1
|
Tafuri A, Pirona R, Fricano A, Gasser M, Mazzucotelli E, Maret E, Cagliani LR, Ravaglia S, Consonni R, Thomas A, Ceriotti A, Gilardi F, Baldoni E. Integrated GWAS and metabolomic analyses identified metabolic pathways and candidate genes involved in free asparagine accumulation in durum wheat grain. Food Chem 2025; 484:144393. [PMID: 40306232 DOI: 10.1016/j.foodchem.2025.144393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/20/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
Free asparagine content is a key factor in acrylamide formation in wheat products after high temperature processing. Our study aims to explore free asparagine natural variation in durum wheat to identify genes potentially involved in this trait. Two hundred and one durum wheat genotypes were sown in an experimental field for three years. An enzymatic assay was used on whole grain to evaluate free asparagine content, that ranged from 0.9 to 4.73 mmol/kg dry matter. A genome-wide association study (GWAS) identified six associated SNPs on chromosomes 6A, 7A, 2B, 4B, 7B. The whole grain metabolome of one-year samples revealed 40 metabolites, correlating with asparagine variations, that were enriched in pathways involved in amino acids metabolism. Combining GWAS and metabolomic data identified two L-lactate dehydrogenases, one polyamine oxidase, and one anthranilate-phosphoribosyl-transferase as candidate genes. This study paves the way to characterize the genetic determinants of free asparagine accumulation in wheat grain.
Collapse
Affiliation(s)
- Andrea Tafuri
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), 20133 Milano, Italy; Società Italiana Sementi (SIS), 40068 San Lazzaro di Savena (BO), Italy; Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Raul Pirona
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), 20133 Milano, Italy
| | - Agostino Fricano
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics & Bioinformatics (GB), 29017 Fiorenzuola d'Arda (PC), Italy
| | - Marie Gasser
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics & Bioinformatics (GB), 29017 Fiorenzuola d'Arda (PC), Italy
| | - Estelle Maret
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Laura Ruth Cagliani
- Institute of Chemical Sciences and Technologies "G. Natta" (SCITEC), National Research Council (CNR), 20133 Milano, Italy
| | - Stefano Ravaglia
- Società Italiana Sementi (SIS), 40068 San Lazzaro di Savena (BO), Italy
| | - Roberto Consonni
- Institute of Chemical Sciences and Technologies "G. Natta" (SCITEC), National Research Council (CNR), 20133 Milano, Italy
| | - Aurélien Thomas
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Aldo Ceriotti
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), 20133 Milano, Italy
| | - Federica Gilardi
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), 20133 Milano, Italy.
| |
Collapse
|
2
|
Bekele-Alemu A, Girma-Tola D, Ligaba-Osena A. The Potential of CRISPR/Cas9 to Circumvent the Risk Factor Neurotoxin β-N-oxalyl-L-α, β-diaminopropionic acid Limiting Wide Acceptance of the Underutilized Grass Pea ( Lathyrus sativus L.). Curr Issues Mol Biol 2024; 46:10570-10589. [PMID: 39329978 PMCID: PMC11430654 DOI: 10.3390/cimb46090626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Grass pea (Lathyrus sativus L.) is a protein-rich crop that is resilient to various abiotic stresses, including drought. However, it is not cultivated widely for human consumption due to the neurotoxin β-N-oxalyl-L-α, β-diaminopropionic acid (β-ODAP) and its association with neurolathyrism. Though some varieties with low β-ODAP have been developed through classical breeding, the β-ODAP content is increasing due to genotype x environment interactions. This review covers grass pea nutritional quality, β-ODAP biosynthesis, mechanism of paralysis, traditional ways to reduce β-ODAP, candidate genes for boosting sulfur-containing amino acids, and the potential and targets of gene editing to reduce β-ODAP content. Recently, two key enzymes (β-ODAP synthase and β-cyanoalanine synthase) have been identified in the biosynthetic pathway of β-ODAP. We proposed four strategies through which the genes encoding these enzymes can be targeted and suppressed using CRISPR/Cas9 gene editing. Compared to its homology in Medicago truncatula, the grass pea β-ODAP synthase gene sequence and β-cyanoalanine synthase showed 62.9% and 95% similarity, respectively. The β-ODAP synthase converts the final intermediate L-DAPA into toxic β-ODAP, whist β-cyanoalanine synthase converts O-Acetylserine into β-isoxazolin-5-on-2-yl-alanine. Since grass pea is low in methionine and cysteine amino acids, improvement of these amino acids is also needed to boost its protein content. This review contains useful resources for grass pea improvement while also offering potential gene editing strategies to lower β-ODAP levels.
Collapse
Affiliation(s)
- Abreham Bekele-Alemu
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Deribew Girma-Tola
- Department of Biology, College of Natural Sciences, Salale University, Fitche P.O. Box 245, Ethiopia
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|
3
|
Oliver SL, Yobi A, Flint-Garcia S, Angelovici R. Reducing Acrylamide Formation Potential by Targeting Free Asparagine Accumulation in Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6089-6095. [PMID: 38483189 DOI: 10.1021/acs.jafc.3c09547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Acrylamide is a probable carcinogen in humans and is formed when reducing sugars react with free asparagine (Asn) during thermal processing of food. Although breeding for low reducing sugars worked well in potatoes, it is less successful in cereals. However, reducing free Asn in cereals has great potential for reducing acrylamide formation, despite the role that Asn plays in nitrogen transport and amino acid biosynthesis. In this perspective, we summarize the efforts aimed at reducing free Asn in cereal grains and discuss the potentials and challenges associated with targeting this essential amino acid, especially in a seed-specific manner.
Collapse
Affiliation(s)
- Sarah L Oliver
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, United States
| | - Abou Yobi
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, United States
| | - Sherry Flint-Garcia
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, United States
- United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri 65211, United States
| | - Ruthie Angelovici
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
4
|
Kaur N, Brock N, Raffan S, Halford NG. Low asparagine wheat: Europe's first field trial of genome edited wheat amid rapidly changing regulations on acrylamide in food and genome editing of crops. BREEDING SCIENCE 2024; 74:37-46. [PMID: 39246437 PMCID: PMC11375425 DOI: 10.1270/jsbbs.23058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/15/2024] [Indexed: 09/10/2024]
Abstract
We review the undertaking of a field trial of low asparagine wheat lines in which the asparagine synthetase gene, TaASN2, has been knocked out using CRISPR/Cas9. The field trial was undertaken in 2021-2022 and represented the first field release of genome edited wheat in Europe. The year of the field trial and the period since have seen rapid changes in the regulations covering both the field release and commercialisation of genome edited crops in the UK. These historic developments are reviewed in detail. Free asparagine is the precursor for acrylamide formation during high-temperature cooking and processing of grains, tubers, storage roots, beans and other crop products. Consequently, work on reducing the free asparagine concentration of wheat and other cereal grains, as well as the tubers, beans and storage roots of other crops, is driven by the need for food businesses to comply with current and potential future regulations on acrylamide content of foods. The topic illustrates how strategic and applied crop research is driven by regulations and also needs a supportive regulatory environment in which to thrive.
Collapse
Affiliation(s)
- Navneet Kaur
- Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Natasha Brock
- Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Sarah Raffan
- The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037-1002, United States of America
| | | |
Collapse
|
5
|
Das S, Kwon M, Kim JY. Enhancement of specialized metabolites using CRISPR/Cas gene editing technology in medicinal plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1279738. [PMID: 38450402 PMCID: PMC10915232 DOI: 10.3389/fpls.2024.1279738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Plants are the richest source of specialized metabolites. The specialized metabolites offer a variety of physiological benefits and many adaptive evolutionary advantages and frequently linked to plant defense mechanisms. Medicinal plants are a vital source of nutrition and active pharmaceutical agents. The production of valuable specialized metabolites and bioactive compounds has increased with the improvement of transgenic techniques like gene silencing and gene overexpression. These techniques are beneficial for decreasing production costs and increasing nutritional value. Utilizing biotechnological applications to enhance specialized metabolites in medicinal plants needs characterization and identification of genes within an elucidated pathway. The breakthrough and advancement of CRISPR/Cas-based gene editing in improving the production of specific metabolites in medicinal plants have gained significant importance in contemporary times. This article imparts a comprehensive recapitulation of the latest advancements made in the implementation of CRISPR-gene editing techniques for the purpose of augmenting specific metabolites in medicinal plants. We also provide further insights and perspectives for improving metabolic engineering scenarios in medicinal plants.
