1
|
Li W, Chu C, Zhang T, Sun H, Wang S, Liu Z, Wang Z, Li H, Li Y, Zhang X, Geng Z, Wang Y, Li Y, Zhang H, Fan W, Wang Y, Xu X, Cheng L, Zhang D, Xiong Y, Li H, Zhou B, Guan Q, Deng CH, Han Y, Ma H, Han Z. Pan-genome analysis reveals the evolution and diversity of Malus. Nat Genet 2025:10.1038/s41588-025-02166-6. [PMID: 40240877 DOI: 10.1038/s41588-025-02166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025]
Abstract
Malus Mill., a genus of temperate perennial trees with great agricultural and ecological value, has diversified through hybridization, polyploidy and environmental adaptation. Limited genomic resources for wild Malus species have hindered the understanding of their evolutionary history and genetic diversity. We sequenced and assembled 30 high-quality Malus genomes, representing 20 diploids and 10 polyploids across major evolutionary lineages and geographical regions. Phylogenomic analyses revealed ancient gene duplications and conversions, while six newly defined genome types, including an ancestral type shared by polyploid species, facilitated the detection of strong signals for extensive introgressions. The graph-based pan-genome captured shared and species-specific structural variations, facilitating the development of a molecular marker for apple scab resistance. Our pipeline for analyzing selective sweep identified a mutation in MdMYB5 having reduced cold and disease resistance during domestication. This study advances Malus genomics, uncovering genetic diversity and evolutionary insights while enhancing breeding for desirable traits.
Collapse
Affiliation(s)
- Wei Li
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Taikui Zhang
- Department of Biology, Eberly College of Science and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Haochen Sun
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Shiyao Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Zeyuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Zijun Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Hui Li
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Yuqi Li
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Xingtan Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhiqiang Geng
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Youqing Wang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Hengtao Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Weishu Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yi Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Yao Xiong
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Huixia Li
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
| | - Bowen Zhou
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China.
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Auckland, New Zealand.
| | - Yongming Han
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Hong Ma
- Department of Biology, Eberly College of Science and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Zhenhai Han
- Institute for Horticultural Plants, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Guan C, Liu Y, Li Z, Zhang Y, Liu Z, Zhu Q, Zhang P, Shen X, Fang J, Li J, Zhang Q, Guan Q, Luo Z, Yang Y, Zhao T. Haplotype-resolved and chromosome-level reference genome assembly of Diospyros deyangensis provides insights into the evolution and juvenile growth of persimmon. HORTICULTURE RESEARCH 2025; 12:uhaf001. [PMID: 40078717 PMCID: PMC11896977 DOI: 10.1093/hr/uhaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/29/2024] [Indexed: 03/14/2025]
Abstract
The Diospyros genus , which includes both wild and cultivated species such as Diospyros lotus and Diospyros kaki, represents a diverse genetic pool with significant agricultural value. In this study, we present a high-quality, haplotype-resolved, chromosome-level genome assembly for Diospyros deyangensis (hereinafter referred to as 'Deyangshi'), an autotetraploid wild species notable for its short juvenile phase, by integrating high-fidelity single-molecule, nanopore sequencing, and high-throughput chromosome conformation capture techniques. The assembled genome size is ~3.01 Gb, anchored onto 60 pseudochromosomes. Comparative genomic analysis revealed that the D. deyangensis genome underwent an additional whole-genome duplication (WGD) event following the eudicots shared ancient hexaploidy event. Resequencing and clustering on 63 samples representing 11 geographically diverse Diospyros accessions revealed significant genetic differentiation between D. deyangensis and D. kaki, as well as between D. kaki and other Diospyros species using population genomic analyses, suggesting that D. kaki followed an independent evolutionary pathway. Additionally, we identified DdELF4 (EARLY FLOWERING 4) from the 'Deyangshi' backcross population using bulked segregant RNA sequencing (BSR-seq) with 50 early-flowering and 50 non-early-flowering individuals. Overexpression of DdELF4 in Arabidopsis resulted in delayed flowering and downregulation of FT gene expression, indicating its role as a flowering repressor. This high-quality genome assembly of 'Deyangshi' provides an essential genomic resource for the Diospyros genus, particularly for breeding programs focused on developing early-flowering persimmon varieties.
Collapse
Affiliation(s)
- Changfei Guan
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yunxiao Liu
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhongxing Li
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yangxin Zhang
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhiguang Liu
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinggang Zhu
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pingxian Zhang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518000, China
| | - Xiaoxia Shen
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Fang
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiayan Li
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingling Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Qingmei Guan
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhengrong Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yong Yang
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tao Zhao
- Department of Horticulture, Hainan Institute of Northwest A&F University, Sanya 572024, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
3
|
Cao F, Qian Q, Li Z, Wang J, Liu Z, Zhang Z, Niu C, Xie Y, Ma F, Guan Q. Natural variation in an HD-ZIP factor identifies its role in controlling apple leaf cuticular wax deposition. Dev Cell 2025; 60:949-964.e6. [PMID: 39721585 DOI: 10.1016/j.devcel.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/03/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Natural variation is an invaluable genetic resource for plant trait improvement. Here, we performed a genome-wide association study (GWAS) analysis and identified MdHDG5, which controls apple leaf cuticular wax. An A-to-G single-nucleotide polymorphism (SNP) on the HDG5 promoter is associated with HDG5 expression and hexacosanol content (a component of leaf cuticular wax). Furthermore, the single-nucleotide variation (G/G) within a MYB cis-regulatory element (CRE) can be directly bound by MYB62, which represses HDG5 expression and leaf wax deposition. In addition, MdPIAL2, a Small Ubiquitin-like Modifier (SUMO) E3 ligase, positively controls apple leaf wax deposition by stabilizing MdHDG5, while MdMIEL1 interacts with and degrades both MdHDG5 and MdPIAL2 to negatively control leaf wax deposition. Notably, MIEL1 expression is negatively associated with leaf hexacosanol deposition. Taken together, our results provide significant genetic insights into the natural variation of leaf cuticular wax loads in apple and identify the intricate molecular regulation of MdHDG5.
