1
|
Díaz Suárez L, Inagaki H, Hirata H, Akimoto Y, Sakakibayashi K, Seino H, Ito M, Cao L, Nakabayashi K, Kato K, Onishi K. Fine-tuning of heading time by earliness per se effect due to multi-allelic variants in VRN-B3 locus of hexaploid wheat. PLANTA 2025; 261:97. [PMID: 40153070 DOI: 10.1007/s00425-025-04674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/12/2025] [Indexed: 03/30/2025]
Abstract
MAIN CONCLUSION Wheat VRN-B3 contains multi-allelic variants conferring earliness per se effects and can generate a new allele by recombining multiple alleles, highlighting its importance for the fine-tuning of heading time. Fine-tuning of heading time is required for breeding well-adapted varieties of wheat in regional environments. The VRN-B3 locus, which encodes the FT-B1 gene, is known as a vernalization gene. In this study, we analyzed two alleles in the VRN-B3 region: QHt-7B_Zen of a Japanese variety (Zenkouji-komugi) and QHt-7B_spelt of a spelt wheat strain (st. Rumania). Phenotypic evaluation of near-isogeneic lines (NILs) of 'Chinese Spring' (CS) under long-day (16 h) conditions showed that QHt-7B_Zen and QHt-7B_spelt conferred approximately 3.9 d earlier and 3.0 d later heading time compared with CS, respectively. Differences in heading times among NILs were also observed for fully vernalized plants under long-day conditions, indicating their earliness per se effect. Both QTLs behaved as single genes with incomplete dominant effects, and fine-mapping showed that FT-B1 was responsible for heading time. Droplet digital PCR analysis revealed that QHt-7B_Zen contained three copies of FT-B1, similar to the CS. QHt-7B_spelt had one FT-B1 copy with 14 substitutions, a 15 bp insertion in the 4.8 kb promoter region, and one amino acid substitution in the third exon, which could be designated as a novel allele, Vrn-B3f. Furthermore, a new allele with two FT-B1 copies conferring an intermediate heading time between the parents was created by the recombination of FT-B1 copies of CS and NIL for QHt-7B_spelt. Our findings indicate that fine-tuning heading time is possible through the versatility of the VRN-B3 locus, which can generate multi-allelic variants that have both vernalization and earliness per se effects in wheat.
Collapse
Affiliation(s)
- Lesly Díaz Suárez
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
- Centro de Investigaciones Agropecuarias (CIAP), Universidad Central "Marta Abreu" de Las Villas (UCLV), Carretera a Camajuaní Km 5 ½, 54830, Santa Clara, Cuba
| | - Hatsune Inagaki
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Hiroshi Hirata
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Yusuke Akimoto
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Kana Sakakibayashi
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Honoka Seino
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Masaki Ito
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Liangzi Cao
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Kazumi Nakabayashi
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Kenji Kato
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Kita-Ku, Okayama, 700-8530, Japan
| | - Kazumitsu Onishi
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
2
|
Kiss T, Horváth ÁD, Cseh A, Berki Z, Balla K, Karsai I. Molecular genetic regulation of the vegetative-generative transition in wheat from an environmental perspective. ANNALS OF BOTANY 2025; 135:605-628. [PMID: 39364537 PMCID: PMC11904908 DOI: 10.1093/aob/mcae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The key to the wide geographical distribution of wheat is its high adaptability. One of the most commonly used methods for studying adaptation is investigation of the transition between the vegetative-generative phase and the subsequent intensive stem elongation process. These processes are determined largely by changes in ambient temperature, the diurnal and annual periodicity of daylength, and the composition of the light spectrum. Many genes are involved in the perception of external environmental signals, forming a complex network of interconnections that are then integrated by a few integrator genes. This hierarchical cascade system ensures the precise occurrence of the developmental stages that enable maximum productivity. This review presents the interrelationship of molecular-genetic pathways (Earliness per se, circadian/photoperiod length, vernalization - cold requirement, phytohormonal - gibberellic acid, light perception, ambient temperature perception and ageing - miRNA) responsible for environmental adaptation in wheat. Detailed molecular genetic mapping of wheat adaptability will allow breeders to incorporate new alleles that will create varieties best adapted to local environmental conditions.
