1
|
Whitehill JGA, Yuen MMS, Chiang A, Ritland CE, Bohlmann J. Transcriptome features of stone cell development in weevil-resistant and susceptible Sitka spruce. THE NEW PHYTOLOGIST 2023; 239:2138-2152. [PMID: 37403300 DOI: 10.1111/nph.19103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023]
Abstract
Stone cells are a specialized, highly lignified cell type found in both angiosperms and gymnosperms. In conifers, abundance of stone cells in the cortex provides a robust constitutive physical defense against stem feeding insects. Stone cells are a major insect-resistance trait in Sitka spruce (Picea sitchensis), occurring in dense clusters in apical shoots of trees resistant (R) to spruce weevil (Pissodes strobi) but being rare in susceptible (S) trees. To learn more about molecular mechanisms of stone cell formation in conifers, we used laser microdissection and RNA sequencing to develop cell-type-specific transcriptomes of developing stone cells from R and S trees. Using light, immunohistochemical, and fluorescence microscopy, we also visualized the deposition of cellulose, xylan, and lignin associated with stone cell development. A total of 1293 genes were differentially expressed at higher levels in developing stone cells relative to cortical parenchyma. Genes with potential roles in stone cell secondary cell wall formation (SCW) were identified and their expression evaluated over a time course of stone cell formation in R and S trees. The expression of several transcriptional regulators was associated with stone cell formation, including a NAC family transcription factor and several genes annotated as MYB transcription factors with known roles in SCW formation.
Collapse
Affiliation(s)
- Justin G A Whitehill
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Forest Improvement and Research Management Branch, British Columbia Ministry of Forests, Lands, and Natural Resource Operations and Rural Development, 7380 Puckle Road, Saanichton, BC, V8M 1W4, Canada
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Macaire M S Yuen
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Angela Chiang
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Carol E Ritland
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
2
|
Lin DJ, Fang Y, Li LY, Zhang LZ, Gao SJ, Wang R, Wang JD. The insecticidal effect of the botanical insecticide chlorogenic acid on Mythimna separata (Walker) is related to changes in MsCYP450 gene expression. FRONTIERS IN PLANT SCIENCE 2022; 13:1015095. [PMID: 36311076 PMCID: PMC9597446 DOI: 10.3389/fpls.2022.1015095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The oriental armyworm Mythimna separata (Walker) (Lepidoptera: Noctuidae) can feed on the leaves of many crops, resulting in vast areas of damage and severe losses. Therefore, this insect has become a significant agricultural pest in north Asia. In this study, we fed 3rd instar larvae with artificial diets containing different concentrations of chlorogenic acid and found a significant lethal effect and the mortality increased with increasing chlorogenic acid concentration. Next, we measured the sublethal effect of chlorogenic acid at LC20 on the growth and development of M. separata larvae. The durations of the 4th and 5th instar were longer than those of the control group (prolonged by 0.8 and 0.6 days, respectively), and the 6th instar was shorter (by 1.1 days). The total survival rate, pupation rate, eclosion rate, sex ratio, and oviposition amount in the LC20 chlorogenic acid-treated group were significantly lower than those in the control group. Furthermore, transcriptome analysis of 3rd instar larvae fed various concentrations of chlorogenic acid revealed that several MsCYP450 genes were significantly up-regulated, and this finding was further validated by qRT-PCR. In addition, various concentrations of chlorogenic acid and different treatment times significantly affected the enzyme activity of CYP450 in 3rd instar larvae. Importantly, dietary ingestion of dsMsCYP450 significantly reduced the mRNA level of MsCYP450 genes and increased mortality in the presence of chlorogenic acid. Our results revealed that MsCYP6B6, MsCYP321A7, and MsCYP6B7-like play an essential role in the detoxification of chlorogenic acid by M. separata. This study provides evidence of control effect by botanical insecticide chlorogenic acid on M. separata, and potential detoxification mechanism mediated by P450 of botanical insecticide in arthropods.