Collapse
Affiliation(s)
- Fuguo Cao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, China
| | - Qian Qian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, China
| | - Zhongxing Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, China
| | - Jingrong Wang
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Zeyuan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, China
| | - Zitong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, China
| | - Chundong Niu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, China
| | - Yinpeng Xie
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, China.
| | - Qingmei Guan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, China.
| |
Collapse
|
4
|
Wang X, Wang D, Liu X, Zhang H, Chen G, Xu M, Shen X, You C. BEL1-like homeodomain transcription factor SAWTOOTH1 (MdSAW1) in Malus domestica enhances the tolerance of transgenic apple and Arabidopsis to zinc excess stress. Int J Biol Macromol 2025; 307:141948. [PMID: 40074134 DOI: 10.1016/j.ijbiomac.2025.141948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
In recent years, the phenomenon of zinc pollution in orchards has become increasingly serious, and the safety of apple production is facing a major risk. Therefore, exploring excellent genes for zinc tolerance has a positive effect on apples. Up to now, there is still a lack of attention on genes related to zinc stress tolerance in apples. In this study, the apple transcriptome map under zinc stress (1000 μM ZnSO4) was generated based on high-throughput sequencing. Through transcription factor analysis and association network prediction, TALE superfamily SAWTOOTH 1 was found to have an important role in 32 up-regulated core transcription factors. Further, BEL1-like homeodomain MdSAW1 gene from Malus domestica was overexpressed in Arabidopsis seedlings ('Col-0'), apple callus tissues ('Orin'), and apple plants ('GL-3'), and the results showed that the transformed lines carried obvious tolerance to zinc stress, which was reflected in the significant reduction of relative dielectric leakage, malondialdehyde, O2- and H2O2 content. The interaction between protein and DNA confirmed that MdSAW1 binds to natural resistance-associated macrophage protein NRAMP2 promoter to inhibit its transcription and thus regulate zinc ion homeostasis. In addition, overexpression of MdSAW1 increased the activity of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and caused differences in metabolites in plants. MdSAW1 endows plants with strong tolerance to Zn stress, therefore, this study provides valuable reference for genetic improvement and environmental adaptation of fruit trees.
Collapse
Affiliation(s)
- Xun Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Daru Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xin Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Haiyuan Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Guolin Chen
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Minghui Xu
- College of Agriculture, Yunnan University, Kunming 650091, China
| | - Xiang Shen
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Chunxiang You
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
5
|
Guo BC, Zhang YR, Liu ZG, Li XC, Yu Z, Ping BY, Sun YQ, van den Burg H, Ma FW, Zhao T. Deciphering Plant NLR Genomic Evolution: Synteny-Informed Classification Unveils Insights into TNL Gene Loss. Mol Biol Evol 2025; 42:msaf015. [PMID: 39835721 PMCID: PMC11789945 DOI: 10.1093/molbev/msaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Nucleotide-binding leucine-rich repeat receptor (NLR) genes encode a pivotal class of plant immune receptors. However, their rampant duplication and loss have made inferring their genomic evolutionary trajectory difficult, exemplified by the loss of TNL family genes in monocots. In this study, we introduce a novel classification system for angiosperm NLR genes, grounded in network analysis of microsynteny information. This refined classification categorizes these genes into five classes: CNL_A, CNL_B, CNL_C, TNL, and RNL. Compared to the previous classification, we further subdivided CNLs into three subclasses. The credibility of this classification is supported by phylogenetic analysis and examination of protein domain structures. Importantly, this classification enabled a model to explain the extinction of TNL genes in monocots. Compelling microsynteny evidence underscores this revelation, indicating a clear synteny correspondence between the non-TNLs in monocots and the extinct TNL subclass. Our study provides crucial insights into the genomic origin and divergence of plant NLR subfamilies, unveiling the malleability-driven journey that has shaped the functionality and diversity of plant NLR genes.
Collapse
Affiliation(s)
- Bo-Cheng Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yi-Rong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhi-Guang Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xin-Chu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ze Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Bo-Ya Ping
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
- Agricultural Characteristic Industry Development Center, Qujiang District Agriculture and Rural Bureau, Quzhou, China
| | - Ya-Qiang Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Harrold van den Burg
- Innovation for Crops, KeyGene, Wageningen, The Netherlands
- Molecular Plant Pathology, Swammerdam institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, The Netherlands
| | - Feng-Wang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Tao Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Liu L, Wang Y, Guo J, Han Z, Yu K, Song Y, Chen H, Gao H, Yang Y, Zhao Z. Natural variation in MdNAC5 contributes to fruit firmness and ripening divergence in apple. HORTICULTURE RESEARCH 2025; 12:uhae284. [PMID: 39866962 PMCID: PMC11758708 DOI: 10.1093/hr/uhae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/26/2024] [Indexed: 01/28/2025]
Abstract
Fruit firmness is an important trait for characterizing the quality and value of apple. It also serves as an indicator of fruit maturity, as it is a complex trait regulated by multiple genes. Resequencing techniques can be employed to elucidate variations in such complex fruit traits. Here, the whole genomes of 294 F 1 hybrids of 'Fuji' and 'Cripp's Pink' were resequenced, and a high-density binmap was constructed using 5014 bin markers with a total map distance of 2213.23 cM and an average map distance of 0.44 cM. Quantitative trait loci (QTLs) of traits related to fruit were mapped, and an A-T allele variant identified in the coding region of MdNAC5 was found to potentially regulate fruit firmness and ripening. The overexpression of MdNAC5 A resulted in higher production of methionine and 1-aminocyclopropanecarboxylic acid compared to MdNAC5 T , leading to reduced fruit firmness and accelerated ripening in apples and tomatoes. Furthermore, the activities of MdNAC5 A and MdNAC5 T were enhanced through their differential binding to the promoter regions of MdACS1 and MdERF3. Spatial variations in MdNAC5 A and MdNAC5 T caused changes in MdACS1 expression following their interaction with MdERF3. Ultimately, utilizing different MdNAC5 alleles offers a strategy to manipulate fruit firmness in apple breeding.
Collapse
Affiliation(s)
- Li Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Life Science, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianhua Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ziqi Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kaixuan Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yaxiao Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongfei Chen
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Hua Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yazhou Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
7
|
Yue Q, Xie Y, Yang X, Zhang Y, Li Z, Liu Y, Cheng P, Zhang R, Yu Y, Wang X, Liao L, Han Y, Zhao T, Li X, Zhang H, Ma F, Guan Q. An InDel variant in the promoter of the NAC transcription factor MdNAC18.1 plays a major role in apple fruit ripening. THE PLANT CELL 2024; 37:koaf007. [PMID: 39873675 PMCID: PMC11773814 DOI: 10.1093/plcell/koaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/15/2024] [Indexed: 01/30/2025]
Abstract
A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.). MdNAC18.1 activated the transcription of genes related to fruit softening (Polygalacturonase, PG) and ethylene biosynthesis (1-aminocyclopropane-1-carboxylic acid synthase, ACS), thereby promoting fruit ripening of apple and tomato (Solanum lycopersicum). There were two single-nucleotide polymorphisms (SNP-1,545 and SNP-2,002) and a 58-bp insertion-deletion (InDel-58) in the promoter region of MdNAC18.1. Among these, InDel-58 serves as the main effector in activating the expression of MdNAC18.1 and driving fruit ripening. InDel-58 determines the binding affinity of the class D MADS-box protein AGAMOUS-LIKE 11 (MdAGL11), a negative regulator of fruit ripening. The InDel-58 deletion in the early-ripening genotype reduces the inhibitory effect of MdAGL11 on MdNAC18.1. Moreover, MdNAC18.1 and its homologous genes originated from a common ancestor across 61 angiosperms, with functional diversification attributed to tandem replications that occurred in basal angiosperms. In summary, our study revealed how a set of natural variations influence fruit ripening and explored the functional diversification of MdNAC18.1 during evolution.