Collapse
Affiliation(s)
- Tibor Kiss
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - Ádám D Horváth
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - András Cseh
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Zita Berki
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Krisztina Balla
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Ildikó Karsai
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| |
Collapse
|
3
|
Song T, Shi C, Wang Y, Guo S, Zhang W, Wang X, Zhou J, Bu Y, Li S, Fan Q, Wei F, Xiang J, Chen D, Zhang X. Molecular characterization of a novel photoperiod-insensitive allele Ppd-B1a.3 and its effect on heading date in Chinese wheat (Triticum aestivum) cultivar Qingchun 37. JOURNAL OF PLANT RESEARCH 2025; 138:273-287. [PMID: 39741178 DOI: 10.1007/s10265-024-01609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
Breeders adjust wheat heading dates to improve regional adaptability and reduce or mitigate yield losses caused by meteorological disasters, pests and diseases. The Ppd-1 genes play a crucial role in determining wheat sensitivity to changes in day-length and serve as key regulators of heading dates once the vernalization requirement is satisfied. In this study, we identified a new allelic variant of the promoter region, Ppd-B1a.3, in the Chinese wheat cultivar Qingchun 37. Compared to the Ppd-B1b.1 (carried by Chihokukomugi), the main mutation sites in Ppd-B1a.3 include a substitution of C with G at the -505-bp, a T base insertion at the -625-bp, a mutation of TCG to GGT at the -632 to -634-bp, and a 163-bp insertion at the -691 bp. Analysis of F2 populations indicated that Ppd-B1a.3 promotes heading and flowering (approximately 6 days earlier in population 1 and 17 days in population 2) under short-day conditions in a greenhouse. However, the evaluation of Ppd-B1a.3's effect under field conditions may be influenced by the copy number of the Ppd-B1 locus inherited from the other parent in the F2 populations. Ppd-B1a.3 disrupts circadian rhythm expression and exhibits a stronger effect on heading and flowering than the three-copy Ppd-B1 allele carried by Jing 411. Origin analysis suggests that Ppd-B1a.3 may have derived from non-native germplasm. These results deepen our understanding of wheat photoperiod genes and provide useful genetic resources for fine-tuning wheat heading dates during breeding.
Collapse
Affiliation(s)
- Tianqi Song
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Caiyin Shi
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yukun Wang
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Sihai Guo
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Weijun Zhang
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, 750002, Ningxia, China
| | - Xiaoxing Wang
- College of Biological Sciences and Technology, Yili Normal University, Yili, 830500, Xinjiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yili Normal University, Yili, 830500, Xinjiang, China
| | - Jianfei Zhou
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yaning Bu
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Siyi Li
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Qiru Fan
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Fan Wei
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Jishan Xiang
- College of Biological Sciences and Technology, Yili Normal University, Yili, 830500, Xinjiang, China.
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yili Normal University, Yili, 830500, Xinjiang, China.
| | - Dongsheng Chen
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, 750002, Ningxia, China.
| | - Xiaoke Zhang
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Dowling CA, Shi J, Toth JA, Quade MA, Smart LB, McCabe PF, Schilling S, Melzer R. A FLOWERING LOCUS T ortholog is associated with photoperiod-insensitive flowering in hemp (Cannabis sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:383-403. [PMID: 38625758 DOI: 10.1111/tpj.16769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Hemp (Cannabis sativa L.) is an extraordinarily versatile crop, with applications ranging from medicinal compounds to seed oil and fibre products. Cannabis sativa is a short-day plant, and its flowering is highly controlled by photoperiod. However, substantial genetic variation exists for photoperiod sensitivity in C. sativa, and photoperiod-insensitive ("autoflower") cultivars are available. Using a bi-parental mapping population and bulked segregant analysis, we identified Autoflower2, a 0.5 Mbp locus significantly associated with photoperiod-insensitive flowering in hemp. Autoflower2 contains an ortholog of the central flowering time regulator FLOWERING LOCUS T (FT) from Arabidopsis thaliana which we termed CsFT1. We identified extensive sequence divergence between alleles of CsFT1 from photoperiod-sensitive and insensitive cultivars of C. sativa, including a duplication of CsFT1 and sequence differences, especially in introns. Furthermore, we observed higher expression of one of the CsFT1 copies found in the photoperiod-insensitive cultivar. Genotyping of several mapping populations and a diversity panel confirmed a correlation between CsFT1 alleles and photoperiod response, affirming that at least two independent loci involved in the photoperiodic control of flowering, Autoflower1 and Autoflower2, exist in the C. sativa gene pool. This study reveals the multiple independent origins of photoperiod insensitivity in C. sativa, supporting the likelihood of a complex domestication history in this species. By integrating the genetic relaxation of photoperiod sensitivity into novel C. sativa cultivars, expansion to higher latitudes will be permitted, thus allowing the full potential of this versatile crop to be reached.
