1
|
Hashimi A, Tocheva EI. Cell envelope diversity and evolution across the bacterial tree of life. Nat Microbiol 2024; 9:2475-2487. [PMID: 39294462 DOI: 10.1038/s41564-024-01812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/16/2024] [Indexed: 09/20/2024]
Abstract
The bacterial cell envelope is a complex multilayered structure conserved across all bacterial phyla. It is categorized into two main types based on the number of membranes surrounding the cell. Monoderm bacteria are enclosed by a single membrane, whereas diderm cells are distinguished by the presence of a second, outer membrane (OM). An ancient divide in the bacterial domain has resulted in two major clades: the Gracilicutes, consisting strictly of diderm phyla; and the Terrabacteria, encompassing monoderm and diderm species with diverse cell envelope architectures. Recent structural and phylogenetic advancements have improved our understanding of the diversity and evolution of the OM across the bacterial tree of life. Here we discuss cell envelope variability within major bacterial phyla and focus on conserved features found in diderm lineages. Characterizing the mechanisms of OM biogenesis and the evolutionary gains and losses of the OM provides insights into the primordial cell and the last universal common ancestor from which all living organisms subsequently evolved.
Collapse
Affiliation(s)
- Ameena Hashimi
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Mueller-Schuessele SJ, Leterme S, Michaud M. Plastid Transient and Stable Interactions with Other Cell Compartments. Methods Mol Biol 2024; 2776:107-134. [PMID: 38502500 DOI: 10.1007/978-1-0716-3726-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Plastids are organelles delineated by two envelopes playing important roles in different cellular processes such as energy production or lipid biosynthesis. To regulate their biogenesis and their function, plastids have to communicate with other cellular compartments. This communication can be mediated by metabolites, signaling molecules, and by the establishment of direct contacts between the plastid envelope and other organelles such as the endoplasmic reticulum, mitochondria, peroxisomes, plasma membrane, and the nucleus. These interactions are highly dynamic and respond to different biotic and abiotic stresses. However, the mechanisms involved in the formation of plastid-organelle contact sites and their functions are still far from being understood. In this chapter, we summarize our current knowledge about plastid contact sites and their role in the regulation of plastid biogenesis and function.
Collapse
Affiliation(s)
| | - Sébastien Leterme
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France.
| |
Collapse
|
3
|
Yoshitake Y, Yoshimoto K. Intracellular phosphate recycling systems for survival during phosphate starvation in plants. FRONTIERS IN PLANT SCIENCE 2023; 13:1088211. [PMID: 36733584 PMCID: PMC9888252 DOI: 10.3389/fpls.2022.1088211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Phosphorus (P) is an essential nutrient for plant growth and plants use inorganic phosphate (Pi) as their P source, but its bioavailable form, orthophosphate, is often limited in soils. Hence, plants have several mechanisms for adaptation to Pi starvation. One of the most common response strategies is "Pi recycling" in which catabolic enzymes degrade intracellular constituents, such as phosphoesters, nucleic acids and glycerophospholipids to salvage Pi. Recently, several other intracellular degradation systems have been discovered that salvage Pi from organelles. Also, one of sphingolipids has recently been identified as a degradation target for Pi recycling. So, in this mini-review we summarize the current state of knowledge, including research findings, about the targets and degradation processes for Pi recycling under Pi starvation, in order to further our knowledge of the whole mechanism of Pi recycling.
Collapse
|
4
|
Gross LE, Klinger A, Spies N, Ernst T, Flinner N, Simm S, Ladig R, Bodensohn U, Schleiff E. Insertion of plastidic β-barrel proteins into the outer envelopes of plastids involves an intermembrane space intermediate formed with Toc75-V/OEP80. THE PLANT CELL 2021; 33:1657-1681. [PMID: 33624803 PMCID: PMC8254496 DOI: 10.1093/plcell/koab052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The insertion of organellar membrane proteins with the correct topology requires the following: First, the proteins must contain topogenic signals for translocation across and insertion into the membrane. Second, proteinaceous complexes in the cytoplasm, membrane, and lumen of organelles are required to drive this process. Many complexes required for the intracellular distribution of membrane proteins have been described, but the signals and components required for the insertion of plastidic β-barrel-type proteins into the outer membrane are largely unknown. The discovery of common principles is difficult, as only a few plastidic β-barrel proteins exist. Here, we provide evidence that the plastidic outer envelope β-barrel proteins OEP21, OEP24, and OEP37 from pea (Pisum sativum) and Arabidopsis thaliana contain information defining the topology of the protein. The information required for the translocation of pea proteins across the outer envelope membrane is present within the six N-terminal β-strands. This process requires the action of translocon of the outer chloroplast (TOC) membrane. After translocation into the intermembrane space, β-barrel proteins interact with TOC75-V, as exemplified by OEP37 and P39, and are integrated into the membrane. The membrane insertion of plastidic β-barrel proteins is affected by mutation of the last β-strand, suggesting that this strand contributes to the insertion signal. These findings shed light on the elements and complexes involved in plastidic β-barrel protein import.