Collapse
Affiliation(s)
- Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Division of Life Science, Anti-aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio R&D Center, Nulla Bio Inc., Jinju, Republic of Korea
| |
Collapse
|
6
|
Sá AGA, House JD. Adding pulse flours to cereal-based snacks and bakery products: An overview of free asparagine quantification methods and mitigation strategies of acrylamide formation in foods. Compr Rev Food Sci Food Saf 2024; 23:e13260. [PMID: 38284574 DOI: 10.1111/1541-4337.13260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024]
Abstract
Thermal processing techniques can lead to the formation of heat-induced toxic substances. Acrylamide is one contaminant that has received much scientific attention in recent years, and it is formed essentially during the Maillard reaction when foods rich in carbohydrates, particularly reducing sugars (glucose, fructose), and certain free amino acids, especially asparagine (ASN), are processed at high temperatures (>120°C). The highly variable free ASN concentration in raw materials makes it challenging for food businesses to keep acrylamide content below the European Commission benchmark levels, while avoiding flavor, color, and texture impacts on their products. Free ASN concentrations in crops are affected by environment, genotype, and soil fertilization, which can also influence protein content and amino acid composition. This review aims to provide an overview of free ASN and acrylamide quantification methods and mitigation strategies for acrylamide formation in foods, focusing on adding pulse flours to cereal-based snacks and bakery products. Overall, this review emphasizes the importance of these mitigation strategies in minimizing acrylamide formation in plant-based products and ensuring safer and healthier food options.
Collapse
Affiliation(s)
- Amanda G A Sá
- Richardson Centre for Food Technology and Research, Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James D House
- Richardson Centre for Food Technology and Research, Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv 2023; 69:108248. [PMID: 37666372 DOI: 10.1016/j.biotechadv.2023.108248] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Cereal crops, including triticeae species (barley, wheat, rye), as well as edible cereals (wheat, corn, rice, oat, rye, sorghum), are significant suppliers for human consumption, livestock feed, and breweries. Over the past half-century, modern varieties of cereal crops with increased yields have contributed to global food security. However, presently cultivated elite crop varieties were developed mainly for optimal environmental conditions. Thus, it has become evident that taking into account the ongoing climate changes, currently a priority should be given to developing new stress-tolerant cereal cultivars. It is necessary to enhance the accuracy of methods and time required to generate new cereal cultivars with the desired features to adapt to climate change and keep up with the world population expansion. The CRISPR/Cas9 system has been developed as a powerful and versatile genome editing tool to achieve desirable traits, such as developing high-yielding, stress-tolerant, and disease-resistant transgene-free lines in major cereals. Despite recent advances, the CRISPR/Cas9 application in cereals faces several challenges, including a significant amount of time required to develop transgene-free lines, laboriousness, and a limited number of genotypes that may be used for the transformation and in vitro regeneration. Additionally, developing elite lines through genome editing has been restricted in many countries, especially Europe and New Zealand, due to a lack of flexibility in GMO regulations. This review provides a comprehensive update to researchers interested in improving cereals using gene-editing technologies, such as CRISPR/Cas9. We will review some critical and recent studies on crop improvements and their contributing factors to superior cereals through gene-editing technologies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
8
|
Oddy J, Chhetry M, Awal R, Addy J, Wilkinson M, Smith D, King R, Hall C, Testa R, Murray E, Raffan S, Curtis TY, Wingen L, Griffiths S, Berry S, Elmore JS, Cryer N, Moreira de Almeida I, Halford NG. Genetic control of grain amino acid composition in a UK soft wheat mapping population. THE PLANT GENOME 2023; 16:e20335. [PMID: 37138544 DOI: 10.1002/tpg2.20335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/23/2022] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
Wheat (Triticum aestivum L.) is a major source of nutrients for populations across the globe, but the amino acid composition of wheat grain does not provide optimal nutrition. The nutritional value of wheat grain is limited by low concentrations of lysine (the most limiting essential amino acid) and high concentrations of free asparagine (precursor to the processing contaminant acrylamide). There are currently few available solutions for asparagine reduction and lysine biofortification through breeding. In this study, we investigated the genetic architecture controlling grain free amino acid composition and its relationship to other traits in a Robigus × Claire doubled haploid population. Multivariate analysis of amino acids and other traits showed that the two groups are largely independent of one another, with the largest effect on amino acids being from the environment. Linkage analysis of the population allowed identification of quantitative trait loci (QTL) controlling free amino acids and other traits, and this was compared against genomic prediction methods. Following identification of a QTL controlling free lysine content, wheat pangenome resources facilitated analysis of candidate genes in this region of the genome. These findings can be used to select appropriate strategies for lysine biofortification and free asparagine reduction in wheat breeding programs.
Collapse
Affiliation(s)
| | | | - Rajani Awal
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | | | | | | | | | | | | | | - Luzie Wingen
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | - J Stephen Elmore
- Department of Food & Nutritional Sciences, University of Reading, Reading, UK
| | | | | | | |
Collapse
|
9
|
Zhou X, Zhao Y, Ni P, Ni Z, Sun Q, Zong Y. CRISPR-mediated acceleration of wheat improvement: advances and perspectives. J Genet Genomics 2023; 50:815-834. [PMID: 37741566 DOI: 10.1016/j.jgg.2023.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Common wheat (Triticum aestivum) is one of the most widely cultivated and consumed crops globally. In the face of limited arable land and climate changes, it is a great challenge to maintain current and increase future wheat production. Enhancing agronomic traits in wheat by introducing mutations across all three homoeologous copies of each gene has proven to be a difficult task due to its large genome with high repetition. However, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease (Cas) genome editing technologies offer a powerful means of precisely manipulating the genomes of crop species, thereby opening up new possibilities for biotechnology and breeding. In this review, we first focus on the development and optimization of the current CRISPR-based genome editing tools in wheat, emphasizing recent breakthroughs in precise and multiplex genome editing. We then describe the general procedure of wheat genome editing and highlight different methods to deliver the genome editing reagents into wheat cells. Furthermore, we summarize the recent applications and advancements of CRISPR/Cas technologies for wheat improvement. Lastly, we discuss the remaining challenges specific to wheat genome editing and its future prospects.
Collapse
Affiliation(s)
- Ximeng Zhou
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Pei Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Koller F, Cieslak M. A perspective from the EU: unintended genetic changes in plants caused by NGT-their relevance for a comprehensive molecular characterisation and risk assessment. Front Bioeng Biotechnol 2023; 11:1276226. [PMID: 37965049 PMCID: PMC10641861 DOI: 10.3389/fbioe.2023.1276226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Several regions in the world are currently holding discussions in regard to the regulation of new genomic techniques (NGTs) and their application in agriculture. The European Commission, for instance, is proposing the introduction of specific regulation for NGT plants. Various questions need to be answered including e.g., the extent to which NGT-induced intended and unintended genetic modifications must be subjected to a mandatory risk assessment as part of an approval procedure. This review mostly focuses on findings in regard to unintended genetic changes that can be caused by the application of NGTs. More specifically, the review deals with the application of the nuclease CRISPR/Cas, which is currently the most important tool for developing NGT plants, and its potential to introduce double strand breaks (DSBs) at a targeted DNA sequence. For this purpose, we identified the differences in comparison to non-targeted mutagenesis methods used in conventional breeding. The review concludes that unintended genetic changes caused by NGT processes are relevant to risk assessment. Due to the technical characteristics of NGTs, the sites of the unintended changes, their genomic context and their frequency (in regard to specific sites) mean that the resulting gene combinations (intended or unintended) may be unlikely to occur with conventional methods. This, in turn, implies that the biological effects (phenotypes) can also be different and may cause risks to health and the environment. Therefore, we conclude that the assessment of intended as well as unintended genetic changes should be part of a mandatory comprehensive molecular characterisation and risk assessment of NGT plants that are meant for environmental releases or for market authorisation.