Collapse
Affiliation(s)
- Dong-jiang Lin
- National Engineering Research Center for Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Yong Fang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agriculture Science, Changsha, China
| | - Ling-yun Li
- National Engineering Research Center for Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Li-zhao Zhang
- National Engineering Research Center for Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - San-ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-da Wang
- National Engineering Research Center for Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Gagalova KK, Whitehill JGA, Culibrk L, Lin D, Lévesque-Tremblay V, Keeling CI, Coombe L, Yuen MMS, Birol I, Bohlmann J, Jones SJM. The genome of the forest insect pest Pissodes strobi reveals genome expansion and evidence of a Wolbachia endosymbiont. G3 GENES|GENOMES|GENETICS 2022; 12:6529542. [PMID: 35171977 PMCID: PMC8982425 DOI: 10.1093/g3journal/jkac038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/23/2022] [Indexed: 12/11/2022]
Abstract
The highly diverse insect family of true weevils, Curculionidae, includes many agricultural and forest pests. Pissodes strobi, commonly known as the spruce weevil or white pine weevil, is a major pest of spruce and pine forests in North America. Pissodes strobi larvae feed on the apical shoots of young trees, causing stunted growth and can destroy regenerating spruce or pine forests. Here, we describe the nuclear and mitochondrial Pissodes strobi genomes and their annotations, as well as the genome of an apparent Wolbachia endosymbiont. We report a substantial expansion of the weevil nuclear genome, relative to other Curculionidae species, possibly driven by an abundance of class II DNA transposons. The endosymbiont observed belongs to a group (supergroup A) of Wolbachia species that generally form parasitic relationships with their arthropod host.
Collapse
Affiliation(s)
- Kristina K Gagalova
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Justin G A Whitehill
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Luka Culibrk
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Diana Lin
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | | | - Christopher I Keeling
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, QC G1V4C7, Canada
- Département de Biochimie, De Microbiologie et de Bio-informatique, Université Laval, Laval, QC G1V0A6, Canada
| | - Lauren Coombe
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z4S6, Canada
| | - Macaire M S Yuen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Inanç Birol
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Steven J M Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| |
Collapse
|
4
|
Lin S, Lin D, Wu B, Ma S, Sun S, Zhang T, Zhang W, Bai Y, Wang Q, Wu J. Morphological and Developmental Features of Stone Cells in Eriobotrya Fruits. FRONTIERS IN PLANT SCIENCE 2022; 13:823993. [PMID: 35154231 PMCID: PMC8828544 DOI: 10.3389/fpls.2022.823993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Some members of the Rosaceae family, particularly pear, contain stone cells in their fruits. Although stone cells in pear fruits are well studied, relatively little attention has been given to loquat stone cells. Only a few reports have suggested a relationship between stone cell traits and storage and transport tolerance of loquat fruits. Previously, we generated the variety JT8 from the interspecific hybrid of the loquat cultivar Jiefangzhong (JFZ; Eriobotrya japonica Lindl. cv. Jiefangzhong, female parent) and wild Taiwanese loquat (TL; E. deflexa Nakai, male parent). The JT8 fruits had a granular feel, similar to that of pear fruits, due to the presence of stone cells. In this study, the shape, size, development, and distribution dynamics of stone cells of Eriobotrya plants were thoroughly investigated. The results showed that loquat stone cells are brachysclereids and often contain typical branching pits. Loquat stone cells were distributed as both single stone cells and in stone cell clusters (SCCs), and the density of the stone cells near the core was higher than that near the peel. Stone cell density first increased and then decreased during fruit development. These traits noted in Eriobotrya were very similar to those observed in pear, indicating a close relationship between loquat and pear. Moreover, the contents, density dynamics, and aggregation traits of stone cells of the interspecific hybrid JT8 were derived from the male parent (TL). Transgressive segregation was likely exhibited in the content of stone cells and the size of the SCCs. More specifically, the content of stone cells reached 1.61% (w/w). In extreme cases, SCCs of JT8 exceeded 1,000 μm in length and 500 μm in width. This demonstrated that stone cell traits could be transmitted from parent to progeny through interspecific hybridization. The density dynamics of stone cells in two loquat cultivars with different storage and transport tolerances were also investigated, which indicated that the cultivar with more stone cells was more tolerant to storage and transport. We suggest that wild loquat genetic resources containing stone cells in Eriobotrya plants can be used to gradually improve the storage and transport tolerance of loquat fruits.