Collapse
Affiliation(s)
- Qianyu Yue
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yinpeng Xie
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xinyue Yang
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yuxin Zhang
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhongxing Li
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yunxiao Liu
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Pengda Cheng
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ruiping Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yue Yu
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiaofei Wang
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Liao Liao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
| | - Tao Zhao
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xuewei Li
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Hengtao Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Fengwang Ma
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Qingmei Guan
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
8
|
Skytte Af Sätra J, Garkava-Gustavsson L, Ingvarsson PK. Why we thrive beneath a northern sky - genomic signals of selection in apple for adaptation to northern Sweden. Heredity (Edinb) 2024; 133:67-77. [PMID: 38834867 PMCID: PMC11286948 DOI: 10.1038/s41437-024-00693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
Good understanding of the genomic regions underlying adaptation of apple to boreal climates is needed to facilitate efficient breeding of locally adapted apple cultivars. Proper infrastructure for phenotyping and evaluation is essential for identification of traits responsible for adaptation, and dissection of their genetic composition. However, such infrastructure is costly and currently not available for the boreal zone of northern Sweden. Therefore, we used historical pomological data on climate adaptation of 59 apple cultivars and whole genome sequencing to identify genomic regions that have undergone historical selection among apple cultivars recommended for cultivation in northern Sweden. We found the apple collection to be composed of two ancestral groups that are largely concordant with the grouping into 'hardy' and 'not hardy' cultivars based on the pomological literature. Using a number of genome-wide scans for signals of selection, we obtained strong evidence of positive selection at a genomic region around 29 MbHFTH1 of chromosome 1 among apple cultivars in the 'hardy' group. Using phased genotypic data from the 20 K apple Infinium® SNP array, we identified haplotypes associated with the two cultivar groups and traced transmission of these haplotypes through the pedigrees of some apple cultivars. This demonstrates that historical data from pomological literature can be analyzed by population genomic approaches as a step towards revealing the genomic control of a key property for a horticultural niche market. Such knowledge is needed to facilitate efficient breeding strategies for development of locally adapted apple cultivars in the future. The current study illustrates the response to a very strong selective pressure imposed on tree crops by climatic factors, and the importance of genetic research on this topic and feasibility of breeding efforts in the light of the ongoing climate change.
Collapse
Affiliation(s)
- J Skytte Af Sätra
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - L Garkava-Gustavsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - P K Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
9
|
Wang X, Wang D, Zhang R, Qin X, Shen X, You C. Morphological Structure Identification, Comparative Mitochondrial Genomics and Population Genetic Analysis toward Exploring Interspecific Variations and Phylogenetic Implications of Malus baccata 'ZA' and Other Species. Biomolecules 2024; 14:912. [PMID: 39199300 PMCID: PMC11352593 DOI: 10.3390/biom14080912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Malus baccata, a valuable germplasm resource in the genus Malus, is indigenous to China and widely distributed. However, little is known about the lineage composition and genetic basis of 'ZA', a mutant type of M. baccata. In this study, we compared the differences between 'ZA' and wild type from the perspective of morphology and ultrastructure and analyzed their chloroplast pigment content based on biochemical methods. Further, the complete mitogenome of M. baccata 'ZA' was assembled and obtained by next-generation sequencing. Subsequently, its molecular characteristics were analyzed using Geneious, MISA-web, and CodonW toolkits. Furthermore, by examining 106 Malus germplasms and 42 Rosaceae species, we deduced and elucidated the evolutionary position of M. baccata 'ZA', as well as interspecific variations among different individuals. In comparison, the total length of the 'ZA' mitogenome (GC content: 45.4%) is 374,023 bp, which is approximately 2.33 times larger than the size (160,202 bp) of the plastome (GC: 36.5%). The collinear analysis results revealed abundant repeats and genome rearrangements occurring between different Malus species. Additionally, we identified 14 plastid-driven fragment transfer events. A total of 54 genes have been annotated in the 'ZA' mitogenome, including 35 protein-coding genes, 16 tRNAs, and three rRNAs. By calculating nucleotide polymorphisms and selection pressure for 24 shared core mitochondrial CDSs from 42 Rosaceae species (including 'ZA'), we observed that the nad3 gene exhibited minimal variation, while nad4L appeared to be evolving rapidly. Population genetics analysis detected a total of 1578 high-quality variants (1424 SNPs, 60 insertions, and 94 deletions; variation rate: 1/237) among samples from 106 Malus individuals. Furthermore, by constructing phylogenetic trees based on both Malus and Rosaceae taxa datasets, it was preliminarily demonstrated that 'ZA' is closely related to M. baccata, M. sieversii, and other proximate species in terms of evolution. The sequencing data obtained in this study, along with our findings, contribute to expanding the mitogenomic resources available for Rosaceae research. They also hold reference significance for molecular identification studies as well as conservation and breeding efforts focused on excellent germplasms.
