse
|
29
|
Su X, Liu T, Liu YP, Harris AJ, Chen JY. Adaptive radiation in Orinus, an endemic alpine grass of the Qinghai-Tibet Plateau, based on comparative transcriptomic analysis. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153786. [PMID: 35963042 DOI: 10.1016/j.jplph.2022.153786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The species of Orinus (Poaceae) are important alpine plants with a variety of phenotypic traits and potential usages in molecular breeding toward drought-tolerant forage crops. However, the genetic basis of evolutionary adaption and diversification in the genus is still unclear. In the present study, we obtained transcriptomes for the two most divergent species, O. thoroldii and O. kokonoricus, using the Illumina platform and de novo assembly. In total, we generated 23,029 and 24,086 unigenes with N50 values of 1188 and 1203 for O. thoroldii and O. kokonoricus respectively, and identified 19,005 pairs of putative orthologs between the two species of Orinus. For these orthologs, estimations of non-synonymous/synonymous substitution rate ratios indicated that 568 pairs may be under strongly positive selection (Ka/Ks > 1), and Gene Ontogeny (GO) enrichment analysis revealed that significantly enriched pathways were in DNA repair and resistance to abiotic stress. Meanwhile, the divergence times of species between O. thoroldii and O. kokonoricus occurred 3.2 million years ago (Mya), and the recent evolutionary branch is an allotetraploid species, Cleistogenes songorica. We also detected a Ks peak of ∼0.60 for Orinus. Additionally, we identified 188 pairs of differentially expressed genes (DEGs) between the two species of Orinus, which were significantly enrich in stress resistance and lateral root development. Thus, we considered that the species diversification and evolutionary adaption of this genus was initiated by environmental selection, followed by phenotypic differentiation, finally leading to niche separation in the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Xu Su
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Land Surface Processes and Ecological Conservation of the Qinghai-Tibet Plateau, The Ministry of Education, Qinghai Normal University, Xining, 810008, China
| | - Tao Liu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; School of Geographical Science, Qinghai Normal University, Xining, 810008, China
| | - Yu Ping Liu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, China.
| | - A J Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Jin Yuan Chen
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, China
| |
Collapse
|
30
|
Yu C, Ke Y, Qin J, Huang Y, Zhao Y, Liu Y, Wei H, Liu G, Lian B, Chen Y, Zhong F, Zhang J. Genome-wide identification of calcineurin B-like protein-interacting protein kinase gene family reveals members participating in abiotic stress in the ornamental woody plant Lagerstroemia indica. FRONTIERS IN PLANT SCIENCE 2022; 13:942217. [PMID: 36204074 PMCID: PMC9530917 DOI: 10.3389/fpls.2022.942217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Calcineurin B-like protein-interacting protein kinases (CIPKs) play important roles in plant responses to stress. However, their function in the ornamental woody plant Lagerstroemia indica is remains unclear. In this study, the LiCIPK gene family was analyzed at the whole genome level. A total of 37 LiCIPKs, distributed across 17 chromosomes, were identified. Conserved motif analysis indicated that all LiCIPKs possess a protein kinase motif (S_TKc) and C-terminal regulatory motif (NAF), while seven LiCIPKs lack a protein phosphatase interaction (PPI) motif. 3D structure analysis further revealed that the N-terminal and C-terminal 3D-structure of 27 members are situated near to each other, while 4 members have a looser structure, and 6 members lack intact structures. The intra- and interspecies collinearity analysis, synonymous substitution rate (K s ) peaks of duplicated LiCIPKs, revealed that ∼80% of LiCIPKs were retained by the two whole genome duplication (WGD) events that occurred approximately 56.12-61.16 million year ago (MYA) and 16.24-26.34 MYA ago. The promoter of each LiCIPK contains a number of auxin, abscisic acid, gibberellic acid, salicylic acid, and drought, anaerobic, defense, stress, and wound responsive cis-elements. Of the 21 members that were successfully amplified by qPCR, 18 LiCIPKs exhibited different expression patterns under NaCl, mannitol, PEG8000, and ABA treatments. Given that LiCIPK30, the AtSOS2 ortholog, responded to all four types of stress it was selected for functional verification. LiCIPK30 complements the atsos2 phenotype in vivo. 35S:LiCIPK-overexpressing lines exhibit increased leaf area increment, chlorophyll a and b content, reactive oxygen species scavenging enzyme activity, and expression of ABF3 and RD22, while the degree of membrane lipid oxidation decreases under NaCl treatment compared to WT. The evolutionary history, and potential mechanism by which LiCIPK30 may regulate plant tolerance to salt stress were also discussed. In summary, we identified LiCIPK members involved in abiotic stress and found that LiCIPK30 transgenic Arabidopsis exhibits more salt and osmotic stress tolerance than WT. This research provides a theoretical foundation for further investigation into the function of LiCIPKs, and for mining gene resources to facilitate the cultivation and breeding of new L. indica varieties in coastal saline-alkali soil.