Collapse
Affiliation(s)
- Caroline A Dowling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Jiaqi Shi
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Jacob A Toth
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, New York, USA
| | - Michael A Quade
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, New York, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, New York, USA
| | - Paul F McCabe
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Susanne Schilling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Rainer Melzer
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
He Y, Xiong W, Hu P, Huang D, Feurtado JA, Zhang T, Hao C, DePauw R, Zheng B, Hoogenboom G, Dixon LE, Wang H, Challinor AJ. Climate change enhances stability of wheat-flowering-date. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170305. [PMID: 38278227 DOI: 10.1016/j.scitotenv.2024.170305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
The stability of winter wheat-flowering-date is crucial for ensuring consistent and robust crop performance across diverse climatic conditions. However, the impact of climate change on wheat-flowering-dates remains uncertain. This study aims to elucidate the influence of climate change on wheat-flowering-dates, predict how projected future climate conditions will affect flowering date stability, and identify the most stable wheat genotypes in the study region. We applied a multi-locus genotype-based (MLG-based) model for simulating wheat-flowering-dates, which we calibrated and evaluated using observed data from the Northern China winter wheat region (NCWWR). This MLG-based model was employed to project flowering dates under different climate scenarios. The simulated flowering dates were then used to assess the stability of flowering dates under varying allelic combinations in projected climatic conditions. Our MLG-based model effectively simulated flowering dates, with a root mean square error (RMSE) of 2.3 days, explaining approximately 88.5 % of the genotypic variation in flowering dates among 100 wheat genotypes. We found that, in comparison to the baseline climate, wheat-flowering-dates are expected to shift earlier within the target sowing window by approximately 11 and 14 days by 2050 under the Representative Concentration Pathways 4.5 (RCP4.5) and RCP8.5 climate scenarios, respectively. Furthermore, our analysis revealed that wheat-flowering-date stability is likely to be further strengthened under projected climate scenarios due to early flowering trends. Ultimately, we demonstrate that the combination of Vrn and Ppd genes, rather than individual Vrn or Ppd genes, plays a critical role in wheat-flowering-date stability. Our results suggest that the combination of Ppd-D1a with winter genotypes carrying the vrn-D1 allele significantly contributes to flowering date stability under current and projected climate scenarios. These findings provide valuable insights for wheat breeders and producers under future climatic conditions.
Collapse
Affiliation(s)
- Yong He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Wei Xiong
- Sustainable Agrifood System, International Maize and Wheat Improvement Center, Texcoco 56237, Mexico.
| | - Pengcheng Hu
- Agriculture and Food, CSIRO, GPO Box 1700, Canberra ACT 2601, ACT, Australia; School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Daiqing Huang
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada.
| | - J Allan Feurtado
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada.
| | - Tianyi Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Chenyang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Ron DePauw
- Advancing Wheat Technologies, 118 Strathcona Rd SW, Calgary, Alberta T3H 1P3, Canada
| | - Bangyou Zheng
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Queensland Biosciences Precinct, St Lucia, Queensland 4067, Australia.
| | - Gerrit Hoogenboom
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL 110570, USA.