Collapse
Affiliation(s)
- Franziska Koller
- Fachstelle Gentechnik und Umwelt (FGU), Munich, Bavaria, Germany
| | | |
Collapse
|
11
|
Kaur N, Halford NG. Reducing the Risk of Acrylamide and Other Processing Contaminant Formation in Wheat Products. Foods 2023; 12:3264. [PMID: 37685197 PMCID: PMC10486470 DOI: 10.3390/foods12173264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Wheat is a staple crop, consumed worldwide as a major source of starch and protein. Global intake of wheat has increased in recent years, and overall, wheat is considered to be a healthy food, particularly when products are made from whole grains. However, wheat is almost invariably processed before it is consumed, usually via baking and/or toasting, and this can lead to the formation of toxic processing contaminants, including acrylamide, 5-hydroxymethylfurfural (HMF) and polycyclic aromatic hydrocarbons (PAHs). Acrylamide is principally formed from free (soluble, non-protein) asparagine and reducing sugars (glucose, fructose and maltose) within the Maillard reaction and is classified as a Group 2A carcinogen (probably carcinogenic to humans). It also has neurotoxic and developmental effects at high doses. HMF is also generated within the Maillard reaction but can also be formed via the dehydration of fructose or caramelisation. It is frequently found in bread, biscuits, cookies, and cakes. Its molecular structure points to genotoxicity and carcinogenic risks. PAHs are a large class of chemical compounds, many of which are genotoxic, mutagenic, teratogenic and carcinogenic. They are mostly formed during frying, baking and grilling due to incomplete combustion of organic matter. Production of these processing contaminants can be reduced with changes in recipe and processing parameters, along with effective quality control measures. However, in the case of acrylamide and HMF, their formation is also highly dependent on the concentrations of precursors in the grain. Here, we review the synthesis of these contaminants, factors impacting their production and the mitigation measures that can be taken to reduce their formation in wheat products, focusing on the role of genetics and agronomy. We also review the risk management measures adopted by food safety authorities around the world.
Collapse
|
12
|
Elsharawy H, Refat M. CRISPR/Cas9 genome editing in wheat: enhancing quality and productivity for global food security-a review. Funct Integr Genomics 2023; 23:265. [PMID: 37541970 DOI: 10.1007/s10142-023-01190-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Wheat (Triticum aestivum L.) is an important cereal crop that is grown all over the world for food and industrial purposes. Wheat is essential to the human diet due to its rich content of necessary amino acids, minerals, vitamins, and calories. Various wheat breeding techniques have been utilized to improve its quality, productivity, and resistance to biotic and abiotic stress impairing production. However, these techniques are expensive, demanding, and time-consuming. Additionally, these techniques need multiple generations to provide the desired results, and the improved traits could be lost over time. To overcome these challenges, researchers have developed various genome editing tools to improve the quality and quantity of cereal crops, including wheat. Genome editing technologies evolve quickly. Nowadays, single or multiple mutations can be enabled and targeted at specific loci in the plant genome, allowing controlled removal of undesirable features or insertion of advantageous ones. Clustered, regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) is a powerful genome editing tool that can be effectively used for precise genome editing of wheat and other crops. This review aims to provide a comprehensive understanding of this technology's potential applications to enhance wheat's quality and productivity. It will first explore the function of CRISPR/Cas9 in preserving the adaptive immunity of prokaryotic organisms, followed by a discussion of its current applications in wheat breeding.
Collapse
Affiliation(s)
- Hany Elsharawy
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt.
| | - Moath Refat
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong, University, Xi'an, 710061, China
| |
Collapse
|
13
|
Yigider E, Taspinar MS, Agar G. Advances in bread wheat production through CRISPR/Cas9 technology: a comprehensive review of quality and other aspects. PLANTA 2023; 258:55. [PMID: 37522927 DOI: 10.1007/s00425-023-04199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
MAIN CONCLUSION This review provides a comprehensive overview of the CRISPR/Cas9 technique and the research areas of this gene editing tool in improving wheat quality. Wheat (Triticum aestivum L.), the basic nutrition for most of the human population, contributes 20% of the daily energy needed because of its, carbohydrate, essential amino acids, minerals, protein, and vitamin content. Wheat varieties that produce high yields and have enhanced nutritional quality will be required to fulfill future demands. Hexaploid wheat has A, B, and D genomes and includes three like but not identical copies of genes that influence important yield and quality. CRISPR/Cas9, which allows multiplex genome editing provides major opportunities in genome editing studies of plants, especially complicated genomes such as wheat. In this overview, we discuss the CRISPR/Cas9 technique, which is credited with bringing about a paradigm shift in genome editing studies. We also provide a summary of recent research utilizing CRISPR/Cas9 to investigate yield, quality, resistance to biotic/abiotic stress, and hybrid seed production. In addition, we provide a synopsis of the laboratory experience-based solution alternatives as well as the potential obstacles for wheat CRISPR studies. Although wheat's extensive genome and complicated polyploid structure previously slowed wheat genetic engineering and breeding progress, effective CRISPR/Cas9 systems are now successfully used to boost wheat development.
Collapse
Affiliation(s)
- Esma Yigider
- Faculty of Agriculture, Department of Agricultural Biotechnology, Atatürk University, 25240, Erzurum, Turkey
| | - Mahmut Sinan Taspinar
- Faculty of Agriculture, Department of Agricultural Biotechnology, Atatürk University, 25240, Erzurum, Turkey.
| | - Guleray Agar
- Faculty of Science, Department of Biology, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
14
|
Loureiro I, Escorial MC, Chueca MC. Natural hybridization between wheat (Triticum aestivum L.) and its wild relatives Aegilops geniculata Roth and Aegilops triuncialis L. PEST MANAGEMENT SCIENCE 2023; 79:2247-2254. [PMID: 36785882 DOI: 10.1002/ps.7406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cultivated bread wheat (Triticum aestivum L.) spontaneously hybridizes with wild/weedy related Aegilops populations, but little is known about the actual rates at which this hybridization occurs under field conditions. It is very important to provide reliable empirical data on this phenomenon in order to assess the potential crop-wild introgression, especially in the context of conducting risk assessments for the commercialization of genetically modified (GM) wheat, as gene flow from wheat to Aegilops species could transfer into the wild species genes coding for traits such as resistance to herbicides, insects, diseases or environmental stresses. RESULTS The spontaneous hybridization rates between wheat and A. geniculata and A. triuncialis, which are very abundant in the Mediterranean area, have been estimated for the first time in the northern part of the Meseta Central, the great central plateau which includes the largest area of wheat cultivation in Spain. Hybridization rates averaged 0.12% and 0.008% for A. geniculata and A. triuncialis, respectively. Hybrids were found in 26% of A. geniculata and 5% of A. triuncialis populations, at rates that can be ≤3.6% for A. geniculata and 0.24% for A. triuncialis. CONCLUSION The detection of Aegilops spp.-wheat hybrids in Aegilops populations indicates that gene flow can occur, although wheat is considered a crop with a low-to-medium risk for transgene escape. These data on field hybridization rates are essential for GM wheat risk assessment purposes. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Iñigo Loureiro
- Plant Protection Department, Weed Science Group, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Madrid, Spain
| | - María Concepción Escorial
- Plant Protection Department, Weed Science Group, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Madrid, Spain
| | - María Cristina Chueca
- Plant Protection Department, Weed Science Group, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Madrid, Spain
| |
Collapse
|
15
|
Marone D, Mastrangelo AM, Borrelli GM. From Transgenesis to Genome Editing in Crop Improvement: Applications, Marketing, and Legal Issues. Int J Mol Sci 2023; 24:ijms24087122. [PMID: 37108285 PMCID: PMC10138802 DOI: 10.3390/ijms24087122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The biotechnological approaches of transgenesis and the more recent eco-friendly new breeding techniques (NBTs), in particular, genome editing, offer useful strategies for genetic improvement of crops, and therefore, recently, they have been receiving increasingly more attention. The number of traits improved through transgenesis and genome editing technologies is growing, ranging from resistance to herbicides and insects to traits capable of coping with human population growth and climate change, such as nutritional quality or resistance to climatic stress and diseases. Research on both technologies has reached an advanced stage of development and, for many biotech crops, phenotypic evaluations in the open field are already underway. In addition, many approvals regarding main crops have been granted. Over time, there has been an increase in the areas cultivated with crops that have been improved through both approaches, but their use in various countries has been limited by legislative restrictions according to the different regulations applied which affect their cultivation, marketing, and use in human and animal nutrition. In the absence of specific legislation, there is an on-going public debate with favorable and unfavorable positions. This review offers an updated and in-depth discussion on these issues.