Collapse
Affiliation(s)
- Chunmei Yu
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Yongchao Ke
- School of Life Sciences, Nantong University, Nantong, China
| | - Jin Qin
- School of Life Sciences, Nantong University, Nantong, China
| | - Yunpeng Huang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yanchun Zhao
- School of Life Sciences, Nantong University, Nantong, China
| | - Yu Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Hui Wei
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Guoyuan Liu
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Bolin Lian
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Fei Zhong
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| |
Collapse
|
31
|
Genomic insights into rapid speciation within the world's largest tree genus Syzygium. Nat Commun 2022; 13:5031. [PMID: 36097018 PMCID: PMC9468008 DOI: 10.1038/s41467-022-32637-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 08/10/2022] [Indexed: 11/09/2022] Open
Abstract
Species radiations, despite immense phenotypic variation, can be difficult to resolve phylogenetically when genetic change poorly matches the rapidity of diversification. Genomic potential furnished by palaeopolyploidy, and relative roles for adaptation, random drift and hybridisation in the apportionment of genetic variation, remain poorly understood factors. Here, we study these aspects in a model radiation, Syzygium, the most species-rich tree genus worldwide. Genomes of 182 distinct species and 58 unidentified taxa are compared against a chromosome-level reference genome of the sea apple, Syzygium grande. We show that while Syzygium shares an ancient genome doubling event with other Myrtales, little evidence exists for recent polyploidy events. Phylogenomics confirms that Syzygium originated in Australia-New Guinea and diversified in multiple migrations, eastward to the Pacific and westward to India and Africa, in bursts of speciation visible as poorly resolved branches on phylogenies. Furthermore, some sublineages demonstrate genomic clines that recapitulate cladogenetic events, suggesting that stepwise geographic speciation, a neutral process, has been important in Syzygium diversification.
Collapse
|
32
|
Lin X, Feng C, Lin T, Harris AJ, Li Y, Kang M. Jackfruit genome and population genomics provide insights into fruit evolution and domestication history in China. HORTICULTURE RESEARCH 2022; 9:uhac173. [PMID: 36204202 PMCID: PMC9533223 DOI: 10.1093/hr/uhac173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/25/2022] [Indexed: 05/28/2023]
Abstract
As the largest known tree-borne fruit in the world, jackfruit (Artocarpus heterophyllus) is an important cultivated crop in tropical regions of South and Southeast Asia. The species has been cultivated in China for more than 1000 years, but the history of its introduction to the country remains unclear. We assembled a high-quality chromosome-level genome of jackfruit into 985.63 Mb with scaffold N50 of 32.81 Mb. We analyzed whole-genome resequencing data of 295 landraces to investigate the domestication history in China and agronomic trait evolution of jackfruit. Population structure analysis revealed that jackfruits of China could be traced back to originate from Southeast Asia and South Asia independently. Selection signals between jackfruit and its edible congener, cempedak (Artocarpus integer), revealed several important candidate genes associated with fruit development and ripening. Moreover, analyses of selective sweeps and gene expression revealed that the AhePG1 gene may be the major factor in determining fruit texture. This study not only resolves the origins of jackfruit of China, but also provides valuable genomic resources for jackfruit breeding improvement and offers insights into fruit size evolution and fruit texture changes.