| | - Laura E Dixon
- School of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Hong Wang
- HW Eco Research Group, Fleetwood Postal Outlet, Surrey V4N 9E9, Canada
| | - Andrew Juan Challinor
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
6
|
Qiao P, Li X, Liu D, Lu S, Zhi L, Rysbekova A, Chen L, Hu YG. Mining novel genomic regions and candidate genes of heading and flowering dates in bread wheat by SNP- and haplotype-based GWAS. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:76. [PMID: 37873506 PMCID: PMC10587053 DOI: 10.1007/s11032-023-01422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a global staple crop vital for human nutrition. Heading date (HD) and flowering date (FD) are critical traits influencing wheat growth, development, and adaptability to diverse environmental conditions. A comprehensive study were conducted involving 190 bread wheat accessions to unravel the genetic basis of HD and FD using high-throughput genotyping and multi-environment field trials. Seven independent quantitative trait loci (QTLs) were identified to be significantly associated with HD and FD using two GWAS methods, which explained a proportion of phenotypic variance ranging from 1.43% to 9.58%. Notably, QTLs overlapping with known vernalization genes Vrn-D1 were found, validating their roles in regulating flowering time. Moreover, novel QTLs on chromosome 2A, 5B, 5D, and 7B associated with HD and FD were identified. The effects of these QTLs on HD and FD were confirmed in an additional set of 74 accessions across different environments. An increase in the frequency of alleles associated with early flowering in cultivars released in recent years was also observed, suggesting the influence of molecular breeding strategies. In summary, this study enhances the understanding of the genetic regulation of HD and FD in bread wheat, offering valuable insights into crop improvement for enhanced adaptability and productivity under changing climatic conditions. These identified QTLs and associated markers have the potential to improve wheat breeding programs in developing climate-resilient varieties to ensure food security. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01422-z.
Collapse
Affiliation(s)
- Pengfang Qiao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Xuan Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Dezheng Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Shan Lu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Lei Zhi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Aiman Rysbekova
- S. Seifullin Kazakh Agro-Technical University, Astana, Kazakhstan
| | - Liang Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Yin-gang Hu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Institute of Water-saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|
7
|
Chepurnov GY, Ovchinnikova ES, Blinov AG, Chikida NN, Belousova MK, Goncharov NP. Analysis of the Structural Organization and Expression of the Vrn-D1 Gene Controlling Growth Habit (Spring vs. Winter) in Aegilops tauschii Coss. PLANTS (BASEL, SWITZERLAND) 2023; 12:3596. [PMID: 37896059 PMCID: PMC10610194 DOI: 10.3390/plants12203596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
The duration of the vegetative period is an important agronomic characteristic of cereal crops. It is mainly influenced by the Vrn (response to vernalization) and Ppd (response to photoperiod) genes. In this work, we searched for alleles of several known genes of these two systems of response to external conditions in 15 accessions of Aegilops tauschii Coss. (syn. Ae. squarrosa L.), with the aim of studying the impact these alleles have on the vegetative period duration and growth habit. As a result, three allelic variants have been found for the Vrn-D1 gene: (i) one intact (winter type), (ii) one with a 5437 bp deletion in the first intron and (iii) one previously undescribed allele with a 3273 bp deletion in the first intron. It has been shown that the spring growth habit of Ae. tauschii can be developed due to the presence of a new allele of the Vrn-D1 gene. Significant differences in expression levels between the new allelic variant of the Vrn-D1 gene and the intact allele vrn-D1 were confirmed by qPCR. The new allele can be introgressed into common wheat to enhance the biodiversity of the spring growth habit and vegetative period duration of plants.
Collapse
Affiliation(s)
- Grigory Yurievich Chepurnov
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| | - Ekaterina Sergeevna Ovchinnikova
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| | - Alexander Genadevich Blinov
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| | - Nadezhda Nikolaevna Chikida
- Division of Wheat Genetic Resources, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia;
| | - Mariya Khasbulatovna Belousova
- Wheat Laboratory, Dagestan Experimental Station—The Branch of the Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Vavilovo Village, Derbent District, 368600 Saint Petersburg, Russia;
| | - Nikolay Petrovich Goncharov
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| |
Collapse
|
8
|
Slafer GA, Casas AM, Igartua E. Sense in sensitivity: difference in the meaning of photoperiod-insensitivity between wheat and barley. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad128. [PMID: 37021554 DOI: 10.1093/jxb/erad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Indexed: 06/19/2023]
Abstract
The description of long photoperiod sensitivity in wheat and barley is a cause of confusion for researchers working in these crops, usually accustomed to free exchange of physiological and genetic knowledge of such similar crops. Indeed, wheat and barley scientists customarily quote studies of either crop species when researching one of them. Among their numerous similarities the main gene controlling that response is the same in both crops (PPD1; PPD-H1 in barley and PPD-D1 in hexaploid wheat). However, the photoperiod responses are different: (i) the main dominant allele inducing shorter time to anthesis is the insensitive allele in wheat (Ppd-D1a) but the sensitive allele in barley (Ppd-H1) (i.e. sensitivity to photoperiod produces opposite effects on time to heading in wheat and barley), (ii) the main "insensitive" allele in wheat, Ppd-D1a, does confer insensitivity, whilst that of barley reduces the sensitivity but still responds to photoperiod. The different behaviour of PPD1 genes in wheat and barley is put in a common framework based on the similarities and differences of the molecular bases of their mutations, which include polymorphism at gene expression levels, copy number variation, and sequence of coding regions. This common perspective sheds light on a source on confusion for cereal researchers, and prompts us to recommend accounting for the photoperiod sensitivity status of the plant materials when doing research on genetic control of phenology. Finally, we provide advice to facilitate the management of natural PPD1 diversity in breeding programs and suggest targets for further modification through gene editing, based on mutual knowledge on the two crops.