Collapse
Affiliation(s)
- Daniela Marone
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy
| | - Anna Maria Mastrangelo
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy
| | - Grazia Maria Borrelli
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy
| |
Collapse
|
16
|
Hickman DT, Comont D, Rasmussen A, Birkett MA. Novel and holistic approaches are required to realize allelopathic potential for weed management. Ecol Evol 2023; 13:e10018. [PMID: 37091561 PMCID: PMC10121234 DOI: 10.1002/ece3.10018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
Allelopathy, that is, plant-plant inhibition via the release of secondary metabolites into the environment, has potential for the management of weeds by circumventing herbicide resistance. However, mechanisms underpinning allelopathy are notoriously difficult to elucidate, hindering real-world application either in the form of commercial bioherbicides or allelopathic crops. Such limited application is exemplified by evidence of limited knowledge of the potential benefits of allelopathy among end users. Here, we examine potential applications of this phenomenon, paying attention to novel approaches and influential factors requiring greater consideration, with the intention of improving the reputation and uptake of allelopathy. Avenues to facilitate more effective allelochemical discovery are also considered, with a view to stimulating the identification of new compounds and allelopathic species. Synthesis and Applications: We conclude that tackling increasing weed pressure on agricultural productivity would benefit from greater integration of the phenomenon of allelopathy, which in turn would be greatly served by a multi-disciplinary and exhaustive approach, not just through more effective isolation of the interactions involved, but also through greater consideration of factors which may influence them in the field, facilitating optimization of their benefits for weed management.
Collapse
Affiliation(s)
- Darwin T. Hickman
- Protecting Crops and the EnvironmentRothamsted ResearchHarpendenUK
- School of BiosciencesUniversity of NottinghamSutton BoningtonUK
| | - David Comont
- Protecting Crops and the EnvironmentRothamsted ResearchHarpendenUK
| | | | | |
Collapse
|
17
|
Ravikiran KT, Thribhuvan R, Sheoran S, Kumar S, Kushwaha AK, Vineeth TV, Saini M. Tailoring crops with superior product quality through genome editing: an update. PLANTA 2023; 257:86. [PMID: 36949234 DOI: 10.1007/s00425-023-04112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In this review, using genome editing, the quality trait alterations in important crops have been discussed, along with the challenges encountered to maintain the crop products' quality. The delivery of economic produce with superior quality is as important as high yield since it dictates consumer's acceptance and end use. Improving product quality of various agricultural and horticultural crops is one of the important targets of plant breeders across the globe. Significant achievements have been made in various crops using conventional plant breeding approaches, albeit, at a slower rate. To keep pace with ever-changing consumer tastes and preferences and industry demands, such efforts must be supplemented with biotechnological tools. Fortunately, many of the quality attributes are resultant of well-understood biochemical pathways with characterized genes encoding enzymes at each step. Targeted mutagenesis and transgene transfer have been instrumental in bringing out desired qualitative changes in crops but have suffered from various pitfalls. Genome editing, a technique for methodical and site-specific modification of genes, has revolutionized trait manipulation. With the evolution of versatile and cost effective CRISPR/Cas9 system, genome editing has gained significant traction and is being applied in several crops. The availability of whole genome sequences with the advent of next generation sequencing (NGS) technologies further enhanced the precision of these techniques. CRISPR/Cas9 system has also been utilized for desirable modifications in quality attributes of various crops such as rice, wheat, maize, barley, potato, tomato, etc. The present review summarizes salient findings and achievements of application of genome editing for improving product quality in various crops coupled with pointers for future research endeavors.
Collapse
Affiliation(s)
- K T Ravikiran
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, West Bengal, India
| | - Seema Sheoran
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, Haryana, India.
| | - Sandeep Kumar
- ICAR-Indian Institute of Natural Resins and Gums, Ranchi, Jharkhand, India
| | - Amar Kant Kushwaha
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - T V Vineeth
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Bharuch, Gujarat, India
- Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India
| | - Manisha Saini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
18
|
Raffan S, Oddy J, Mead A, Barker G, Curtis T, Usher S, Burt C, Halford NG. Field assessment of genome-edited, low asparagine wheat: Europe's first CRISPR wheat field trial. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1097-1099. [PMID: 36759345 DOI: 10.1111/pbi.14026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 05/25/2023]
Affiliation(s)
| | | | | | - Gary Barker
- Functional Genomics, School of Biological Sciences, University of Bristol, Bristol, UK
| | | | | | | | | |
Collapse
|
19
|
Pesce F, Ponzo V, Mazzitelli D, Varetto P, Bo S, Saguy IS. Strategies to Reduce Acrylamide Formation During Food Processing Focusing on Cereals, Children and Toddler Consumption: A Review. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2164896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Francesco Pesce
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Valentina Ponzo
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Davide Mazzitelli
- Department of Reseach and Development, Soremartec Italia Srl, Alba, CN, Italy
| | - Paolo Varetto
- Department of Reseach and Development, Soremartec Italia Srl, Alba, CN, Italy
| | - Simona Bo
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - I. Sam Saguy
- Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
20
|
Oddy J, Addy J, Mead A, Hall C, Mackay C, Ashfield T, McDiarmid F, Curtis TY, Raffan S, Wilkinson M, Elmore JS, Cryer N, de Almeida IM, Halford NG. Reducing Dietary Acrylamide Exposure from Wheat Products through Crop Management and Imaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3403-3413. [PMID: 36745538 PMCID: PMC9951245 DOI: 10.1021/acs.jafc.2c07208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
The nutritional safety of wheat-based food products is compromised by the presence of the processing contaminant acrylamide. Reduction of the key acrylamide precursor, free (soluble, non-protein) asparagine, in wheat grain can be achieved through crop management strategies, but such strategies have not been fully developed. We ran two field trials with 12 soft (biscuit) wheat varieties and different nitrogen, sulfur, potassium, and phosphorus fertilizer combinations. Our results indicated that a nitrogen-to-sulfur ratio of 10:1 kg/ha was sufficient to prevent large increases in free asparagine, whereas withholding potassium or phosphorus alone did not cause increases in free asparagine when sulfur was applied. Multispectral measurements of plants in the field were able to predict the free asparagine content of grain with an accuracy of 71%, while a combination of multispectral, fluorescence, and morphological measurements of seeds could distinguish high free asparagine grain from low free asparagine grain with an accuracy of 86%. The acrylamide content of biscuits correlated strongly with free asparagine content and with color measurements, indicating that agronomic strategies to decrease free asparagine would be effective and that quality control checks based on product color could eliminate high acrylamide biscuit products.
Collapse
Affiliation(s)
- Joseph Oddy
- Rothamsted
Research, Harpenden, Hertfordshire AL5 2JQ, United
Kingdom
| | - John Addy
- Rothamsted
Research, Harpenden, Hertfordshire AL5 2JQ, United
Kingdom
| | - Andrew Mead
- Rothamsted
Research, Harpenden, Hertfordshire AL5 2JQ, United
Kingdom
| | - Chris Hall
- Rothamsted
Research, Harpenden, Hertfordshire AL5 2JQ, United
Kingdom
| | - Chris Mackay
- Rothamsted
Research, Harpenden, Hertfordshire AL5 2JQ, United
Kingdom
| | - Tom Ashfield
- Rothamsted
Research, Harpenden, Hertfordshire AL5 2JQ, United
Kingdom
- Crop
Health and Protection (CHAP), Rothamsted, Harpenden AL5 2JQ, United
Kingdom
| | - Faye McDiarmid
- Crop
Health and Protection (CHAP), Rothamsted, Harpenden AL5 2JQ, United
Kingdom
| | - Tanya Y. Curtis
- Curtis
Analytics Limited, Discovery
Park, Sandwich CT13 9FE, United Kingdom
| | - Sarah Raffan
- Rothamsted
Research, Harpenden, Hertfordshire AL5 2JQ, United
Kingdom
| | - Mark Wilkinson
- Rothamsted
Research, Harpenden, Hertfordshire AL5 2JQ, United
Kingdom
| | - J. Stephen Elmore
- Department
of Food and Nutritional Sciences, University
of Reading, Reading RG6 6DZ, U.K.
| | - Nicholas Cryer
- Mondele̅z
UK R&D Ltd, Bournville
Lane, Bournville, Birmingham, B30 2LU, U.K.
| | | | - Nigel G. Halford
- Rothamsted
Research, Harpenden, Hertfordshire AL5 2JQ, United
Kingdom
| |
Collapse
|
21
|
May D, Paldi K, Altpeter F. Targeted mutagenesis with sequence-specific nucleases for accelerated improvement of polyploid crops: Progress, challenges, and prospects. THE PLANT GENOME 2023:e20298. [PMID: 36692095 DOI: 10.1002/tpg2.20298] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Many of the world's most important crops are polyploid. The presence of more than two sets of chromosomes within their nuclei and frequently aberrant reproductive biology in polyploids present obstacles to conventional breeding. The presence of a larger number of homoeologous copies of each gene makes random mutation breeding a daunting task for polyploids. Genome editing has revolutionized improvement of polyploid crops as multiple gene copies and/or alleles can be edited simultaneously while preserving the key attributes of elite cultivars. Most genome-editing platforms employ sequence-specific nucleases (SSNs) to generate DNA double-stranded breaks at their target gene. Such DNA breaks are typically repaired via the error-prone nonhomologous end-joining process, which often leads to frame shift mutations, causing loss of gene function. Genome editing has enhanced the disease resistance, yield components, and end-use quality of polyploid crops. However, identification of candidate targets, genotyping, and requirement of high mutagenesis efficiency remain bottlenecks for targeted mutagenesis in polyploids. In this review, we will survey the tremendous progress of SSN-mediated targeted mutagenesis in polyploid crop improvement, discuss its challenges, and identify optimizations needed to sustain further progress.