Collapse
Affiliation(s)
| | | | - Tao Lin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - A J Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, China
| | | | | |
Collapse
|
33
|
Ouadi S, Sierro N, Goepfert S, Bovet L, Glauser G, Vallat A, Peitsch MC, Kessler F, Ivanov NV. The clove (Syzygium aromaticum) genome provides insights into the eugenol biosynthesis pathway. Commun Biol 2022; 5:684. [PMID: 35810198 PMCID: PMC9271057 DOI: 10.1038/s42003-022-03618-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
The clove (Syzygium aromaticum) is an important tropical spice crop in global trade. Evolving environmental pressures necessitate modern characterization and selection techniques that are currently inaccessible to clove growers owing to the scarcity of genomic and genetic information. Here, we present a 370-Mb high-quality chromosome-scale genome assembly for clove. Comparative genomic analysis between S. aromaticum and Eucalyptus grandis-both species of the Myrtaceae family-reveals good genome structure conservation and intrachromosomal rearrangements on seven of the eleven chromosomes. We report genes that belong to families involved in the biosynthesis of eugenol, the major bioactive component of clove products. On the basis of our transcriptomic and metabolomic findings, we propose a hypothetical scenario in which eugenol acetate plays a key role in high eugenol accumulation in clove leaves and buds. The clove genome is a new contribution to omics resources for the Myrtaceae family and an important tool for clove research.
Collapse
Affiliation(s)
- Sonia Ouadi
- Faculty of Sciences, Laboratory of Plant Physiology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
- PMI R&D, Philip Morris Products S. A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Nicolas Sierro
- PMI R&D, Philip Morris Products S. A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Simon Goepfert
- PMI R&D, Philip Morris Products S. A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Lucien Bovet
- PMI R&D, Philip Morris Products S. A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Gaetan Glauser
- Faculty of Sciences, Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Armelle Vallat
- Faculty of Sciences, Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S. A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Felix Kessler
- Faculty of Sciences, Laboratory of Plant Physiology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S. A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
34
|
Liu H, Wei L, Ni Y, Chang L, Dong J, Zhong C, Sun R, Li S, Xiong R, Wang G, Sun J, Zhang Y, Gao Y. Genome-Wide Analysis of Ascorbic Acid Metabolism Related Genes in Fragaria × ananassa and Its Expression Pattern Analysis in Strawberry Fruits. FRONTIERS IN PLANT SCIENCE 2022; 13:954505. [PMID: 35873967 PMCID: PMC9296770 DOI: 10.3389/fpls.2022.954505] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Ascorbic acid (AsA) is an important antioxidant for scavenging reactive oxygen species and it is essential for human health. Strawberry (Fragaria × ananassa) fruits are rich in AsA. In recent years, strawberry has been regarded as a model for non-climacteric fruit ripening. However, in contrast to climacteric fruits, such as tomato, the regulatory mechanism of AsA accumulation in strawberry fruits remains largely unknown. In this study, we first identified 125 AsA metabolism-related genes from the cultivated strawberry "Camarosa" genome. The expression pattern analysis using an available RNA-seq data showed that the AsA biosynthetic-related genes in the D-mannose/L-galactose pathway were downregulated remarkably during fruit ripening which was opposite to the increasing AsA content in fruits. The D-galacturonate reductase gene (GalUR) in the D-Galacturonic acid pathway was extremely upregulated in strawberry receptacles during fruit ripening. The FaGalUR gene above belongs to the aldo-keto reductases (AKR) superfamily and has been proposed to participate in AsA biosynthesis in strawberry fruits. To explore whether there are other genes in the AKR superfamily involved in regulating AsA accumulation during strawberry fruit ripening, we further implemented a genome-wide analysis of the AKR superfamily using the octoploid strawberry genome. A total of 80 FaAKR genes were identified from the genome and divided into 20 subgroups based on phylogenetic analysis. These FaAKR genes were unevenly distributed on 23 chromosomes. Among them, nine genes showed increased expression in receptacles as the fruit ripened, and notably, FaAKR23 was the most dramatically upregulated FaAKR gene in receptacles. Compared with fruits at green stage, its expression level increased by 142-fold at red stage. The qRT-PCR results supported that the expression of FaAKR23 was increased significantly during fruit ripening. In particular, the FaAKR23 was the only FaAKR gene that was significantly upregulated by abscisic acid (ABA) and suppressed by nordihydroguaiaretic acid (NDGA, an ABA biosynthesis blocker), indicating FaAKR23 might play important roles in ABA-mediated strawberry fruit ripening. In a word, our study provides useful information on the AsA metabolism during strawberry fruit ripening and will help understand the mechanism of AsA accumulation in strawberry fruits.