Collapse
Affiliation(s)
- Gustavo A Slafer
- Department of Crop and Forest Sciences University of Lleida and AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain
- ICREA, Catalonian Institution for Research and Advanced Studies, Spain
| | - Ana M Casas
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD, CSIC, Avda. Montañana 1005, E-50059 Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD, CSIC, Avda. Montañana 1005, E-50059 Zaragoza, Spain
| |
Collapse
|
9
|
Analysis of Genome Structure and Its Variations in Potato Cultivars Grown in Russia. Int J Mol Sci 2023; 24:ijms24065713. [PMID: 36982787 PMCID: PMC10059000 DOI: 10.3390/ijms24065713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Solanum tuberosum L. (common potato) is one of the most important crops produced almost all over the world. Genomic sequences of potato opens the way for studying the molecular variations related to diversification. We performed a reconstruction of genomic sequences for 15 tetraploid potato cultivars grown in Russia using short reads. Protein-coding genes were identified; conserved and variable parts of pan-genome and the repertoire of the NBS-LRR genes were characterized. For comparison, we used additional genomic sequences for twelve South American potato accessions, performed analysis of genetic diversity, and identified the copy number variations (CNVs) in two these groups of potato. Genomes of Russian potato cultivars were more homogeneous by CNV characteristics and have smaller maximum deletion size in comparison with South American ones. Genes with different CNV occurrences in two these groups of potato accessions were identified. We revealed genes of immune/abiotic stress response, transport and five genes related to tuberization and photoperiod control among them. Four genes related to tuberization and photoperiod were investigated in potatoes previously (phytochrome A among them). A novel gene, homologous to the poly(ADP-ribose) glycohydrolase (PARG) of Arabidopsis, was identified that may be involved in circadian rhythm control and contribute to the acclimatization processes of Russian potato cultivars.
Collapse
|
10
|
Ma F, Brown-Guedira G, Kang M, Baik BK. Allelic Variations in Phenology Genes of Eastern U.S. Soft Winter and Korean Winter Wheat and Their Associations with Heading Date. PLANTS (BASEL, SWITZERLAND) 2022; 11:3116. [PMID: 36432845 PMCID: PMC9693561 DOI: 10.3390/plants11223116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Wheat heading time is genetically controlled by phenology genes including vernalization (Vrn), photoperiod (Ppd) and earliness per se (Eps) genes. Characterization of the existing genetic variation in the phenology genes of wheat would provide breeding programs with valuable genetic resources necessary for the development of wheat varieties well-adapted to the local environment and early-maturing traits suitable for double-cropping system. One hundred forty-nine eastern U.S. soft winter (ESW) and 32 Korean winter (KW) wheat genotypes were characterized using molecular markers for Vrn, Ppd, Eps and reduced-height (Rht) genes, and phenotyped for heading date (HD) in the eastern U.S. region. The Ppd-D1 and Rht-D1 genes exhibited the highest genetic diversity in ESW and KW wheat, respectively. The genetic variations for HD of ESW wheat were largely contributed by Ppd-B1, Ppd-D1 and Vrn-D3 genes. The Rht-D1 gene largely contributed to the genetic variation for HD of KW wheat. KW wheat headed on average 14 days earlier than ESW wheat in each crop year, largely due to the presence of the one-copy vrn-A1 allele in the former. The development of early-maturing ESW wheat varieties could be achieved by selecting for the one-copy vrn-A1 and vrn-D3a alleles in combination with Ppd-B1a and Ppd-D1a photoperiod insensitive alleles.