Collapse
Affiliation(s)
- Shoukai Lin
- College of Environmental and Biological Engineering, Putian University, Putian, China
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian, China
| | - Dahe Lin
- College of Environmental and Biological Engineering, Putian University, Putian, China
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian, China
| | - Bisha Wu
- College of Environmental and Biological Engineering, Putian University, Putian, China
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian, China
| | - Shiwei Ma
- College of Environmental and Biological Engineering, Putian University, Putian, China
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian, China
| | - Shengfeng Sun
- College of Environmental and Biological Engineering, Putian University, Putian, China
| | - Ting Zhang
- College of Environmental and Biological Engineering, Putian University, Putian, China
| | - Wenting Zhang
- College of Environmental and Biological Engineering, Putian University, Putian, China
| | - Yunlu Bai
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Qiong Wang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jincheng Wu
- College of Environmental and Biological Engineering, Putian University, Putian, China
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian, China
| |
Collapse
|
5
|
Soderberg DN, Kyre B, Bonello P, Bentz BJ. Lignin concentrations in phloem and outer bark are not associated with resistance to mountain pine beetle among high elevation pines. PLoS One 2021; 16:e0250395. [PMID: 34555045 PMCID: PMC8460017 DOI: 10.1371/journal.pone.0250395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022] Open
Abstract
A key component in understanding plant-insect interactions is the nature of host defenses. Research on defense traits among Pinus species has focused on specialized metabolites and axial resin ducts, but the role of lignin in defense within diverse systems is unclear. We investigated lignin levels in the outer bark and phloem of P. longaeva, P. balfouriana, and P. flexilis; tree species growing at high elevations in the western United States known to differ in susceptibility to mountain pine beetle (Dendroctonus ponderosae; MPB). Pinus longaeva and P. balfouriana are attacked by MPB less frequently than P. flexilis, and MPB brood production in P. longaeva is limited. Because greater lignification of feeding tissues has been shown to provide defense against bark beetles in related genera, such as Picea, we hypothesized that P. longaeva and P. balfouriana would have greater lignin concentrations than P. flexilis. Contrary to expectations, we found that the more MPB-susceptible P. flexilis had greater phloem lignin levels than the less susceptible P. longaeva and P. balfouriana. No differences in outer bark lignin levels among the species were found. We conclude that lignification in Pinus phloem and outer bark is likely not adaptive as a physical defense against MPB.
Collapse
Affiliation(s)
- David N. Soderberg
- Wildland Resources Department, Utah State University, Logan, Utah, United States of America
- Ecology Center, Utah State University, Logan, Utah, United States of America
| | - Bethany Kyre
- Department of Entomology, University of Kentucky, Lexington, KY, United States of America
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States of America
| | - Barbara J. Bentz
- Wildland Resources Department, Utah State University, Logan, Utah, United States of America
- US Forest Service, Rocky Mountain Research Station, Logan, Utah, United States of America
| |
Collapse
|
6
|
Whitehill JGA, Yuen MMS, Bohlmann J. Constitutive and insect-induced transcriptomes of weevil-resistant and susceptible Sitka spruce. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:137-147. [PMID: 37283859 PMCID: PMC10168040 DOI: 10.1002/pei3.10053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 06/08/2023]
Abstract
Spruce weevil (Pissodes strobi) is a significant pest of regenerating spruce (Picea) and pine (Pinus) forests in North America. Weevil larvae feed in the bark, phloem, cambium, and outer xylem of apical shoots, causing stunted growth or mortality of young trees. We identified and characterized constitutive and weevil-induced patterns of Sitka spruce (Picea sitchensis) transcriptomes in weevil-resistant (R) and susceptible (S) trees using RNA sequencing (RNA-seq) and differential expression (DE) analyses. We developed a statistical model for the analysis of RNA-seq data from treatment experiments with a 2 × 3 factorial design to differentiate insect-induced responses from the effects of mechanical damage. Across the different comparisons, we identified two major transcriptome contrasts: A large set of genes that was constitutively DE between R and S trees, and another set of genes that was DE in weevil-induced S-trees. The constitutive transcriptome unique to R trees appeared to be attuned to defense, while the constitutive transcriptome unique to S trees was enriched for growth-related transcripts. Notably, a set of transcripts annotated as "fungal" was detected consistently in the transcriptomes. Fungal transcripts were identified as DE in the comparison of R and S trees and in the weevil-affected DE transcriptome of S trees, suggesting a potential microbiome role in this conifer-insect interaction.