Collapse
Affiliation(s)
- Huabo Liu
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Lingzhi Wei
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Yang Ni
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Inspection and Testing Laboratory of Fruits and Nursery Stocks (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Linlin Chang
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Jing Dong
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Chuanfei Zhong
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Rui Sun
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Shuangtao Li
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Rong Xiong
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Inspection and Testing Laboratory of Fruits and Nursery Stocks (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Guixia Wang
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Jian Sun
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Yuntao Zhang
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| | - Yongshun Gao
- Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
| |
Collapse
|
35
|
Yu L, Diao S, Zhang G, Yu J, Zhang T, Luo H, Duan A, Wang J, He C, Zhang J. Genome sequence and population genomics provide insights into chromosomal evolution and phytochemical innovation of Hippophae rhamnoides. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1257-1273. [PMID: 35244328 PMCID: PMC9241383 DOI: 10.1111/pbi.13802] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/09/2022] [Accepted: 02/19/2022] [Indexed: 06/01/2023]
Abstract
Plants of the Elaeagnaceae family are widely used to treat various health disorders owing to their natural phytochemicals. Seabuckthorn (Hippophae rhamnoides L.) is an economically and ecologically important species within the family with richness of biologically and pharmacologically active substances. Here, we present a chromosome-level genome assembly of seabuckthorn (http://hipp.shengxin.ren/), the first genome sequence of Elaeagnaceae, which has a total length of 849.04 Mb with scaffold N50 of 69.52 Mb and 30 864 annotated genes. Two sequential tetraploidizations with one occurring ~36-41 million years ago (Mya) and the last ~24-27 Mya were inferred, resulting in expansion of genes related to ascorbate and aldarate metabolism, lipid biosynthesis, and fatty acid elongation. Comparative genomic analysis reconstructed the evolutionary trajectories of the seabuckthorn genome with the predicted ancestral genome of 14 proto-chromosomes. Comparative transcriptomic and metabonomic analyses identified some key genes contributing to high content of polyunsaturated fatty acids and ascorbic acid (AsA). Additionally, we generated and analysed 55 whole-genome sequences of diverse accessions, and identified 9.80 million genetic variants in the seabuckthorn germplasms. Intriguingly, genes in selective sweep regions identified through population genomic analysis appeared to contribute to the richness of AsA and fatty acid in seabuckthorn fruits, among which GalLDH, GMPase and ACC, TER were the potentially major-effect causative genes controlling AsA and fatty acid content of the fruit, respectively. Our research offers novel insights into the molecular basis underlying phytochemical innovation of seabuckthorn, and provides valuable resources for exploring the evolution of the Elaeagnaceae family and molecular breeding.