Collapse
Affiliation(s)
- Fengyun Ma
- Soft Wheat Quality Laboratory, United States Department of Agriculture (USDA), Agricultural Research Service (ARS)-CSWQRU, 1680 Madison Avenue, Wooster, OH 44691, USA
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Gina Brown-Guedira
- Eastern Regional Small Grains Genotyping Laboratory, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Raleigh, NC 27695, USA
| | - Moonseok Kang
- Rural Development Administration, National Institute of Crop Science, Suwon 16429, Gyeonggi, Republic of Korea
| | - Byung-Kee Baik
- Soft Wheat Quality Laboratory, United States Department of Agriculture (USDA), Agricultural Research Service (ARS)-CSWQRU, 1680 Madison Avenue, Wooster, OH 44691, USA
| |
Collapse
|
11
|
Osnato M, Cota I, Nebhnani P, Cereijo U, Pelaz S. Photoperiod Control of Plant Growth: Flowering Time Genes Beyond Flowering. FRONTIERS IN PLANT SCIENCE 2022; 12:805635. [PMID: 35222453 PMCID: PMC8864088 DOI: 10.3389/fpls.2021.805635] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Fluctuations in environmental conditions greatly influence life on earth. Plants, as sessile organisms, have developed molecular mechanisms to adapt their development to changes in daylength, or photoperiod. One of the first plant features that comes to mind as affected by the duration of the day is flowering time; we all bring up a clear image of spring blossom. However, for many plants flowering happens at other times of the year, and many other developmental aspects are also affected by changes in daylength, which range from hypocotyl elongation in Arabidopsis thaliana to tuberization in potato or autumn growth cessation in trees. Strikingly, many of the processes affected by photoperiod employ similar gene networks to respond to changes in the length of light/dark cycles. In this review, we have focused on developmental processes affected by photoperiod that share similar genes and gene regulatory networks.
Collapse
Affiliation(s)
- Michela Osnato
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Cota
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Poonam Nebhnani
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Unai Cereijo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
12
|
Fernández-Calleja M, Casas AM, Igartua E. Major flowering time genes of barley: allelic diversity, effects, and comparison with wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1867-1897. [PMID: 33969431 PMCID: PMC8263424 DOI: 10.1007/s00122-021-03824-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/24/2021] [Indexed: 05/10/2023]
Abstract
This review summarizes the allelic series, effects, interactions between genes and with the environment, for the major flowering time genes that drive phenological adaptation of barley. The optimization of phenology is a major goal of plant breeding addressing the production of high-yielding varieties adapted to changing climatic conditions. Flowering time in cereals is regulated by genetic networks that respond predominately to day length and temperature. Allelic diversity at these genes is at the basis of barley wide adaptation. Detailed knowledge of their effects, and genetic and environmental interactions will facilitate plant breeders manipulating flowering time in cereal germplasm enhancement, by exploiting appropriate gene combinations. This review describes a catalogue of alleles found in QTL studies by barley geneticists, corresponding to the genetic diversity at major flowering time genes, the main drivers of barley phenological adaptation: VRN-H1 (HvBM5A), VRN-H2 (HvZCCTa-c), VRN-H3 (HvFT1), PPD-H1 (HvPRR37), PPD-H2 (HvFT3), and eam6/eps2 (HvCEN). For each gene, allelic series, size and direction of QTL effects, interactions between genes and with the environment are presented. Pleiotropic effects on agronomically important traits such as grain yield are also discussed. The review includes brief comments on additional genes with large effects on phenology that became relevant in modern barley breeding. The parallelisms between flowering time allelic variation between the two most cultivated Triticeae species (barley and wheat) are also outlined. This work is mostly based on previously published data, although we added some new data and hypothesis supported by a number of studies. This review shows the wide variety of allelic effects that provide enormous plasticity in barley flowering behavior, which opens new avenues to breeders for fine-tuning phenology of the barley crop.