Collapse
Affiliation(s)
- Xun Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (X.W.); (D.W.); (X.Q.)
| | - Daru Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (X.W.); (D.W.); (X.Q.)
| | - Ruifen Zhang
- Qingdao Apple Rootstock Research and Development Center, Qingdao Academy of Agricultural Sciences, Qingdao 266100, China;
| | - Xin Qin
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (X.W.); (D.W.); (X.Q.)
| | - Xiang Shen
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (X.W.); (D.W.); (X.Q.)
| | - Chunxiang You
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (X.W.); (D.W.); (X.Q.)
| |
Collapse
|
10
|
Walas Ł, Alipour S, Haq SM, Alamri S. The potential range of west Asian apple species Malus orientalis Uglitzk. under climate change. BMC PLANT BIOLOGY 2024; 24:381. [PMID: 38724902 PMCID: PMC11080264 DOI: 10.1186/s12870-024-05081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
The wild relatives of cultivated apples would be an ideal source of diversity for breeding new varieties, which could potentially grow in diverse habitats shaped by climate change. However, there is still a lack of knowledge about the potential distribution of these species. The aim of the presented work was the understand the impacts of climate change on the potential distribution and habitat fragmentation of Caucasian crab apple (Malus orientalis Uglitzk.) and the designation of areas of high interest according to climatic conditions. We used the MaxEnt models and Morphological-Spatial Analysis (MSPA) to evaluate the potential distribution, suitability changes, habitat fragmentation, and connectivity throughout the species range in Turkey, Armenia, Georgia, Russia, and Iran. The results revealed that the potentially suitable range of M. orientalis encompasses 858,877 km², 635,279 km² and 456,795 km² under the present, RCP4.5 and RCP8.5 scenario, respectively. The range fragmentation analysis demonstrated a notable shift in the edge/core ratio, which increased from 50.95% in the current scenario to even 67.70% in the future. The northern part of the range (Armenia, northern Georgia, southern Russia), as well as the central and western parts of Hyrcania will be a core of the species range with suitable habitats and a high connectivity between M. orientalis populations and could work as major refugia for the studied species. However, in the Zagros and central Turkey, the potential range will shrink due to the lack of suitable climatic conditions, and the edge/core ratio will grow. In the southern part of the range, a decline of M. orientalis habitats is expected due to changing climatic conditions. The future outlook suggests that the Hyrcanian forest and the Caucasus region could serve as important refuges for M. orientalis. This study helps to understand spatial changes in species' range in response to climate change and can help develop conservation strategies. This is all the more important given the species' potential use in future breeding programs aimed at enriching the gene pool of cultivated apple varieties.
Collapse
Affiliation(s)
- Łukasz Walas
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, 62-035, Poland.
| | - Shirin Alipour
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, 62-035, Poland.
| | - Shiekh Marifatul Haq
- Department of Ethnobotany, Institute of Botany, Ilia State University, Tbilisi, Georgia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Qin X, Hao Q, Wang X, Liu Y, Yang C, Sui M, Zhang Y, Hu Y, Chen X, Mao Z, Mao Y, Shen X. Complete chloroplast genome of the Malus baccata var. gracilis provides insights into the evolution and phylogeny of Malus species. Funct Integr Genomics 2024; 24:13. [PMID: 38236432 DOI: 10.1007/s10142-024-01291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Malus baccata (L.) var. gracilis (Rehd.) has high ornamental value and breeding significance, and comparative chloroplast genome analysis was applied to facilitate genetic breeding for desired traits and resistance and provide insight into the phylogeny of this genus. Using data from whole-genome sequencing, a tetrameric chloroplast genome with a length of 159,992 bp and a total GC content of 36.56% was constructed. The M. baccata var. gracilis chloroplast genome consists of a large single-copy sequence (88,100 bp), a short single-copy region (19,186 bp), and two inverted repeat regions, IRa (26,353 bp) and IRb (26,353 bp). This chloroplast genome contains 112 annotated genes, including 79 protein-coding genes (nine multicopy), 29 tRNA genes (eight multicopy), and four rRNA genes (all multicopy). Calculating the relative synonymous codon usage revealed a total of 32 high-frequency codons, and the codons exhibited a biased usage pattern towards A/U as the ending nucleotide. Interspecific sequence comparison and boundary analysis revealed significant sequence variation in the vast single-copy region, as well as generally similar expansion and contraction of the SSC and IR regions for 10 analyzed Malus species. M. baccata var. gracilis and Malus hupehensis were grouped together into one branch based on phylogenetic analysis of chloroplast genome sequences. The chloroplast genome of Malus species provides an important foundation for species identification, genetic diversity analysis, and Malus chloroplast genetic engineering. Additionally, the results can facilitate the use of pendant traits to improve apple tree shape.
Collapse
Affiliation(s)
- Xin Qin
- College of Horticulture Science and Engineering, National Apple Engineering and Technology Research Center, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Qiang Hao
- China National Botanical Garden (North Garden), Beijing, China
| | - Xun Wang
- College of Horticulture Science and Engineering, National Apple Engineering and Technology Research Center, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Yangbo Liu
- College of Horticulture Science and Engineering, National Apple Engineering and Technology Research Center, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Chen Yang
- College of Horticulture Science and Engineering, National Apple Engineering and Technology Research Center, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Mengyi Sui
- College of Horticulture Science and Engineering, National Apple Engineering and Technology Research Center, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Yawen Zhang
- College of Horticulture Science and Engineering, National Apple Engineering and Technology Research Center, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Yanli Hu
- College of Horticulture Science and Engineering, National Apple Engineering and Technology Research Center, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Xuesen Chen
- College of Horticulture Science and Engineering, National Apple Engineering and Technology Research Center, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Zhiquan Mao
- College of Horticulture Science and Engineering, National Apple Engineering and Technology Research Center, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China
| | - Yunfei Mao
- College of Horticulture Science and Engineering, National Apple Engineering and Technology Research Center, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China.
| | - Xiang Shen
- College of Horticulture Science and Engineering, National Apple Engineering and Technology Research Center, Shandong Agricultural University, Tai'an, Shandong, People's Republic of China.
| |
Collapse
|
12
|
Wang X, Zhang R, Wang D, Yang C, Zhang Y, Sui M, Quan J, Sun Y, You C, Shen X. Molecular Structure and Variation Characteristics of the Plastomes from Six Malus baccata (L.) Borkh. Individuals and Comparative Genomic Analysis with Other Malus Species. Biomolecules 2023; 13:962. [PMID: 37371542 DOI: 10.3390/biom13060962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Malus baccata (L.) Borkh. is an important wild species of Malus. Its rich variation types and population history are not well understood. Chloroplast genome mining plays an active role in germplasm identification and genetic evolution. In this study, by assembly and annotation, six complete cp genome sequences, ranging in size from 160,083 to 160,295 bp, were obtained. The GC content of stable IR regions (42.7%) was significantly higher than that of full length (36.5%) and SC regions (LSC-34.2%, SSC-30.4%). Compared with other Malus species, it was found that there were more sites of polymorphisms and hotspots of variation in LSC and SSC regions, with high variation sites including trnR/UCU-atpA, trnT/UGU-trnL/UAA, ndhF-rpl32 and ccsA-ndhD. The intraspecific and interspecific collinearity was good, and no structural rearrangement was observed. A large number of repeating elements and different boundary expansions may be involved in shaping the cp genome size. Up to 77 or 78 coding genes were annotated in the cp genomes of M. baccata, and high frequency codons such as UUA (Leu), GCU (Ala) and AGA (Arg) were identified by relative synonymous codon usage analysis. Phylogeographic analysis showed that 12 individuals of M. baccata clustered into three different groups with complex structure, whereas variant xiaojinensis (M.H. Cheng & N.G. Jiang) was not closely related to M. baccata evolutionarily. The phylogenetic analysis suggested that two main clades of different M. baccata in the genus Malus were formed and that I and II diverged about 9.7 MYA. In conclusion, through cp genome assembly and comparison, the interspecific relationships and molecular variations of M. baccata were further elucidated, and the results of this study provide valuable information for the phylogenetic evolution and germplasm conservation of M. baccata and Malus.