Collapse
Affiliation(s)
- David May
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Katalin Paldi
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Fredy Altpeter
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
- Plant Cellular and Molecular Biology Program, Genetics Institute, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
| |
Collapse
|
22
|
Ly DNP, Iqbal S, Fosu-Nyarko J, Milroy S, Jones MGK. Multiplex CRISPR-Cas9 Gene-Editing Can Deliver Potato Cultivars with Reduced Browning and Acrylamide. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020379. [PMID: 36679094 PMCID: PMC9864857 DOI: 10.3390/plants12020379] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/19/2022] [Accepted: 01/10/2023] [Indexed: 05/14/2023]
Abstract
Storing potato tubers at cold temperatures, either for transport or continuity of supply, is associated with the conversion of sucrose to reducing sugars. When cold-stored cut tubers are processed at high temperatures, with endogenous asparagine, acrylamide is formed. Acrylamide is classified as a carcinogen. Potato processors prefer cultivars which accumulate fewer reducing sugars and thus less acrylamide on processing, and suitable processing cultivars may not be available. We used CRISPR-Cas9 to disrupt the genes encoding vacuolar invertase (VInv) and asparagine synthetase 1 (AS1) of cultivars Atlantic and Desiree to reduce the accumulation of reducing sugars and the production of asparagine after cold storage. Three of the four guide RNAs employed induced mutation frequencies of 17-98%, which resulted in deletions, insertions and substitutions at the targeted gene sites. Eight of ten edited events had mutations in at least one allele of both genes; for two, only the VInv was edited. No wild-type allele was detected in both genes of events DSpco7, DSpFN4 and DSpco12, suggesting full allelic mutations. Tubers of two Atlantic and two Desiree events had reduced fructose and glucose concentrations after cold storage. Crisps from these and four other Desiree events were lighter in colour and included those with 85% less acrylamide. These results demonstrate that multiplex CRISPR-Cas9 technology can generate improved potato cultivars for healthier processed potato products.
Collapse
Affiliation(s)
- Diem Nguyen Phuoc Ly
- Crop Biotechnology Research Group, School of Agricultural Sciences, College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Perth, WA 6150, Australia
| | - Sadia Iqbal
- Crop Biotechnology Research Group, School of Agricultural Sciences, College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Correspondence: (S.I.); (J.F.-N.); (M.G.K.J.)
| | - John Fosu-Nyarko
- Crop Biotechnology Research Group, School of Agricultural Sciences, College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Correspondence: (S.I.); (J.F.-N.); (M.G.K.J.)
| | - Stephen Milroy
- Crop Biotechnology Research Group, School of Agricultural Sciences, College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia
- Potato Research Western Australia, Murdoch University, Perth, WA 6150, Australia
| | - Michael G. K. Jones
- Crop Biotechnology Research Group, School of Agricultural Sciences, College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Potato Research Western Australia, Murdoch University, Perth, WA 6150, Australia
- Correspondence: (S.I.); (J.F.-N.); (M.G.K.J.)
| |
Collapse
|
23
|
Bibliometric Analysis of Functional Crops and Nutritional Quality: Identification of Gene Resources to Improve Crop Nutritional Quality through Gene Editing Technology. Nutrients 2023; 15:nu15020373. [PMID: 36678244 PMCID: PMC9865409 DOI: 10.3390/nu15020373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/25/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
Food security and hidden hunger are two worldwide serious and complex challenges nowadays. As one of the newly emerged technologies, gene editing technology and its application to crop improvement offers the possibility to relieve the pressure of food security and nutrient needs. In this paper, we analyzed the research status of quality improvement based on gene editing using four major crops, including rice, soybean, maize, and wheat, through a bibliometric analysis. The research hotspots now focus on the regulatory network of related traits, quite different from the technical improvements to gene editing in the early stage, while the trends in deregulation in gene-edited crops have accelerated related research. Then, we mined quality-related genes that can be edited to develop functional crops, including 16 genes related to starch, 15 to lipids, 14 to proteins, and 15 to other functional components. These findings will provide useful reference information and gene resources for the improvement of functional crops and nutritional quality based on gene editing technology.
Collapse
|
24
|
Zhou L, Wang Y, Wang P, Wang C, Wang J, Wang X, Cheng H. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene editing analysis in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:1059404. [PMID: 36643290 PMCID: PMC9832336 DOI: 10.3389/fpls.2022.1059404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
CRIPSR/Cas9 gene editing system is an effective tool for genome modification in plants. Multiple target sites are usually designed and the effective target sites are selected for editing. Upland cotton (Gossypium hirsutum L., hereafter cotton) is allotetraploid and is commonly considered as difficult and inefficient to transform, it is important to select the effective target sites that could result in the ideal transgenic plants with the CRISPR-induced mutations. In this study, Agrobacterium rhizogenes-mediated hairy root method was optimized to detect the feasibility of the target sites designed in cotton phytoene desaturase (GhPDS) gene. A. rhizogenes showed the highest hairy root induction (30%) when the bacteria were cultured until OD600 reached to 0.8. This procedure was successfully applied to induce hairy roots in the other three cultivars (TM-1, Lumian-21, Zhongmian-49) and the mutations were detected in GhPDS induced by CRISPR/Cas9 system. Different degrees of base deletions at two sgRNAs (sgRNA5 and sgRNA10) designed in GhPDS were detected in R15 hairy roots. Furthermore, we obtained an albino transgenic cotton seeding containing CRISPR/Cas9-induced gene editing mutations in sgRNA10. The hairy root transformation system established in this study is sufficient for selecting sgRNAs in cotton, providing a technical basis for functional genomics research of cotton.
Collapse
Affiliation(s)
- Lili Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yali Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peilin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunling Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiamin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
25
|
Kuluev BR, Mikhailova EV, Kuluev AR, Galimova AA, Zaikina EA, Khlestkina EK. Genome Editing in Species of the Tribe Triticeae with the CRISPR/Cas System. Mol Biol 2022. [DOI: 10.1134/s0026893322060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Huang Y, Wang H, Zhu Y, Huang X, Li S, Wu X, Zhao Y, Bao Z, Qin L, Jin Y, Cui Y, Ma G, Xiao Q, Wang Q, Wang J, Yang X, Liu H, Lu X, Larkins BA, Wang W, Wu Y. THP9 enhances seed protein content and nitrogen-use efficiency in maize. Nature 2022; 612:292-300. [PMID: 36385527 DOI: 10.1038/s41586-022-05441-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
Abstract
Teosinte, the wild ancestor of maize (Zea mays subsp. mays), has three times the seed protein content of most modern inbreds and hybrids, but the mechanisms that are responsible for this trait are unknown1,2. Here we use trio binning to create a contiguous haplotype DNA sequence of a teosinte (Zea mays subsp. parviglumis) and, through map-based cloning, identify a major high-protein quantitative trait locus, TEOSINTE HIGH PROTEIN 9 (THP9), on chromosome 9. THP9 encodes an asparagine synthetase 4 enzyme that is highly expressed in teosinte, but not in the B73 inbred, in which a deletion in the tenth intron of THP9-B73 causes incorrect splicing of THP9-B73 transcripts. Transgenic expression of THP9-teosinte in B73 significantly increased the seed protein content. Introgression of THP9-teosinte into modern maize inbreds and hybrids greatly enhanced the accumulation of free amino acids, especially asparagine, throughout the plant, and increased seed protein content without affecting yield. THP9-teosinte seems to increase nitrogen-use efficiency, which is important for promoting a high yield under low-nitrogen conditions.