Collapse
Affiliation(s)
- Lucia E Gross
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Anna Klinger
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Nicole Spies
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Theresa Ernst
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Nadine Flinner
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Stefan Simm
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, D-60438 Frankfurt, Germany
| | - Roman Ladig
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Uwe Bodensohn
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, D-60438 Frankfurt, Germany
| |
Collapse
|
5
|
Dissanayaka DMSB, Ghahremani M, Siebers M, Wasaki J, Plaxton WC. Recent insights into the metabolic adaptations of phosphorus-deprived plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:199-223. [PMID: 33211873 DOI: 10.1093/jxb/eraa482] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Inorganic phosphate (Pi) is an essential macronutrient required for many fundamental processes in plants, including photosynthesis and respiration, as well as nucleic acid, protein, and membrane phospholipid synthesis. The huge use of Pi-containing fertilizers in agriculture demonstrates that the soluble Pi levels of most soils are suboptimal for crop growth. This review explores recent advances concerning the understanding of adaptive metabolic processes that plants have evolved to alleviate the negative impact of nutritional Pi deficiency. Plant Pi starvation responses arise from complex signaling pathways that integrate altered gene expression with post-transcriptional and post-translational mechanisms. The resultant remodeling of the transcriptome, proteome, and metabolome enhances the efficiency of root Pi acquisition from the soil, as well as the use of assimilated Pi throughout the plant. We emphasize how the up-regulation of high-affinity Pi transporters and intra- and extracellular Pi scavenging and recycling enzymes, organic acid anion efflux, membrane remodeling, and the remarkable flexibility of plant metabolism and bioenergetics contribute to the survival of Pi-deficient plants. This research field is enabling the development of a broad range of innovative and promising strategies for engineering phosphorus-efficient crops. Such cultivars are urgently needed to reduce inputs of unsustainable and non-renewable Pi fertilizers for maximum agronomic benefit and long-term global food security and ecosystem preservation.
Collapse
Affiliation(s)
- D M S B Dissanayaka
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Mina Ghahremani
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Meike Siebers
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jun Wasaki
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
6
|
Pfaff J, Denton AK, Usadel B, Pfaff C. Phosphate starvation causes different stress responses in the lipid metabolism of tomato leaves and roots. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158763. [DOI: 10.1016/j.bbalip.2020.158763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/15/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
|
7
|
Correa SM, Fernie AR, Nikoloski Z, Brotman Y. Towards model-driven characterization and manipulation of plant lipid metabolism. Prog Lipid Res 2020; 80:101051. [PMID: 32640289 DOI: 10.1016/j.plipres.2020.101051] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 01/09/2023]
Abstract
Plant lipids have versatile applications and provide essential fatty acids in human diet. Therefore, there has been a growing interest to better characterize the genetic basis, regulatory networks, and metabolic pathways that shape lipid quantity and composition. Addressing these issues is challenging due to context-specificity of lipid metabolism integrating environmental, developmental, and tissue-specific cues. Here we systematically review the known metabolic pathways and regulatory interactions that modulate the levels of storage lipids in oilseeds. We argue that the current understanding of lipid metabolism provides the basis for its study in the context of genome-wide plant metabolic networks with the help of approaches from constraint-based modeling and metabolic flux analysis. The focus is on providing a comprehensive summary of the state-of-the-art of modeling plant lipid metabolic pathways, which we then contrast with the existing modeling efforts in yeast and microalgae. We then point out the gaps in knowledge of lipid metabolism, and enumerate the recent advances of using genome-wide association and quantitative trait loci mapping studies to unravel the genetic regulations of lipid metabolism. Finally, we offer a perspective on how advances in the constraint-based modeling framework can propel further characterization of plant lipid metabolism and its rational manipulation.
Collapse
Affiliation(s)
- Sandra M Correa
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel; Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050010, Colombia.
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Zoran Nikoloski
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modelling Group, Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm 14476, Germany.
| | - Yariv Brotman
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| |
Collapse
|
8
|
Membrane Extracts from Plant Tissues. Methods Mol Biol 2020. [PMID: 32112316 DOI: 10.1007/978-1-0716-0373-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The comparison of isolated plant cell membranous enclosures can be hampered if their extraction method differs, e.g., in regard to the utilized buffers, the tissue, or the developmental stage of the plant. Thus, for comparable results, different cellular compartments should be isolated synchronously in one procedure. Here, we devise a workflow to isolate different organelles from one tissue, which is applicable to different eudicots such as Medicago x varia and Solanum lycopersicum. We describe this method for the isolation of different organelles from one plant tissue for the example of Arabidopsis thaliana. All compartments are retrieved by utilizing differential centrifugation with organelle-specific parameters.