Collapse
Affiliation(s)
- Justin G. A. Whitehill
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNCUSA
| | - Macaire M. S. Yuen
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
| | - Jörg Bohlmann
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
7
|
Wang Q, Hu J, Yang T, Chang S. Anatomy and lignin deposition of stone cell in Camellia oleifera shell during the young stage. PROTOPLASMA 2021; 258:361-370. [PMID: 33106960 DOI: 10.1007/s00709-020-01568-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
As the by-products of edible oil production with rich lignin, the reserves of Camellia oleifera shell were abundant and had a great economic value. Lignin was the most important limiting factor during the conversion of plant biomass to pulp or biofuels, which mainly deposited in the stone cells of C. oleifera shells. Thus, its lignin deposition made the function of stone cells in the ripening process of the shell clearer, and provided a theoretical basis for the potential utilization of the biomass of C. oleifera shells. In this study, the paraffin embedding method was used to investigate the development and difference of stone cell in the fruitlet. The lignin deposition characteristics of stone cell were analyzed by the fluorescence microscopy and Wiesner and Mäule method. The chemical-functional group types of lignin in the stone cell of C. oleifera shell were examined by the ultraviolet spectrophotometer and transform infrared spectroscopy. The stone cells, vessels, parenchyma, and vascular tissue had existed during the young fruit growing period. The anatomical characteristics and the cell tissue ratio inverse relationship between stone cell and parenchymal cell suggested that stone cells developed from parenchymal cells. With the growth of shell, the stone cell wall thickened, and thickness-to-cavity ratio from 0 to 3.6. The fluorescent results showed that lignin content increased continuously; during shell development, the mean brightness of stone cell wall from 0 to 77.9 sections was stained with phloroglucinol-HCl, and Mäule revealed the presence of G-S-lignin in stone cells, and ImageJ results showed that G-lignin was distributed in the entire stone cell wall, while S-lignin deposition accounted for 48.59% of the cell wall area. In the FTIR spectra, the shell was identified as containing G-S-lignin.
Collapse
Affiliation(s)
- Qianqian Wang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Jinbo Hu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China.
| | - Tianshu Yang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Shanshan Chang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| |
Collapse
|
8
|
Celedon JM, Whitehill JGA, Madilao LL, Bohlmann J. Gymnosperm glandular trichomes: expanded dimensions of the conifer terpenoid defense system. Sci Rep 2020; 10:12464. [PMID: 32719384 PMCID: PMC7385631 DOI: 10.1038/s41598-020-69373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/26/2020] [Indexed: 11/13/2022] Open
Abstract
Glandular trichomes (GTs) are defensive structures that produce and accumulate specialized metabolites and protect plants against herbivores, pathogens, and abiotic stress. GTs have been extensively studied in angiosperms for their roles in defense and biosynthesis of high-value metabolites. In contrast, trichomes of gymnosperms have been described in fossilized samples, but have not been studied in living plants. Here, we describe the characterization of GTs on young stems of a hybrid white spruce. Metabolite and histological analysis of spruce GTs support a glandular function with accumulation of a diverse array of mono-, sesqui- and diterpenes including diterpene methylesters. Methylated diterpenes have previously been associated with insect resistance in white spruce. Headspeace analysis of spruce GTs showed a profile of volatiles dominated by monoterpenes and a highly diverse array of sesquiterpenes. Spruce GTs appear early during shoot growth, prior to the development of a lignified bark and prior to accumulation of terpenes in needles. Spruce GTs may provide an early, terpene-based chemical defense system at a developmental stage when young shoots are particularly vulnerable to foliage and shoot feeding insects, and before the resin duct system characteristic of conifers has fully developed.