Collapse
Affiliation(s)
- Yongcai Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences, Shanghai, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences, Shanghai, China
| | - Yidong Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xing Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Shuai Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xingguo Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yao Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zhigui Bao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Li Qin
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, China
| | - Yongbo Jin
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yahui Cui
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Guangjin Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Qiao Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Qiong Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences, Shanghai, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences, Shanghai, China
| | - Xuerong Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hongjun Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, China
| | - Brian A Larkins
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Wenqin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
27
|
Abdul Aziz M, Brini F, Rouached H, Masmoudi K. Genetically engineered crops for sustainably enhanced food production systems. FRONTIERS IN PLANT SCIENCE 2022; 13:1027828. [PMID: 36426158 PMCID: PMC9680014 DOI: 10.3389/fpls.2022.1027828] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Genetic modification of crops has substantially focused on improving traits for desirable outcomes. It has resulted in the development of crops with enhanced yields, quality, and tolerance to biotic and abiotic stresses. With the advent of introducing favorable traits into crops, biotechnology has created a path for the involvement of genetically modified (GM) crops into sustainable food production systems. Although these plants heralded a new era of crop production, their widespread adoption faces diverse challenges due to concerns about the environment, human health, and moral issues. Mitigating these concerns with scientific investigations is vital. Hence, the purpose of the present review is to discuss the deployment of GM crops and their effects on sustainable food production systems. It provides a comprehensive overview of the cultivation of GM crops and the issues preventing their widespread adoption, with appropriate strategies to overcome them. This review also presents recent tools for genome editing, with a special focus on the CRISPR/Cas9 platform. An outline of the role of crops developed through CRSIPR/Cas9 in achieving sustainable development goals (SDGs) by 2030 is discussed in detail. Some perspectives on the approval of GM crops are also laid out for the new age of sustainability. The advancement in molecular tools through plant genome editing addresses many of the GM crop issues and facilitates their development without incorporating transgenic modifications. It will allow for a higher acceptance rate of GM crops in sustainable agriculture with rapid approval for commercialization. The current genetic modification of crops forecasts to increase productivity and prosperity in sustainable agricultural practices. The right use of GM crops has the potential to offer more benefit than harm, with its ability to alleviate food crises around the world.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Hatem Rouached
- Michigan State University, Plant and Soil Science Building, East Lansing, MI, United States
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| |
Collapse
|
28
|
Li B, Fu C, Zhou J, Hui F, Wang Q, Wang F, Wang G, Xu Z, Che L, Yuan D, Wang Y, Zhang X, Jin S. Highly Efficient Genome Editing Using Geminivirus-Based CRISPR/Cas9 System in Cotton Plant. Cells 2022; 11:cells11182902. [PMID: 36139477 PMCID: PMC9496795 DOI: 10.3390/cells11182902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Upland cotton (Gossypium hirsutum), an allotetraploid, contains At- and Dt- subgenome and most genes have multiple homologous copies, which pose a huge challenge to investigate genes’ function due to the functional redundancy. Therefore, it is of great significance to establish effective techniques for the functional genomics in cotton. In this study, we tested two novel genome editing vectors and compared them with the CRISPR/Cas9 system (pRGEB32-GhU6.7) developed in our laboratory previously. In the first new vector, the sgRNA transcription unite was constructed into the replicon (LIR-Donor-SIR-Rep-LIR) of the bean yellow dwarf virus (BeYDV) and named as pBeYDV-Cas9-KO and in the second vector, the ubiquitin promoter that drives Cas9 protein was replaced with a constitutive CaMV 35S promoter and defined as pRGEB32-35S. The results from transgenic cotton calli/plants revealed that pBeYDV-Cas9-KO vector showed the highest editing efficiency of GhCLA1 in At and Dt subgenomes edited simultaneously up to 73.3% compared to the 44.6% of pRGEB32-GhU6.7 and 51.2% of pRGEB32-35S. The editing efficiency of GhCLA1 in At and Dt subgenome by pBeYDV-Cas9-KO was 85.7% and 97.2%, respectively, whereas the efficiency by pRGEB32-GhU6.7 and pRGEB32-35S vectors was 67.7%, 86.5%, 84%, and 87.2%, respectively. The editing profile of pBeYDV-Cas9-KO was mainly composed of fragment deletion, accounting for 84.0% and ranging 1–10 bp in length. The main editing sites are located at positions 11–17 upstream of PAM site. The off-target effects were not detected in all potential off-target sites. Taken together, the pBeYDV-Cas9-KO system has high editing efficiency and specificity with wide editing range than the traditional CRISPR/Cas9 system, which provides a powerful tool for cotton functional genomics research and molecular breeding.
Collapse
Affiliation(s)
- Bo Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Crop Biotechnology, Urumqi 830091, China
| | - Chunyang Fu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawei Zhou
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengjiao Hui
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiongqiong Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fuqiu Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongping Xu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lianlian Che
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Daojun Yuan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanqin Wang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer 843300, China
- Correspondence: (Y.W.); (S.J.)
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (Y.W.); (S.J.)
| |
Collapse
|
29
|
Raffan S, Kaur N, Halford NG. Epigenetic switch reveals CRISPR/Cas9 response to cytosine methylation in plants. THE NEW PHYTOLOGIST 2022; 235:2146-2148. [PMID: 35979687 PMCID: PMC9545223 DOI: 10.1111/nph.18405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article is a Commentary on Přibylová et al. (2022) 235: 2285–2299.
Collapse
|
30
|
Pfotenhauer AC, Occhialini A, Nguyen MA, Scott H, Dice LT, Harbison SA, Li L, Reuter DN, Schimel TM, Stewart CN, Beal J, Lenaghan SC. Building the Plant SynBio Toolbox through Combinatorial Analysis of DNA Regulatory Elements. ACS Synth Biol 2022; 11:2741-2755. [PMID: 35901078 PMCID: PMC9396662 DOI: 10.1021/acssynbio.2c00147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
While the installation of complex genetic circuits in
microorganisms
is relatively routine, the synthetic biology toolbox is severely limited
in plants. Of particular concern is the absence of combinatorial analysis
of regulatory elements, the long design-build-test cycles associated
with transgenic plant analysis, and a lack of naming standardization
for cloning parts. Here, we use previously described plant regulatory
elements to design, build, and test 91 transgene cassettes for relative
expression strength. Constructs were transiently transfected into Nicotiana benthamiana leaves and expression of a
fluorescent reporter was measured from plant canopies, leaves, and
protoplasts isolated from transfected plants. As anticipated, a dynamic
level of expression was achieved from the library, ranging from near
undetectable for the weakest cassette to a ∼200-fold increase
for the strongest. Analysis of expression levels in plant canopies,
individual leaves, and protoplasts were correlated, indicating that
any of the methods could be used to evaluate regulatory elements in
plants. Through this effort, a well-curated 37-member part library
of plant regulatory elements was characterized, providing the necessary
data to standardize construct design for precision metabolic engineering
in plants.