Collapse
Affiliation(s)
- Liyang Yu
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Collaborative Innovation Center of Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Songfeng Diao
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Research Institute of Non‐Timber ForestryChinese Academy of Forestry/Key Laboratory of Non‐timber Forest Germplasm Enhancement & Utilization of National and Grassland AdministrationZhengzhouChina
| | - Guoyun Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jigao Yu
- School of Life SciencesNorth China University of Science and TechnologyTangshanChina
| | - Tong Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Hongmei Luo
- Experimental Center of Desert ForestryChinese Academy of ForestryDengkouChina
| | - Aiguo Duan
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jinpeng Wang
- School of Life SciencesNorth China University of Science and TechnologyTangshanChina
| | - Caiyun He
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Collaborative Innovation Center of Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
36
|
Metabolic Profiling of Sugars and Organic Acids, and Expression Analyses of Metabolism-Associated Genes in Two Yellow-Peel Pitaya Species. PLANTS 2022; 11:plants11050694. [PMID: 35270164 PMCID: PMC8912497 DOI: 10.3390/plants11050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
Sugar and organic acids are important factors determining pitaya fruit quality. However, changes in sugars and acids, and expressions of metabolism-associated genes during fruit maturation of yellow-peel pitayas are not well-documented. In this study, metabolic and expression analyses in pulps of different fruit developmental stages of ‘Wucihuanglong’ (‘WCHL’, Hylocereus undatus) and ‘Youcihuanglong’ pitaya (‘YCHL’, Hylocereus megalanthus) were used to explore the sugar and organic acid metabolic process. Total phenols and flavonoids were mainly accumulated at S1 in pitaya pulps. Ascorbic acid contents of ‘WCHL’ pitaya were higher than that of ‘YCHL’ pitaya during fruit maturation. Starch was mainly accumulated at early fruit development stages while soluble sugars were rich in late stages. Sucrose, fructose, and glucose were the main sugar components of ‘YCHL’ pitaya while glucose was dominant in ‘WCHL’ pitaya. Malic and citric acids were the main organic acids in ‘WCHL’ and ‘YCHL’ pitayas, respectively. Based on the transcriptome analyses, 118 genes involved in pitaya sugar and organic acid metabolism were obtained. Results from the correlation analyses between the expression profiling of candidate genes and the contents of sugar and organic acid showed that 51 genes had a significant correlation relationship and probably perform key role in pitaya sugar and organic acid metabolism processes. The finding of the present study provides new information for quality regulation of pitayas.
Collapse
|
37
|
Tay Fernandez CG, Nestor BJ, Danilevicz MF, Gill M, Petereit J, Bayer PE, Finnegan PM, Batley J, Edwards D. Pangenomes as a Resource to Accelerate Breeding of Under-Utilised Crop Species. Int J Mol Sci 2022; 23:2671. [PMID: 35269811 PMCID: PMC8910360 DOI: 10.3390/ijms23052671] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Pangenomes are a rich resource to examine the genomic variation observed within a species or genera, supporting population genetics studies, with applications for the improvement of crop traits. Major crop species such as maize (Zea mays), rice (Oryza sativa), Brassica (Brassica spp.), and soybean (Glycine max) have had pangenomes constructed and released, and this has led to the discovery of valuable genes associated with disease resistance and yield components. However, pangenome data are not available for many less prominent crop species that are currently under-utilised. Despite many under-utilised species being important food sources in regional populations, the scarcity of genomic data for these species hinders their improvement. Here, we assess several under-utilised crops and review the pangenome approaches that could be used to build resources for their improvement. Many of these under-utilised crops are cultivated in arid or semi-arid environments, suggesting that novel genes related to drought tolerance may be identified and used for introgression into related major crop species. In addition, we discuss how previously collected data could be used to enrich pangenome functional analysis in genome-wide association studies (GWAS) based on studies in major crops. Considering the technological advances in genome sequencing, pangenome references for under-utilised species are becoming more obtainable, offering the opportunity to identify novel genes related to agro-morphological traits in these species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David Edwards
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia; (C.G.T.F.); (B.J.N.); (M.F.D.); (M.G.); (J.P.); (P.E.B.); (P.M.F.); (J.B.)