Collapse
Affiliation(s)
- Xun Wang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Ruifen Zhang
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Daru Wang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Chen Yang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yawen Zhang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Mengyi Sui
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Jian Quan
- China National Botanical Garden, Beijing 100093, China
| | - Yi Sun
- China National Botanical Garden, Beijing 100093, China
| | - Chunxiang You
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xiang Shen
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
13
|
Zhang D, He J, Cheng P, Zhang Y, Khan A, Wang S, Li Z, Zhao S, Zhan X, Ma F, Li X, Guan Q. 4-methylumbelliferone (4-MU) enhances drought tolerance of apple by regulating rhizosphere microbial diversity and root architecture. HORTICULTURE RESEARCH 2023; 10:uhad099. [PMID: 37427035 PMCID: PMC10327542 DOI: 10.1093/hr/uhad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/04/2023] [Indexed: 07/11/2023]
Abstract
The dwarfing rootstocks-mediated high-density apple orchard is becoming the main practice management. Currently, dwarfing rootstocks are widely used worldwide, but their shallow root system and drought sensitivity necessitate high irrigation requirements. Here, the root transcriptome and metabolome of dwarfing (M9-T337, a drought-sensitive rootstock) and vigorous rootstocks (Malus sieversii, a drought-tolerant species, is commonly used as a rootstock) showed that a coumarin derivative, 4-Methylumbelliferon (4-MU), was found to accumulate significantly in the roots of vigorous rootstock under drought condition. When exogenous 4-MU was applied to the roots of dwarfing rootstock under drought treatment, the plants displayed increased root biomass, higher root-to-shoot ratio, greater photosynthesis, and elevated water use efficiency. In addition, diversity and structure analysis of the rhizosphere soil microbial community demonstrated that 4-MU treatment increased the relative abundance of putatively beneficial bacteria and fungi. Of these, Pseudomonas, Bacillus, Streptomyces, and Chryseolinea bacterial strains and Acremonium, Trichoderma, and Phoma fungal strains known for root growth, or systemic resistance against drought stress, were significantly accumulated in the roots of dwarfing rootstock after 4-MU treatment under drought stress condition. Taken together, we identified a promising compound-4-MU, as a useful tool, to strengthen the drought tolerance of apple dwarfing rootstock.
Collapse
Affiliation(s)
- Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Pengda Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yutian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan
| | - Shicong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
14
|
Lin Q, Chen J, Liu X, Wang B, Zhao Y, Liao L, Allan AC, Sun C, Duan Y, Li X, Grierson D, Verdonk JC, Chen K, Han Y, Bi J. A metabolic perspective of selection for fruit quality related to apple domestication and improvement. Genome Biol 2023; 24:95. [PMID: 37101232 PMCID: PMC10131461 DOI: 10.1186/s13059-023-02945-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Apple is an economically important fruit crop. Changes in metabolism accompanying human-guided evolution can be revealed using a multiomics approach. We perform genome-wide metabolic analysis of apple fruits collected from 292 wild and cultivated accessions representing various consumption types. RESULTS We find decreased amounts of certain metabolites, including tannins, organic acids, phenolic acids, and flavonoids as the wild accessions transition to cultivated apples, while lysolipids increase in the "Golden Delicious" to "Ralls Janet" pedigree, suggesting better storage. We identify a total of 222,877 significant single-nucleotide polymorphisms that are associated with 2205 apple metabolites. Investigation of a region from 2.84 to 5.01 Mb on chromosome 16 containing co-mapping regions for tannins, organic acids, phenolic acids, and flavonoids indicates the importance of these metabolites for fruit quality and nutrition during breeding. The tannin and acidity-related genes Myb9-like and PH4 are mapped closely to fruit weight locus fw1 from 3.41 to 3.76 Mb on chromosome 15, a region under selection during domestication. Lysophosphatidylethanolamine (LPE) 18:1, which is suppressed by fatty acid desaturase-2 (FAD2), is positively correlated to fruit firmness. We find the fruit weight is negatively correlated with salicylic acid and abscisic acid levels. Further functional assays demonstrate regulation of these hormone levels by NAC-like activated by Apetala3/Pistillata (NAP) and ATP binding cassette G25 (ABCG25), respectively. CONCLUSIONS This study provides a metabolic perspective for selection on fruit quality during domestication and improvement, which is a valuable resource for investigating mechanisms controlling apple metabolite content and quality.
Collapse
Affiliation(s)
- Qiong Lin
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, 6708 PD The Netherlands
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 China
| | - Jing Chen
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xuan Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Bin Wang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, 430070 China
| | - Yaoyao Zhao
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Liao Liao
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited, Auckland Mail Centre, Auckland, 1142 New Zealand
| | - Chongde Sun
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 China
| | - Yuquan Duan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xuan Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Donald Grierson
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 China
- Plant and Science Crop Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Julian C. Verdonk
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, 6708 PD The Netherlands
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058 China
| | - Yuepeng Han
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Jinfeng Bi
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
15
|
Yang S, Yu J, Yang H, Zhao Z. Genetic analysis and QTL mapping of aroma volatile compounds in the apple progeny 'Fuji' × 'Cripps Pink'. FRONTIERS IN PLANT SCIENCE 2023; 14:1048846. [PMID: 37021304 PMCID: PMC10067597 DOI: 10.3389/fpls.2023.1048846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/01/2023] [Indexed: 06/19/2023]
Abstract
Aroma is an essential trait for apple fruit quality, but the understanding of biochemical mechanisms underlying aroma formation is still limited. To better characterize and assess the genetic potential for improving aroma quality for breeding, many efforts have been paid to map quantitative trait loci (QTLs) using a saturated molecular linkage map. In the present study, aroma profiles in ripe fruit of F1 population between 'Fuji' and 'Cripps Pink' were evaluated by gas chromatography-mass spectrometry (GC-MS) over 2019 and 2020 years, and the genetics of volatile compounds were dissected. In total, 38 volatile compounds were identified in 'Fuji' × 'Cripps Pink' population, including 23 esters, 3 alcohols, 7 aldehydes and 5 others. With the combination of aroma phenotypic data and constructed genetic linkage map, 87 QTLs were detected for 15 volatile compounds on 14 linkage groups (LGs). Among them, a set of QTLs associated with ester production identified and confirmed on LG 6. A candidate gene MdAAT6 in the QTL mapping interval was detected. Over-expression of MdAAT6 in tomato and apple fruits showed significantly higher esters accumulation compared to the control, indicating it was critical for the ester production. Our results give light on the mode of inheritance of the apple volatilome and provide new insights for apple flavor improvement in the future.