Collapse
Affiliation(s)
- Jose M Celedon
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Justin G A Whitehill
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Lufiani L Madilao
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
9
|
Parent GJ, Méndez‐Espinoza C, Giguère I, Mageroy MH, Charest M, Bauce É, Bohlmann J, MacKay JJ. Hydroxyacetophenone defenses in white spruce against spruce budworm. Evol Appl 2020; 13:62-75. [PMID: 31892944 PMCID: PMC6935585 DOI: 10.1111/eva.12885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/17/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
We review a recently discovered white spruce (Picea glauca) chemical defense against spruce budworm (Choristoneura fumiferana) involving hydroxyacetophenones. These defense metabolites detected in the foliage accumulate variably as the aglycons, piceol and pungenol, or the corresponding glucosides, picein and pungenin. We summarize current knowledge of the genetic, genomic, molecular, and biochemical underpinnings of this defense and its effects on C. fumiferana. We present an update with new results on the ontogenic variation and the phenological window of this defense, including analysis of transcript responses in P. glauca to C. fumiferana herbivory. We also discuss this chemical defense from an evolutionary and a breeding context.
Collapse
Affiliation(s)
- Geneviève J. Parent
- Département des sciences du bois et de la forêtCentre d’étude de la forêtUniversité LavalQuébecQCCanada
- Institut de biologie intégrative et des systèmesUniversité LavalQuébecQCCanada
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Claudia Méndez‐Espinoza
- Département des sciences du bois et de la forêtCentre d’étude de la forêtUniversité LavalQuébecQCCanada
- Institut de biologie intégrative et des systèmesUniversité LavalQuébecQCCanada
- Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas ForestalesInstituto Nacional de Investigaciones Forestales, Agrícolas y PecuariasCiudad de MéxicoMexico
| | - Isabelle Giguère
- Département des sciences du bois et de la forêtCentre d’étude de la forêtUniversité LavalQuébecQCCanada
- Institut de biologie intégrative et des systèmesUniversité LavalQuébecQCCanada
| | - Melissa H. Mageroy
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
- Norwegian Institute for Bioeconomy ResearchÅsNorway
| | - Martin Charest
- Département des sciences du bois et de la forêtCentre d’étude de la forêtUniversité LavalQuébecQCCanada
| | - Éric Bauce
- Département des sciences du bois et de la forêtCentre d’étude de la forêtUniversité LavalQuébecQCCanada
| | - Joerg Bohlmann
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanada
| | - John J. MacKay
- Département des sciences du bois et de la forêtCentre d’étude de la forêtUniversité LavalQuébecQCCanada
- Institut de biologie intégrative et des systèmesUniversité LavalQuébecQCCanada
- Department of Plant SciencesUniversity of OxfordOxfordUK
| |
Collapse
|
10
|
Kairenius P, Mäntysaari P, Rinne M. The effect of gradual dietary pine bark meal supplementation on milk production of dairy cows fed a grass silage-based diet. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Whitehill JG, Bohlmann J. A molecular and genomic reference system for conifer defence against insects. PLANT, CELL & ENVIRONMENT 2019; 42:2844-2859. [PMID: 31042808 PMCID: PMC6852437 DOI: 10.1111/pce.13571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 05/29/2023]
Abstract
Insect pests are part of natural forest ecosystems contributing to forest rejuvenation but can also cause ecological disturbance and economic losses that are expected to increase with climate change. The white pine or spruce weevil (Pissodes strobi) is a pest of conifer forests in North America. Weevil-host interactions with various spruce (Picea) species have been explored as a genomic and molecular reference system for conifer defence against insects. Interactions occur in two major phases of the insect life cycle. In the exophase, adult weevils are free-moving and display behaviour of host selection for oviposition that is affected by host traits. In the endophase, insects live within the host where mobility and development from eggs to young adults are affected by a complex system of host defences. Genetic resistance exists in several spruce species and involves synergism of constitutive and induced chemical and physical defences that comprise the conifer defence syndrome. Here, we review conifer defences that disrupt the weevil life cycle and mechanisms by which trees resist weevil attack. We highlight molecular and genomic aspects and a possible role for the weevil microbiome. Knowledge of this conifer defence system is supporting forest health strategies and tree breeding for insect resistance.