| |
Collapse
|
38
|
Takeda LN, Laurindo LF, Guiguer EL, Bishayee A, Araújo AC, Ubeda LCC, Goulart RDA, Barbalho SM. Psidium guajava L.: A Systematic Review of the Multifaceted Health Benefits and Economic Importance. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2023819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Larissa Naomi Takeda
- Department of Biochemistry, School of Food and Technology of Marília, University of Marília, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry, School of Food and Technology of Marília, University of Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, São Paulo, Brazil
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, São Paulo, Brazil
| | | | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry, School of Food and Technology of Marília, University of Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, São Paulo, Brazil
| |
Collapse
|
39
|
Mejía-Mendoza MA, Garcidueñas-Piña C, Padilla-Ramírez JS, Soria-Guerra RE, Morales-Domínguez JF. Identification in silico and expression analysis of a β-1-4-endoglucanase and β-galactosidase genes related to ripening in guava fruit. J Genet Eng Biotechnol 2022; 20:3. [PMID: 34978628 PMCID: PMC8724366 DOI: 10.1186/s43141-021-00289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Guava fruit softening is a crucial process during ripening and this process involves a number of enzymes that modifies the cell wall. Two of the enzymes that regulate this process are (a) the β-1, 4-endoglucanase 17 (BEG) which hydrolyze β-1, 4 bonds from cellulose and hemicellulose, and (b) β-galactosidase (BGA) that hydrolyzes pectin chains. Bioinformatics and expression analysis information on these genes is limited in guava fruit. RESULTS A fragment of a β-1, 4-endoglucanase 17 (PgE17), and another of a β-galactosidase (PgGa1) were identified. These sequences have a similarity of more than 85% with those reported in the NCBI database. In the guava genome, one homologous sequence was found for PgE17 in Chr 4 and two homologous to PgGa1: one in Chr 3 and the other one in Chr 6. Putative protein PgE17 contains part of the glyco_hydro_9 domain. Putative protein PgGa1 has a part of the glyco_hydro_35 domain. Phylogenetic analysis of PgE17 and PgGa1 revealed that both are highly conserved inside the Myrtaceae family. In silico expression analysis showed that both PgE17 and PgGa1 work in a coordinated way with other cell wall modifier enzymes. Expression of these genes was found in all the guava samples analyzed. However, the highest expression was found in the fruit in the breaking and ripe states. CONCLUSIONS A β-1, 4-endoglucanase 17, and β-galactosidase 1 sequences were identified. PgE17 and PgGa1 are expressed in all the plant tissues, and fruit ripening states. Although, the highest expression was on breaker and ripe states.
Collapse
Affiliation(s)
- Mario A Mejía-Mendoza
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes (UAA), Av. Universidad, #940, Ciudad Universitaria, C.P. 20100, Aguascalientes, Aguascalientes, México
| | - Cristina Garcidueñas-Piña
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes (UAA), Av. Universidad, #940, Ciudad Universitaria, C.P. 20100, Aguascalientes, Aguascalientes, México
| | - José S Padilla-Ramírez
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Campo Experimental Pabellón, KM 32.5. Carretera Aguascalientes-Zacatecas, C.P. 20660, Pabellón de Arteaga, Aguascalientes, Ags, México
| | - Ruth E Soria-Guerra
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí (UASLP), Av. Dr. Manuel Nava No. 6-Zona Universitaria, C.P. 78210, San Luis Potosí, S.L.P., México
| | - José Francisco Morales-Domínguez
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes (UAA), Av. Universidad, #940, Ciudad Universitaria, C.P. 20100, Aguascalientes, Aguascalientes, México.