Collapse
Affiliation(s)
- Shunbo Yang
- College of Horticulture, Northwest A & F University, Yangling, China
| | - Jing Yu
- College of Horticulture, Northwest A & F University, Yangling, China
| | - Huijuan Yang
- College of Horticulture, Northwest A & F University, Yangling, China
| | - Zhengyang Zhao
- College of Horticulture, Northwest A & F University, Yangling, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling, China
| |
Collapse
|
16
|
Sestras RE, Sestras AF. Quantitative Traits of Interest in Apple Breeding and Their Implications for Selection. PLANTS (BASEL, SWITZERLAND) 2023; 12:903. [PMID: 36840249 PMCID: PMC9964287 DOI: 10.3390/plants12040903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Apple breeding is a laborious and long-lasting process that requires qualified resources, land, time, and funds. In this study, more than 5000 F1 apple hybrids from direct and testcrosses were analyzed. The results revealed how the phenotypic expression of the main quantitative traits of interest assessed in five half-sib families was controlled by the additive genetic effects and by non-additive effects of dominance and epistasis. The statistical number of hybrids required to ensure efficient selection increased exponentially with the number of desirable traits. The minimum number of progenies required to obtain a hybrid with associated quantitative traits of agronomic interest was highly variable. For two independent traits essential in selection (fruit size and quality), but incorporated together in the same hybrid, the statistical number was between about 30 and 300. If three more cumulative traits were added (a large number of fruits per tree, resistance/tolerance to apple scab, and powdery mildew attack), the limits increased to between 1500 and 18,000. The study highlighted the need for new apple varieties due to the narrowing of the genetic diversity of the cultivated species and how the choice of parents used in hybridizations (as well as the objectives pursued in the selection) can increase the efficiency of apple breeding.
Collapse
Affiliation(s)
- Radu E. Sestras
- Department of Horticulture and Landscape, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3–5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Adriana F. Sestras
- Department of Forestry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3–5 Manastur Street, 400372 Cluj-Napoca, Romania
| |
Collapse
|
17
|
Jiang L, Geng D, Zhi F, Li Z, Yang Y, Wang Y, Shen X, Liu X, Yang Y, Xu Y, Tang Y, Du R, Ma F, Guan Q, Zhang J. A genome-wide association study provides insights into fatty acid synthesis and metabolism in Malus fruits. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7467-7476. [PMID: 36112134 DOI: 10.1093/jxb/erac372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
As a precursor of aromatic compounds, fatty acids play important roles in apple fruit quality; however, the genetic and molecular basis underlying fatty acid synthesis and metabolism is largely unknown. In this study, we conducted a genome-wide association study (GWAS) of seven fatty acids using genomic data of 149 Malus accessions and identified 232 significant signals (-log10P>5) associated with 99 genes from GWAS of four fatty acids across 2 years. Among these, a significant GWAS signal associated with linoleic acid was identified in the transcriptional regulator SUPERMAN-like (SUP) MD13G1209600 at chromosome 13 of M. × domestica. Transient overexpression of MdSUP increased the contents of linoleic and linolenic acids and of three aromatic components in the fruit. Our study provides genetic and molecular information for improving the flavor and nutritional value of apple.
Collapse
Affiliation(s)
- Lijuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Dali Geng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yusen Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yunlong Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiuyun Liu
- Institute of Vocational Technology, Shanghai 200000, China
| | - Yanqing Yang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yange Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yanlong Tang
- College of Economics and Management, Northwest A&F University, Yangling 712100, China
| | - Rui Du
- College of Innovation and Experiment, Northwest A&F University, Yangling 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jing Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
18
|
Luo X, Zhou H, Cao D, Yan F, Chen P, Wang J, Woeste K, Chen X, Fei Z, An H, Malvolti M, Ma K, Liu C, Ebrahimi A, Qiao C, Ye H, Li M, Lu Z, Xu J, Cao S, Zhao P. Domestication and selection footprints in Persian walnuts (Juglans regia). PLoS Genet 2022; 18:e1010513. [PMID: 36477175 PMCID: PMC9728896 DOI: 10.1371/journal.pgen.1010513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Walnut (Juglans) species are economically important hardwood trees cultivated worldwide for both edible nuts and high-quality wood. Broad-scale assessments of species diversity, evolutionary history, and domestication are needed to improve walnut breeding. In this study, we sequenced 309 walnut accessions from around the world, including 55 Juglans relatives, 98 wild Persian walnuts (J. regia), 70 J. regia landraces, and 86 J. regia cultivars. The phylogenetic tree indicated that J. regia samples (section Dioscaryon) were monophyletic within Juglans. The core areas of genetic diversity of J. regia germplasm were southwestern China and southern Asia near the Qinghai-Tibet Plateau and the Himalayas, and the uplift of the Himalayas was speculated to be the main factor leading to the current population dynamics of Persian walnut. The pattern of genomic variation in terms of nucleotide diversity, linkage disequilibrium, single nucleotide polymorphisms, and insertions/deletions revealed the domestication and selection footprints in Persian walnut. Selective sweep analysis, GWAS, and expression analysis further identified two transcription factors, JrbHLH and JrMYB6, that influence the thickness of the nut diaphragm as loci under selection during domestication. Our results elucidate the domestication and selection footprints in Persian walnuts and provide a valuable resource for the genomics-assisted breeding of this important crop.