Collapse
|
9
|
Bouchnak I, Brugière S, Moyet L, Le Gall S, Salvi D, Kuntz M, Tardif M, Rolland N. Unraveling Hidden Components of the Chloroplast Envelope Proteome: Opportunities and Limits of Better MS Sensitivity. Mol Cell Proteomics 2019; 18:1285-1306. [PMID: 30962257 PMCID: PMC6601204 DOI: 10.1074/mcp.ra118.000988] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/03/2019] [Indexed: 12/31/2022] Open
Abstract
The chloroplast is a major plant cell organelle that fulfills essential metabolic and biosynthetic functions. Located at the interface between the chloroplast and other cell compartments, the chloroplast envelope system is a strategic barrier controlling the exchange of ions, metabolites and proteins, thus regulating essential metabolic functions (synthesis of hormones precursors, amino acids, pigments, sugars, vitamins, lipids, nucleotides etc.) of the plant cell. However, unraveling the contents of the chloroplast envelope proteome remains a difficult challenge; many proteins constituting this functional double membrane system remain to be identified. Indeed, the envelope contains only 1% of the chloroplast proteins (i.e. 0.4% of the whole cell proteome). In other words, most envelope proteins are so rare at the cell, chloroplast, or even envelope level, that they remained undetectable using targeted MS studies. Cross-contamination of chloroplast subcompartments by each other and by other cell compartments during cell fractionation, impedes accurate localization of many envelope proteins. The aim of the present study was to take advantage of technologically improved MS sensitivity to better define the proteome of the chloroplast envelope (differentiate genuine envelope proteins from contaminants). This MS-based analysis relied on an enrichment factor that was calculated for each protein identified in purified envelope fractions as compared with the value obtained for the same protein in crude cell extracts. Using this approach, a total of 1269 proteins were detected in purified envelope fractions, of which, 462 could be assigned an envelope localization by combining MS-based spectral count analyses with manual annotation using data from the literature and prediction tools. Many of such proteins being previously unknown envelope components, these data constitute a new resource of significant value to the broader plant science community aiming to define principles and molecular mechanisms controlling fundamental aspects of plastid biogenesis and functions.
Collapse
Affiliation(s)
- Imen Bouchnak
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Sabine Brugière
- §University Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France
| | - Lucas Moyet
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Sophie Le Gall
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Daniel Salvi
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Marcel Kuntz
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Marianne Tardif
- §University Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France
| | - Norbert Rolland
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France;.
| |
Collapse
|
10
|
Michaud M, Jouhet J. Lipid Trafficking at Membrane Contact Sites During Plant Development and Stress Response. FRONTIERS IN PLANT SCIENCE 2019; 10:2. [PMID: 30713540 PMCID: PMC6346683 DOI: 10.3389/fpls.2019.00002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/03/2019] [Indexed: 05/20/2023]
Abstract
The biogenesis of cellular membranes involves an important traffic of lipids from their site of synthesis to their final destination. Lipid transfer can be mediated by vesicular or non-vesicular pathways. The non-vesicular pathway requires the close apposition of two membranes to form a functional platform, called membrane contact sites (MCSs), where lipids are exchanged. These last decades, MCSs have been observed between virtually all organelles and a role in lipid transfer has been demonstrated for some of them. In plants, the lipid composition of membranes is highly dynamic and can be drastically modified in response to environmental changes. This highlights the importance of understanding the mechanisms involved in the regulation of membrane lipid homeostasis in plants. This review summarizes our current knowledge about the non-vesicular transport of lipids at MCSs in plants and its regulation during stress.
Collapse
|
11
|
LaBrant E, Barnes AC, Roston RL. Lipid transport required to make lipids of photosynthetic membranes. PHOTOSYNTHESIS RESEARCH 2018; 138:345-360. [PMID: 29961189 DOI: 10.1007/s11120-018-0545-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/20/2018] [Indexed: 05/21/2023]
Abstract
Photosynthetic membranes provide much of the usable energy for life on earth. To produce photosynthetic membrane lipids, multiple transport steps are required, including fatty acid export from the chloroplast stroma to the endoplasmic reticulum, and lipid transport from the endoplasmic reticulum to the chloroplast envelope membranes. Transport of hydrophobic molecules through aqueous space is energetically unfavorable and must be catalyzed by dedicated enzymes, frequently on specialized membrane structures. Here, we review photosynthetic membrane lipid transport to the chloroplast in the context of photosynthetic membrane lipid synthesis. We independently consider the identity of transported lipids, the proteinaceous transport components, and membrane structures which may allow efficient transport. Recent advances in lipid transport of chloroplasts, bacteria, and other systems strongly suggest that lipid transport is achieved by multiple mechanisms which include membrane contact sites with specialized protein machinery. This machinery is likely to include the TGD1, 2, 3 complex with the TGD5 and TGD4/LPTD1 systems, and may also include a number of proteins with domains similar to other membrane contact site lipid-binding proteins. Importantly, the likelihood of membrane contact sites does not preclude lipid transport by other mechanisms including vectorial acylation and vesicle transport. Substantial progress is needed to fully understand all photosynthetic membrane lipid transport processes and how they are integrated.
Collapse
Affiliation(s)
- Evan LaBrant
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Allison C Barnes
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Rebecca L Roston
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA.
| |
Collapse
|