| |
Collapse
|
40
|
Mathiazhagan M, Chidambara B, Hunashikatti LR, Ravishankar KV. Genomic Approaches for Improvement of Tropical Fruits: Fruit Quality, Shelf Life and Nutrient Content. Genes (Basel) 2021; 12:1881. [PMID: 34946829 PMCID: PMC8701245 DOI: 10.3390/genes12121881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
The breeding of tropical fruit trees for improving fruit traits is complicated, due to the long juvenile phase, generation cycle, parthenocarpy, polyploidy, polyembryony, heterozygosity and biotic and abiotic factors, as well as a lack of good genomic resources. Many molecular techniques have recently evolved to assist and hasten conventional breeding efforts. Molecular markers linked to fruit development and fruit quality traits such as fruit shape, size, texture, aroma, peel and pulp colour were identified in tropical fruit crops, facilitating Marker-assisted breeding (MAB). An increase in the availability of genome sequences of tropical fruits further aided in the discovery of SNP variants/Indels, QTLs and genes that can ascertain the genetic determinants of fruit characters. Through multi-omics approaches such as genomics, transcriptomics, metabolomics and proteomics, the identification and quantification of transcripts, including non-coding RNAs, involved in sugar metabolism, fruit development and ripening, shelf life, and the biotic and abiotic stress that impacts fruit quality were made possible. Utilizing genomic assisted breeding methods such as genome wide association (GWAS), genomic selection (GS) and genetic modifications using CRISPR/Cas9 and transgenics has paved the way to studying gene function and developing cultivars with desirable fruit traits by overcoming long breeding cycles. Such comprehensive multi-omics approaches related to fruit characters in tropical fruits and their applications in breeding strategies and crop improvement are reviewed, discussed and presented here.
Collapse
Affiliation(s)
| | | | | | - Kundapura V. Ravishankar
- Division of Basic Sciences, ICAR Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, India; (M.M.); (B.C.); (L.R.H.)
| |
Collapse
|
41
|
Hao Y, Zhou YZ, Chen B, Chen GZ, Wen ZY, Zhang D, Sun WH, Liu DK, Huang J, Chen JL, Zhou XQ, Fan WL, Zhang WC, Luo L, Han WC, Zheng Y, Li L, Lu PC, Xing Y, Liu SY, Sun JT, Cao YH, Zhang YP, Shi XL, Wu SS, Ai Y, Zhai JW, Lan SR, Liu ZJ, Peng DH. The Melastoma dodecandrum genome and the evolution of Myrtales. J Genet Genomics 2021; 49:120-131. [PMID: 34757038 DOI: 10.1016/j.jgg.2021.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022]
Abstract
Melastomataceae have abundant morphological diversity with high economic and ornamental merit in Myrtales. The phylogenetic position of Myrtales is still contested. Here, we report the first chromosome-level genome assembly of Melastoma dodecandrum in Melastomataceae. The assembled genome size was 299.81 Mb with a contig N50 value of 3.00 Mb. Genome evolution analysis indicated that M. dodecandrum, Eucalyptus grandis and Punica granatum were clustered into a clade of Myrtales and formed a sister group with the ancestor of fabids and malvids. We found that M. dodecandrum experienced four whole-genome polyploidization events: the ancient event was shared with most eudicots, one event was shared with Myrtales, and the other two events were unique to M. dodecandrum. Moreover, we identified MADS-box genes and found that the AP1-like genes expanded, and AP3-like genes might have undergone subfunctionalization. We found that the SUAR63-like genes and AG-like genes showed different expression patterns in stamens, which may be associated with heteranthery. In addition, we found that LAZY1-like genes were involved in the negative regulation of stem branching development, which may be related to its creeping features. Our study sheds new light on the evolution of Melastomataceae and Myrtales, which provides a comprehensive genetic resource for future research.
Collapse
Affiliation(s)
- Yang Hao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Yu-Zhen Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Bin Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Gui-Zhen Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Zhen-Ying Wen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei-Hong Sun
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Jin-Liao Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Xiao-Qin Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Wan-Lin Fan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Wen-Chun Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Lin Luo
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Wen-Chao Han
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Yan Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Long Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Peng-Cheng Lu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Yue Xing
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Shu-Ya Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Jia-Ting Sun
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Ying-Hui Cao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Yan-Ping Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Xiao-Ling Shi
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Sha-Sha Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Ye Ai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Jun-Wen Zhai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Si-Ren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Dong-Hui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Art & Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Innovation and Application Engineering Technology Research Center of Ornamental Plant Germplasm Resources in Fujian Province, Fuzhou 350002, China.