Collapse
Affiliation(s)
- Xiang Luo
- College of Agriculture, Henan University, Kaifeng, Henan, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Huijuan Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- Xi’an Botanical Garden of Shaanxi Province, Xi’an, China
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Da Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Feng Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Pengpeng Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Jiangtao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Keith Woeste
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
| | - Xin Chen
- Shandong Institute of Pomology, National Germplasm Repository of Walnut and Chestnut, Tai’an, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, US Department of Agriculture (USDA) Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York, United States of America
| | - Hong An
- Bioinformatics and Analytics Core, University of Missouri, Columbia, Missouri, United States of America
| | - Maria Malvolti
- Research Institute on Terrestrial Ecosystems, National Research Council, Porano, Terni, Italy
| | - Kai Ma
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chaobin Liu
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Aziz Ebrahimi
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Zhenhua Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jiabao Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- * E-mail: (JX); (SC); (PZ)
| | - Shangying Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail: (JX); (SC); (PZ)
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- * E-mail: (JX); (SC); (PZ)
| |
Collapse
|
19
|
Application of Machine Learning in Ethical Design of Autonomous Driving Crash Algorithms. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2938011. [PMID: 36248938 PMCID: PMC9553442 DOI: 10.1155/2022/2938011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 01/09/2023]
Abstract
The age of algorithms is here, and it is really changing people's lives. More and more ethical problems related to algorithms have attracted people's attention, but the related ethical research is still far behind the research of algorithms. As more intelligent algorithms emerge in an endless stream, there will also be a lot of algorithmic ethical issues. On the other hand, with the continuous improvement of the development level of the automobile industry, people have a stronger demand for the safety and stability of modern transportation, and more and more autonomous driving technology has been promoted and applied in the market. At present, most of the studies on the longitudinal collision avoidance system of vehicles use collision warning or emergency braking to avoid collision. However, when the vehicle is in a special situation such as high speed and slippery road, emergency steering is more effective. In order to further improve the vehicle safety and ethical algorithm design points, this article revolves around vehicle lateral active collision avoidance control method research, the collision avoidance decision-making, and path planning and collision avoidance transverse vehicle longitudinal motion control is analyzed, and based on automated driving simulation experiment, the tests carried out to verify the designed control strategy. The experimental results show that the proposed method not only has a good effect of preventing automatic driving collision but also can meet the requirements of algorithm ethics. This research can effectively guide the research of algorithmic ethics in the field of autonomous driving and effectively reduce the occurrence of traffic accidents.
Collapse
|
20
|
Liu Y, Gao XH, Tong L, Liu MZ, Zhou XK, Tahir MM, Xing LB, Ma JJ, An N, Zhao CP, Yao JL, Zhang D. Multi-omics analyses reveal MdMYB10 hypermethylation being responsible for a bud sport of apple fruit color. HORTICULTURE RESEARCH 2022; 9:uhac179. [PMID: 36338840 PMCID: PMC9627520 DOI: 10.1093/hr/uhac179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Apple bud sports offer a rich resource for clonal selection of numerous elite cultivars. The accumulation of somatic mutations as plants develop may potentially impact the emergence of bud sports. Previous studies focused on somatic mutation in the essential genes associated with bud sports. However, the rate and function of genome-wide somatic mutations that accumulate when a bud sport arises remain unclear. In this study, we identified a branch from a 10-year-old tree of the apple cultivar 'Oregon Spur II' as a bud sport. The mutant branch showed reduced red coloration on fruit skin. Using this plant material, we assembled a high-quality haplotype reference genome consisting of 649.61 Mb sequences with a contig N50 value of 2.04 Mb. We then estimated the somatic mutation rate of the apple tree to be 4.56 × 10 -8 per base per year, and further identified 253 somatic single-nucleotide polymorphisms (SNPs), including five non-synonymous SNPs, between the original type and mutant samples. Transcriptome analyses showed that 69 differentially expressed genes between the original type and mutant fruit skin were highly correlated with anthocyanin content. DNA methylation in the promoter of five anthocyanin-associated genes was increased in the mutant compared with the original type as determined using DNA methylation profiling. Among the genetic and epigenetic factors that directly and indirectly influence anthocyanin content in the mutant apple fruit skin, the hypermethylated promoter of MdMYB10 is important. This study indicated that numerous somatic mutations accumulated at the emergence of a bud sport from a genome-wide perspective, some of which contribute to the low coloration of the bud sport.
Collapse
Affiliation(s)
- Yu Liu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiu-hua Gao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Lu Tong
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Mei-zi Liu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | | | - Muhammad Mobeen Tahir
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Li-bo Xing
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Juan-juan Ma
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Na An
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Cai-ping Zhao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Auckland 1142, New Zealand
| | - Dong Zhang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
21
|
Li Z, Wang L, He J, Li X, Hou N, Guo J, Niu C, Li C, Liu S, Xu J, Xie Y, Zhang D, Shen X, Lu L, Geng D, Chen P, Jiang L, Wang L, Li H, Malnoy M, Deng C, Zou Y, Li C, Zhan X, Dong Y, Notaguchi M, Ma F, Xu Q, Guan Q. Chromosome-scale reference genome provides insights into the genetic origin and grafting-mediated stress tolerance of Malus prunifolia. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1015-1017. [PMID: 35348283 PMCID: PMC9129071 DOI: 10.1111/pbi.13817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/27/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Lun Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Junxing Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Chaoshuo Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Shengjun Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina
| | - Jidi Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Yinpeng Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Liyuan Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Dali Geng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Lijuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Liping Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Haiyan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Mickael Malnoy
- Department of Genomics and Biology of Fruit Crops, Research and Innovation CentreFondazione Edmund MachSan Michele all’AdigeItaly
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
| | - Yangjun Zou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingChina
- Yunnan Research Institute for Local Plateau Agriculture and IndustryKunmingChina
| | | | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education)Huazhong Agricultural UniversityWuhanChina
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A&F UniversityYanglingChina
| |
Collapse
|
22
|
Zhou Z, Zhang L, Shu J, Wang M, Li H, Shu H, Wang X, Sun Q, Zhang S. Root Breeding in the Post-Genomics Era: From Concept to Practice in Apple. PLANTS (BASEL, SWITZERLAND) 2022; 11:1408. [PMID: 35684181 PMCID: PMC9182997 DOI: 10.3390/plants11111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The development of rootstocks with a high-quality dwarf-type root system is a popular research topic in the apple industry. However, the precise breeding of rootstocks is still challenging, mainly because the root system is buried deep underground, roots have a complex life cycle, and research on root architecture has progressed slowly. This paper describes ideas for the precise breeding and domestication of wild apple resources and the application of key genes. The primary goal of this research is to combine the existing rootstock resources with molecular breeding and summarize the methods of precision breeding. Here, we reviewed the existing rootstock germplasm, high-quality genome, and genetic resources available to explain how wild resources might be used in modern breeding. In particular, we proposed the 'from genotype to phenotype' theory and summarized the difficulties in future breeding processes. Lastly, the genetics governing root diversity and associated regulatory mechanisms were elaborated on to optimize the precise breeding of rootstocks.