Collapse
Affiliation(s)
- Alexander C Pfotenhauer
- Department of Food Science, University of Tennessee Knoxville, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, Tennessee 37996, United States.,Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
| | - Alessandro Occhialini
- Department of Food Science, University of Tennessee Knoxville, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, Tennessee 37996, United States.,Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
| | - Mary-Anne Nguyen
- Department of Food Science, University of Tennessee Knoxville, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, Tennessee 37996, United States.,Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
| | - Helen Scott
- Intelligent Software and Systems, Raytheon BBN Technologies, Cambridge, Massachusetts 02138, United States
| | - Lezlee T Dice
- Department of Food Science, University of Tennessee Knoxville, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, Tennessee 37996, United States.,Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
| | - Stacee A Harbison
- Department of Food Science, University of Tennessee Knoxville, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, Tennessee 37996, United States.,Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
| | - Li Li
- Department of Food Science, University of Tennessee Knoxville, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, Tennessee 37996, United States.,Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
| | - D Nikki Reuter
- Department of Food Science, University of Tennessee Knoxville, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, Tennessee 37996, United States.,Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
| | - Tayler M Schimel
- Department of Food Science, University of Tennessee Knoxville, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, Tennessee 37996, United States.,Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
| | - C Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States.,Department of Plant Sciences, University of Tennessee Knoxville, 2431 Joe Johnson Dr., Knoxville, Tennessee 37996, United States
| | - Jacob Beal
- Intelligent Software and Systems, Raytheon BBN Technologies, Cambridge, Massachusetts 02138, United States
| | - Scott C Lenaghan
- Department of Food Science, University of Tennessee Knoxville, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, Tennessee 37996, United States.,Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
| |
Collapse
|
31
|
Awan MJA, Pervaiz K, Rasheed A, Amin I, Saeed NA, Dhugga KS, Mansoor S. Genome edited wheat- current advances for the second green revolution. Biotechnol Adv 2022; 60:108006. [PMID: 35732256 DOI: 10.1016/j.biotechadv.2022.108006] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/21/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022]
Abstract
Common wheat is a major source of nutrition around the globe, but unlike maize and rice hybrids, no breakthrough has been made to enhance wheat yield since Green Revolution. With the availability of reference genome sequence of wheat and advancement of allied genomics technologies, understanding of genes involved in grain yield components and disease resistance/susceptibility has opened new avenues for crop improvement. Wheat has a huge hexaploidy genome of approximately 17 GB with 85% repetition, and it is a daunting task to induce any mutation across three homeologues that can be helpful for the enhancement of agronomic traits. The CRISPR-Cas9 system provides a promising platform for genome editing in a site-specific manner. In wheat, CRISPR-Cas9 is being used in the improvement of yield, grain quality, biofortification, resistance against diseases, and tolerance against abiotic factors. The promising outcomes of the CRISPR-based multiplexing approach circumvent the constraint of targeting merely one gene at a time. Deployment of clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) 9 endonuclease (CRISPR-Cas9) and Cas9 variant systems such as cytidine base editing, adenosine base editing, and prime editing in wheat has been used to induce point mutations more precisely. Scientists have acquired major events such as induction of male sterility, fertility restoration, and alteration of seed dormancy through Cas9 in wheat that can facilitate breeding programs for elite variety development. Furthermore, a recent discovery in tissue culturing enables scientists to significantly enhance regeneration efficiency in wheat by transforming the GRF4-GIF1 cassette. Rapid generation advancement by speed breeding technology provides the opportunity for the generation advancement of the desired plants to segregate out unwanted transgenes and allows rapid integration of gene-edited wheat into the breeding pipeline. The combination of these novel technologies addresses some of the most important limiting factors for sustainable and climate-smart wheat that should lead to the second "Green Revolution" for global food security.
Collapse
Affiliation(s)
- Muhammad Jawad Akbar Awan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Komal Pervaiz
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS) & CIMMYT-China office, 12 Zhongguanccun South Street, Beijing 100081, China
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Nasir A Saeed
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Kanwarpal S Dhugga
- Corteva Agriscience, Johnston, IA, USA; International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|
32
|
Halford NG, Raffan S, Oddy J. Progress towards the production of potatoes and cereals with low acrylamide-forming potential. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Zhou E, Zhang Y, Wang H, Jia Z, Wang X, Wen J, Shen J, Fu T, Yi B. Identification and Characterization of the MIKC-Type MADS-Box Gene Family in Brassica napus and Its Role in Floral Transition. Int J Mol Sci 2022; 23:ijms23084289. [PMID: 35457106 PMCID: PMC9026197 DOI: 10.3390/ijms23084289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/03/2023] Open
Abstract
Increasing rapeseed yield has always been a primary goal of rapeseed research and breeding. However, flowering time is a prerequisite for stable rapeseed yield and determines its adaptability to ecological regions. MIKC-type MADS-box (MICK) genes are a class of transcription factors that are involved in various physiological and developmental processes in plants. To understand their role in floral transition-related pathways, a genome-wide screening was conducted with Brassica napus (B. napus), which revealed 172 members. Using previous data from a genome-wide association analysis of flowering traits, BnaSVP and BnaSEP1 were identified as candidate flowering genes. Therefore, we used the CRISPR/Cas9 system to verify the function of BnaSVP and BnaSEP1 in B. napus. T0 plants were edited efficiently at the BnaSVP and BnaSEP1 target sites to generate homozygous and heterozygous mutants with most mutations stably inherited by the next generation. Notably, the mutant only showed the early flowering phenotype when all homologous copies of BnaSVP were edited, indicating functional redundancy between homologous copies. However, no changes in flowering were observed in the BnaSEP1 mutant. Quantitative analysis of the pathway-related genes in the BnaSVP mutant revealed the upregulation of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FLOWERING LOCUS T (FT) genes, which promoted early flowering in the mutant. In summary, our study created early flowering mutants, which provided valuable resources for early maturing breeding, and provided a new method for improving polyploid crops.
Collapse
Affiliation(s)
- Enqiang Zhou
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226001, China; (Y.Z.); (X.W.)
| | - Yin Zhang
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226001, China; (Y.Z.); (X.W.)
| | - Huadong Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Zhibo Jia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Xuejun Wang
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226001, China; (Y.Z.); (X.W.)
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
- Correspondence: ; Tel.: +86-27-8728-1676; Fax: +86-27-8728-0009
| |
Collapse
|
34
|
Oddy J, Raffan S, Wilkinson MD, Elmore JS, Halford NG. Understanding the Relationships between Free Asparagine in Grain and Other Traits to Breed Low-Asparagine Wheat. PLANTS (BASEL, SWITZERLAND) 2022; 11:669. [PMID: 35270139 PMCID: PMC8912546 DOI: 10.3390/plants11050669] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Since the discovery of acrylamide in food, and the identification of free asparagine as the key determinant of acrylamide concentration in wheat products, our understanding of how grain asparagine content is regulated has improved greatly. However, the targeted reduction in grain asparagine content has not been widely implemented in breeding programmes so far. Here we summarise how free asparagine concentration relates to other quality and agronomic traits and show that these relationships are unlikely to pose major issues for the breeding of low-asparagine wheat. We also outline the strategies that are possible for the breeding of low-asparagine wheat, using both natural and induced variation.
Collapse
Affiliation(s)
- Joseph Oddy
- Plant Sciences Department, Rothamsted Research, Harpenden AL5 2JQ, UK; (J.O.); (S.R.); (M.D.W.)
| | - Sarah Raffan
- Plant Sciences Department, Rothamsted Research, Harpenden AL5 2JQ, UK; (J.O.); (S.R.); (M.D.W.)
| | - Mark D. Wilkinson
- Plant Sciences Department, Rothamsted Research, Harpenden AL5 2JQ, UK; (J.O.); (S.R.); (M.D.W.)
| | - J. Stephen Elmore
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, P.O. Box 226, Reading RG6 6AP, UK;
| | - Nigel G. Halford
- Plant Sciences Department, Rothamsted Research, Harpenden AL5 2JQ, UK; (J.O.); (S.R.); (M.D.W.)
| |
Collapse
|
35
|
Yang Y, Xu C, Shen Z, Yan C. Crop Quality Improvement Through Genome Editing Strategy. Front Genome Ed 2022; 3:819687. [PMID: 35174353 PMCID: PMC8841430 DOI: 10.3389/fgeed.2021.819687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Good quality of crops has always been the most concerning aspect for breeders and consumers. However, crop quality is a complex trait affected by both the genetic systems and environmental factors, thus, it is difficult to improve through traditional breeding strategies. Recently, the CRISPR/Cas9 genome editing system, enabling efficiently targeted modification, has revolutionized the field of quality improvement in most crops. In this review, we briefly review the various genome editing ability of the CRISPR/Cas9 system, such as gene knockout, knock-in or replacement, base editing, prime editing, and gene expression regulation. In addition, we highlight the advances in crop quality improvement applying the CRISPR/Cas9 system in four main aspects: macronutrients, micronutrients, anti-nutritional factors and others. Finally, the potential challenges and future perspectives of genome editing in crop quality improvement is also discussed.