| |
Collapse
|
42
|
Thakur S, Yadav IS, Jindal M, Sharma PK, Dhillon GS, Boora RS, Arora NK, Gill MIS, Chhuneja P, Mittal A. Development of Genome-Wide Functional Markers Using Draft Genome Assembly of Guava ( Psidium guajava L.) cv. Allahabad Safeda to Expedite Molecular Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:708332. [PMID: 34630458 PMCID: PMC8494772 DOI: 10.3389/fpls.2021.708332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Guava (Psidium guajava L.), a rich source of nutrients, is an important tropical and subtropical fruit of the Myrtaceae family and exhibits magnificent diversity. Genetic diversity analysis is the first step toward the identification of parents for hybridization, genetic mapping, and molecular breeding in any crop species. A diversity analysis based on whole-genome functional markers increases the chances of identifying genetic associations with agronomically important traits. Therefore, here, we sequenced the genome of guava cv. Allahabad Safeda on an Illumina platform and generated a draft assembly of ~304 MB. The assembly of the Allahabad Safeda genome constituted >37.95% repeat sequences, gene prediction with RNA-seq data as evidence identified 14,115 genes, and BLAST n/r, Interproscan, PfamScan, BLAST2GO, and KEGG annotated 13,957 genes. A comparative protein transcript analysis of tree species revealed the close relatedness of guava with Eucalyptus. Comparative transcriptomics-based SSR/InDel/SNP-PCR ready genome-wide markers in greenish-yellow skinned and white fleshed-Allahabad Safeda to four contrasting cultivars viz apple-color-skinned and white-fleshed-Lalima, greenish-yellow-skinned and pink-fleshed-Punjab Pink, purple-black-skinned and purple-fleshed-Purple Local and widely used rootstock-Lucknow-49 were developed. The molecular markers developed here revealed a high level of individual heterozygosity within genotypes in 22 phenotypically diverse guava cultivars. Principal coordinate, STRUCTURE clustering, and neighbor-joining-based genetic diversity analysis identified distinct clusters associated with fruit skin and flesh color. The genome sequencing of guava, functional annotation, comparative transcriptomics-based genome-wide markers, and genetic diversity analysis will expand the knowledge of genomes of climacteric fruits, facilitating trait-based molecular breeding and diversifying the nutritional basket.
Collapse
Affiliation(s)
- Sujata Thakur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Inderjit Singh Yadav
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Manish Jindal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Parva Kumar Sharma
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | | | - Rajbir Singh Boora
- Fruit Research Sub-Station, Punjab Agricultural University, Bahadurgarh, India
| | - Naresh Kumar Arora
- Department of Fruit Science, Punjab Agricultural University, Ludhiana, India
| | | | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Amandeep Mittal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
43
|
Savadi S, Mangalassery S, Sandesh MS. Advances in genomics and genome editing for breeding next generation of fruit and nut crops. Genomics 2021; 113:3718-3734. [PMID: 34517092 DOI: 10.1016/j.ygeno.2021.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Fruit tree crops are an essential part of the food production systems and are key to achieve food and nutrition security. Genetic improvement of fruit trees by conventional breeding has been slow due to the long juvenile phase. Advancements in genomics and molecular biology have paved the way for devising novel genetic improvement tools like genome editing, which can accelerate the breeding of these perennial crops to a great extent. In this article, advancements in genomics of fruit trees covering genome sequencing, transcriptome sequencing, genome editing technologies (GET), CRISPR-Cas system based genome editing, potential applications of CRISPR-Cas9 in fruit tree crops improvement, the factors influencing the CRISPR-Cas editing efficiency and the challenges for CRISPR-Cas9 applications in fruit tree crops improvement are reviewed. Besides, base editing, a recently emerging more precise editing system, and the future perspectives of genome editing in the improvement of fruit and nut crops are covered.
Collapse
Affiliation(s)
- Siddanna Savadi
- ICAR- Directorate of Cashew Research (DCR), Puttur 574 202, Dakshina Kannada, Karnataka, India.
| | | | - M S Sandesh
- ICAR- Directorate of Cashew Research (DCR), Puttur 574 202, Dakshina Kannada, Karnataka, India
| |
Collapse
|