Collapse
Affiliation(s)
| | - Jörg Bohlmann
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
- Department of BotanyUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| |
Collapse
|
12
|
Whitehill JGA, Yuen MMS, Henderson H, Madilao L, Kshatriya K, Bryan J, Jaquish B, Bohlmann J. Functions of stone cells and oleoresin terpenes in the conifer defense syndrome. THE NEW PHYTOLOGIST 2019; 221:1503-1517. [PMID: 30216451 DOI: 10.1111/nph.15477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Conifers depend on complex defense systems against herbivores. Stone cells (SC) and oleoresin are physical and chemical defenses of Sitka spruce that have been separately studied in previous work. Weevil oviposit at the tip of the previous year's apical shoot (PYAS). We investigated interactions between weevil larvae and trees in controlled oviposition experiments with resistant (R) and susceptible (S) Sitka spruce. R trees have an abundance of SC in the PYAS cortex. SC are mostly absent in S trees. R trees and S trees also differ in the composition of oleoresin terpenes. Transcriptomes of R and S trees revealed differences in long-term weevil-induced responses. Performance of larvae was significantly reduced on R trees compared with S trees under experimental conditions that mimicked natural oviposition behavior at apical shoot tips and may be attributed to the effects of SC. In oviposition experiments designed for larvae to feed below the area of highest SC abundance, larvae showed an unusual feeding behavior and oleoresin appeared to function as the major defense. The results support a role for both SC and oleoresin terpenes and possible synergies between these traits in the defense syndrome of weevil-resistant Sitka spruce.
Collapse
Affiliation(s)
- Justin G A Whitehill
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Macaire M S Yuen
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Hannah Henderson
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Lina Madilao
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Kristina Kshatriya
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jennifer Bryan
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Statistics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Barry Jaquish
- British Columbia Ministry of Forests, Lands and Natural Resource Operations, Tree Improvement Branch, Kalamalka Forestry Centre, 3401 Reservoir Road, Vernon, BC, V1B 2C7, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
13
|
Celedon JM, Yuen MMS, Chiang A, Henderson H, Reid KE, Bohlmann J. Cell-type- and tissue-specific transcriptomes of the white spruce (Picea glauca) bark unmask fine-scale spatial patterns of constitutive and induced conifer defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:710-726. [PMID: 28857307 DOI: 10.1111/tpj.13673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 05/09/2023]
Abstract
Plant defenses often involve specialized cells and tissues. In conifers, specialized cells of the bark are important for defense against insects and pathogens. Using laser microdissection, we characterized the transcriptomes of cortical resin duct cells, phenolic cells and phloem of white spruce (Picea glauca) bark under constitutive and methyl jasmonate (MeJa)-induced conditions, and we compared these transcriptomes with the transcriptome of the bark tissue complex. Overall, ~3700 bark transcripts were differentially expressed in response to MeJa. Approximately 25% of transcripts were expressed in only one cell type, revealing cell specialization at the transcriptome level. MeJa caused cell-type-specific transcriptome responses and changed the overall patterns of cell-type-specific transcript accumulation. Comparison of transcriptomes of the conifer bark tissue complex and specialized cells resolved a masking effect inherent to transcriptome analysis of complex tissues, and showed the actual cell-type-specific transcriptome signatures. Characterization of cell-type-specific transcriptomes is critical to reveal the dynamic patterns of spatial and temporal display of constitutive and induced defense systems in a complex plant tissue or organ. This was demonstrated with the improved resolution of spatially restricted expression of sets of genes of secondary metabolism in the specialized cell types.
Collapse
Affiliation(s)
- Jose M Celedon
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Macaire M S Yuen
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Angela Chiang
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Hannah Henderson
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Karen E Reid
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|