Collapse
Affiliation(s)
- Yihao Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
- Department of Crop Genetics and Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Chenda Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Ziyan Shen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Changjie Yan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
- Department of Crop Genetics and Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| |
Collapse
|
36
|
Peng Y, Zhao Y, Yu Z, Zeng J, Xu D, Dong J, Ma W. Wheat Quality Formation and Its Regulatory Mechanism. FRONTIERS IN PLANT SCIENCE 2022; 13:834654. [PMID: 35432421 PMCID: PMC9006054 DOI: 10.3389/fpls.2022.834654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/09/2022] [Indexed: 05/07/2023]
Abstract
Elucidation of the composition, functional characteristics, and formation mechanism of wheat quality is critical for the sustainable development of wheat industry. It is well documented that wheat processing quality is largely determined by its seed storage proteins including glutenins and gliadins, which confer wheat dough with unique rheological properties, making it possible to produce a series of foods for human consumption. The proportion of different gluten components has become an important target for wheat quality improvement. In many cases, the processing quality of wheat is closely associated with the nutritional value and healthy effect of the end-products. The components of wheat seed storage proteins can greatly influence wheat quality and some can even cause intestinal inflammatory diseases or allergy in humans. Genetic and environmental factors have great impacts on seed storage protein synthesis and accumulation, and fertilization and irrigation strategies also greatly affect the seed storage protein content and composition, which together determine the final end-use quality of wheat. This review summarizes the recent progress in research on the composition, function, biosynthesis, and regulatory mechanism of wheat storage proteins and their impacts on wheat end-product quality.
Collapse
Affiliation(s)
- Yanchun Peng
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yun Zhao
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Zitong Yu
- Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Dengan Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jing Dong
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- *Correspondence: Wujun Ma,
| |
Collapse
|
37
|
Nitrogen assimilation in plants: current status and future prospects. J Genet Genomics 2021; 49:394-404. [PMID: 34973427 DOI: 10.1016/j.jgg.2021.12.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
Nitrogen (N) is the driving force for crop yields, however, excessive N application in agriculture not only increases production cost, but also causes severe environmental problems. Therefore, comprehensively understanding the molecular mechanisms of N use efficiency (NUE) and breeding crops with higher NUE is essential to tackle these problems. NUE of crops is determined by N uptake, transport, assimilation, and remobilization. In the process of N assimilation, nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamine-2-oxoglutarate aminotransferase (GOGAT, also known as glutamate synthase) are the major enzymes. NR and NiR mediate the initiation of inorganic N utilization, and GS/GOGAT cycle converts inorganic N to organic N, playing a vital role in N assimilation and the final NUE of crops. Besides, asparagine synthetase (ASN), glutamate dehydrogenase (GDH), and carbamoylphosphate synthetase (CPSase) are also involved. In this review, we summarize the function and regulation of these enzymes reported in three major crops, rice, maize, wheat, also in the model plant Arabidopsis, and we highlight their application in improving NUE of crops via manipulating N assimilation. Anticipated challenges and prospects toward fully understanding the function of N assimilation and further exploring the potential for NUE improvement are discussed.
Collapse
|
38
|
Verma AK, Mandal S, Tiwari A, Monachesi C, Catassi GN, Srivastava A, Gatti S, Lionetti E, Catassi C. Current Status and Perspectives on the Application of CRISPR/Cas9 Gene-Editing System to Develop a Low-Gluten, Non-Transgenic Wheat Variety. Foods 2021; 10:2351. [PMID: 34681400 PMCID: PMC8534962 DOI: 10.3390/foods10102351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
Wheat gluten contains epitopes that trigger celiac disease (CD). A life-long strict gluten-free diet is the only treatment accepted for CD. However, very low-gluten wheat may provide an alternative treatment to CD. Conventional plant breeding methods have not been sufficient to produce celiac-safe wheat. RNA interference technology, to some extent, has succeeded in the development of safer wheat varieties. However, these varieties have multiple challenges in terms of their implementation. Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease 9 (CRISPR/Cas9) is a versatile gene-editing tool that has the ability to edit immunogenic gluten genes. So far, only a few studies have applied CRISPR/Cas9 to modify the wheat genome. In this article, we reviewed the published literature that applied CRISPR/Cas9 in wheat genome editing to investigate the current status of the CRISPR/Cas9 system to produce a low-immunogenic wheat variety. We found that in recent years, the CRISPR/Cas9 system has been continuously improved to edit the complex hexaploid wheat genome. Although some reduced immunogenic wheat varieties have been reported, CRISPR/Cas9 has still not been fully explored in terms of editing the wheat genome. We conclude that further studies are required to apply the CRISPR/Cas9 gene-editing system efficiently for the development of a celiac-safe wheat variety and to establish it as a "tool to celiac safe wheat".
Collapse
Affiliation(s)
- Anil K. Verma
- Celiac Disease Research Laboratory, Polytechnic University of Marche, 60123 Ancona, Italy;
| | - Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, Maharashtra, India;
| | - Aadhya Tiwari
- Department of System Biology, MD Anderson Cancer Center, Houston, TX 77030, USA;
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany
| | - Chiara Monachesi
- Celiac Disease Research Laboratory, Polytechnic University of Marche, 60123 Ancona, Italy;
| | - Giulia N. Catassi
- Division of Pediatrics, DISCO Department, Polytechnic University of Marche, 60123 Ancona, Italy; (G.N.C.); (S.G.); (E.L.); (C.C.)
| | - Akash Srivastava
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02906, USA;
| | - Simona Gatti
- Division of Pediatrics, DISCO Department, Polytechnic University of Marche, 60123 Ancona, Italy; (G.N.C.); (S.G.); (E.L.); (C.C.)
| | - Elena Lionetti
- Division of Pediatrics, DISCO Department, Polytechnic University of Marche, 60123 Ancona, Italy; (G.N.C.); (S.G.); (E.L.); (C.C.)
| | - Carlo Catassi
- Division of Pediatrics, DISCO Department, Polytechnic University of Marche, 60123 Ancona, Italy; (G.N.C.); (S.G.); (E.L.); (C.C.)
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
39
|
Oddy J, Alarcón-Reverte R, Wilkinson M, Ravet K, Raffan S, Minter A, Mead A, Elmore JS, de Almeida IM, Cryer NC, Halford NG, Pearce S. Reduced free asparagine in wheat grain resulting from a natural deletion of TaASN-B2: investigating and exploiting diversity in the asparagine synthetase gene family to improve wheat quality. BMC PLANT BIOLOGY 2021; 21:302. [PMID: 34187359 PMCID: PMC8240372 DOI: 10.1186/s12870-021-03058-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/17/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Understanding the determinants of free asparagine concentration in wheat grain is necessary to reduce levels of the processing contaminant acrylamide in baked and toasted wheat products. Although crop management strategies can help reduce asparagine concentrations, breeders have limited options to select for genetic variation underlying this trait. Asparagine synthetase enzymes catalyse a critical step in asparagine biosynthesis in plants and, in wheat, are encoded by five homeologous gene triads that exhibit distinct expression profiles. Within this family, TaASN2 genes are highly expressed during grain development but TaASN-B2 is absent in some varieties. RESULTS Natural genetic diversity in the asparagine synthetase gene family was assessed in different wheat varieties revealing instances of presence/absence variation and other polymorphisms, including some predicted to affect the function of the encoded protein. The presence and absence of TaASN-B2 was determined across a range of UK and global common wheat varieties and related species, showing that the deletion encompassing this gene was already present in some wild emmer wheat genotypes. Expression profiling confirmed that TaASN2 transcripts were only detectable in the grain, while TaASN3.1 genes were highly expressed during the early stages of grain development. TaASN-A2 was the most highly expressed TaASN2 homeologue in most assayed wheat varieties. TaASN-B2 and TaASN-D2 were expressed at similar, lower levels in varieties possessing TaASN-B2. Expression of TaASN-A2 and TaASN-D2 did not increase to compensate for the absence of TaASN-B2, so total TaASN2 expression was lower in varieties lacking TaASN-B2. Consequently, free asparagine concentrations in field-produced grain were, on average, lower in varieties lacking TaASN-B2, although the effect was lost when free asparagine accumulated to very high concentrations as a result of sulphur deficiency. CONCLUSIONS Selecting wheat genotypes lacking the TaASN-B2 gene may be a simple and rapid way for breeders to reduce free asparagine concentrations in commercial wheat grain.
Collapse
Affiliation(s)
- Joseph Oddy
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - Rocío Alarcón-Reverte
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Mark Wilkinson
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - Karl Ravet
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Sarah Raffan
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - Andrea Minter
- Computational and Analytical Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - Andrew Mead
- Computational and Analytical Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - J. Stephen Elmore
- Department of Food & Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6DZ UK
| | | | - Nicholas C. Cryer
- Mondelēz UK R&D Ltd, Bournville Lane, Bournville, Birmingham, B30 2LU UK
| | - Nigel G. Halford
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
40
|
|