Collapse
Affiliation(s)
- Zhou Zhou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Lei Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Jing Shu
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China;
| | - Mengyu Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Han Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Huairui Shu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Xiaoyun Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Qinghua Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| |
Collapse
|
23
|
Meng Q, Manghwar H, Hu W. Study on Supergenus Rubus L.: Edible, Medicinal, and Phylogenetic Characterization. PLANTS (BASEL, SWITZERLAND) 2022; 11:1211. [PMID: 35567211 PMCID: PMC9102695 DOI: 10.3390/plants11091211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Rubus L. is one of the most diverse genera belonging to Rosaceae; it consists of more than 700 species with a worldwide distribution. It thus provides an ideal natural "supergenus" for studying the importance of its edible, medicinal, and phylogenetic characteristics for application in our daily lives and fundamental scientific studies. The Rubus genus includes many economically important species, such as blackberry (R. fruticosus L.), red raspberry (R. ideaus L.), black raspberry (R. occidentalis L.), and raspberry (R. chingii Hu), which are widely utilized in the fresh fruit market and the medicinal industry. Although Rubus species have existed in human civilization for hundreds of years, their utilization as fruit and in medicine is still largely inadequate, and many questions on their complex phylogenetic relationships need to be answered. In this review, we briefly summarize the history and progress of studies on Rubus, including its domestication as a source of fresh fruit, its medicinal uses in pharmacology, and its systematic position in the phylogenetic tree. Recent available evidence indicates that (1) thousands of Rubus cultivars were bred via time- and labor-consuming methods from only a few wild species, and new breeding strategies and germplasms were thus limited; (2) many kinds of species in Rubus have been used as medicinal herbs, though only a few species (R. ideaus L., R. chingii Hu, and R. occidentalis L.) have been well studied; (3) the phylogeny of Rubus is very complex, with the main reason for this possibly being the existence of multiple reproductive strategies (apomixis, hybridization, and polyploidization). Our review addresses the utilization of Rubus, summarizing major relevant achievements and proposing core prospects for future application, and thus could serve as a useful roadmap for future elite cultivar breeding and scientific studies.
Collapse
Affiliation(s)
- Qinglin Meng
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Q.M.); (H.M.)
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Q.M.); (H.M.)
| | - Weiming Hu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Q.M.); (H.M.)
| |
Collapse
|
24
|
Identification of the Complete Chloroplast Genome of Malus zhaojiaoensis Jiang and Its Comparison and Evolutionary Analysis with Other Malus Species. Genes (Basel) 2022; 13:genes13040560. [PMID: 35456366 PMCID: PMC9028542 DOI: 10.3390/genes13040560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 12/02/2022] Open
Abstract
The genus Malus is rich in species and many of its plastid genomes have been released. However, limited resources and few markers are not conducive to the comparison of differences among species and resource identification and evaluation. In this study, the complete chloroplast genome of Malus zhaojiaoensis was studied by NGS sequencing, with a total length of 159998 bp. It consists of four regions, LSC (88,070 bp), IRB (26,359 bp), SSC (19,210 bp) and IRA (26,359 bp). M. zhaojiaoensis cp genome contained a total of 111 genes made up of three classes: 78 coding sequences, 29 tRNA genes, and four rRNA genes. In addition, a total of 91 SSRs and 43 INEs were found in the M. zhaojiaoensis cp genome, which was slightly different from M. baccata and M. hupehensis in number. The analysis of codon usage and RNA editing showed that high-frequency codons tended to end at A/U bases and RNA editing mainly occurred at the second codon. Comparative genome analysis suggested that the cp genomes of eight Malus species had higher overall similarity, but there were more variation hotspots (rps16_trnK-UUU, trnG-UCC_atpA, atpH_atpF, trnT-GGU_psbD, etc.) in the LSC region. By building evolutionary trees, it can be clearly observed that M. zhaojiaoensis formed a large group with eight species of Malus, but was relatively independent in differentiation. In conclusion, this study provides high-quality chloroplast genome resources of M. zhaojiaoensis and discusses the genetic variation characteristics of Malus genus. The findings of this study will provide a good reference for plastid genome assembly and interspecific comparison in the future.
Collapse
|
25
|
Cao F, Li Z, Jiang L, Liu C, Qian Q, Yang F, Ma F, Guan Q. Genome-wide association study (GWAS) of leaf wax components of apple. STRESS BIOLOGY 2021; 1:13. [PMID: 37676571 PMCID: PMC10441854 DOI: 10.1007/s44154-021-00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/20/2021] [Indexed: 09/08/2023]
Abstract
The wax layer of apple leaves plays an important role in improving stress resistance, but relatively little is known about the mechanisms of wax synthesis and transport in apple leaves. In this study, 17 wax components, including alcohols, alkanes, fatty acids and terpenes, were analyzed by gas chromatography-tandem mass spectrometry (GC-MS) from the leaves of 123 apple germplasms. Whole-genome sequencing of these apple accessions yielded 5.9 million high-quality single nucleotide polymorphisms (SNPs). We performed a genome-wide association study (GWAS) on 17 wax components and identified several genes related to wax synthesis and transport, including MdSHN1 (SHINE1), MdLTP4 (LIPID TRANSFER PROTEIN4), MdWSD1 (WAX ESTER SYNTHASE/ACYL-COA DIAC-YLGLYCEROL ACYLTRANSFERASE1), MdRDR1 (RNA-DEPENDENT RNA POLYMERASE1), MdACBP6 (ACYL-COA-BINDING PROTEIN6), MdNLE (NOTCHLESS) and MdABCG21 (ATP-BINDING CASSETTE G21). Moreover, we identified some prominent SNPs that may affect gene expression and protein function. These results provide insights into mechanisms of wax synthesis and transport in apple leaves and broaden the genetic resources and basis for facilitating resistance breeding.
Collapse
Affiliation(s)
- Fuguo Cao
- Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Zhongxing Li
- Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Lijuan Jiang
- Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Chen Liu
- Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Qian Qian
- Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Feng Yang
- Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Fengwang Ma
- Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Qingmei Guan
- Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, People's Republic of China.
| |
Collapse
|
26
|
Allan AC, Chagné D. Plant biology: Environmental extremes induce a jump in peach fitness. Curr Biol 2021; 31:R1046-R1048. [PMID: 34520715 DOI: 10.1016/j.cub.2021.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A new study reports that adaptation to climate extremes appears to be driven by replication of a class of transposable elements in peaches and related species. Advanced genomic sequencing techniques may reveal similar events in other plants exposed to extreme stress.
Collapse
Affiliation(s)
- Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Private Bag 11030, Manawatu Mail Centre, Palmerston North 4442, New Zealand; Genomics Aotearoa, https://www.genomics-aotearoa.org.nz/
| |
Collapse
|