Collapse
Affiliation(s)
- Miriam Fernández-Calleja
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain
| | - Ana M Casas
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD-CSIC, Avenida Montañana, 1005, 50059, Zaragoza, Spain.
| |
Collapse
|
13
|
Natural variation and artificial selection of photoperiodic flowering genes and their applications in crop adaptation. ABIOTECH 2021; 2:156-169. [PMID: 36304754 PMCID: PMC9590489 DOI: 10.1007/s42994-021-00039-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Flowering links vegetative growth and reproductive growth and involves the coordination of local environmental cues and plant genetic information. Appropriate timing of floral initiation and maturation in both wild and cultivated plants is important to their fitness and productivity in a given growth environment. The domestication of plants into crops, and later crop expansion and improvement, has often involved selection for early flowering. In this review, we analyze the basic rules for photoperiodic adaptation in several economically important and/or well-researched crop species. The ancestors of rice (Oryza sativa), maize (Zea mays), soybean (Glycine max), and tomato (Solanum lycopersicum) are short-day plants whose photosensitivity was reduced or lost during domestication and expansion to high-latitude areas. Wheat (Triticum aestivum) and barley (Hordeum vulgare) are long-day crops whose photosensitivity is influenced by both latitude and vernalization type. Here, we summarize recent studies about where these crops were domesticated, how they adapted to photoperiodic conditions as their growing area expanded from domestication locations to modern cultivating regions, and how allelic variants of photoperiodic flowering genes were selected during this process. A deeper understanding of photoperiodic flowering in each crop will enable better molecular design and breeding of high-yielding cultivars suited to particular local environments. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00039-0.
Collapse
|
14
|
Mangini G, Blanco A, Nigro D, Signorile MA, Simeone R. Candidate Genes and Quantitative Trait Loci for Grain Yield and Seed Size in Durum Wheat. PLANTS 2021; 10:plants10020312. [PMID: 33562879 PMCID: PMC7916090 DOI: 10.3390/plants10020312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/22/2022]
Abstract
Grain yield (YLD) is affected by thousand kernel weight (TKW) which reflects the combination of grain length (GL), grain width (GW) and grain area (AREA). Grain weight is also influenced by heading time (HT) and plant height (PH). To detect candidate genes and quantitative trait loci (QTL) of yield components, a durum wheat recombinant inbred line (RIL) population was evaluated in three field trials. The RIL was genotyped with a 90K single nucleotide polymorphism (SNP) array and a high-density genetic linkage map with 5134 markers was obtained. A total of 30 QTL were detected including 23 QTL grouped in clusters on 1B, 2A, 3A, 4B and 6B chromosomes. A QTL cluster on 2A chromosome included a major QTL for HT co-located with QTL for YLD, TKW, GL, GW and AREA, respectively. The photoperiod sensitivity (Ppd-A1) gene was found in the physical position of this cluster. Serine carboxypeptidase, Big grain 1 and β-fructofuranosidase candidate genes were mapped in clusters containing QTL for seed size. This study showed that yield components and phenological traits had higher inheritances than grain yield, allowing an accurate QTL cluster detection. This was a requisite to physically map QTL on durum genome and to identify candidate genes affecting grain yield.
Collapse
Affiliation(s)
- Giacomo Mangini
- Institute of Biosciences and Bioresources, National Research Council, Via Amendola 165/A, 70126 Bari, Italy
- Department of Soil, Plant and Food Sciences, Genetics and Plant Breeding Section, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (A.B.); (D.N.); (M.A.S.); (R.S.)
- Correspondence:
| | - Antonio Blanco
- Department of Soil, Plant and Food Sciences, Genetics and Plant Breeding Section, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (A.B.); (D.N.); (M.A.S.); (R.S.)
| | - Domenica Nigro
- Department of Soil, Plant and Food Sciences, Genetics and Plant Breeding Section, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (A.B.); (D.N.); (M.A.S.); (R.S.)
| | - Massimo Antonio Signorile
- Department of Soil, Plant and Food Sciences, Genetics and Plant Breeding Section, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (A.B.); (D.N.); (M.A.S.); (R.S.)
| | - Rosanna Simeone
- Department of Soil, Plant and Food Sciences, Genetics and Plant Breeding Section, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (A.B.); (D.N.); (M.A.S.); (R.S.)
| |
Collapse
|
15
|
Liber M, Duarte I, Maia AT, Oliveira HR. The History of Lentil ( Lens culinaris subsp. culinaris) Domestication and Spread as Revealed by Genotyping-by-Sequencing of Wild and Landrace Accessions. FRONTIERS IN PLANT SCIENCE 2021; 12:628439. [PMID: 33841458 PMCID: PMC8030269 DOI: 10.3389/fpls.2021.628439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/15/2021] [Indexed: 05/06/2023]
Abstract
Protein-rich legumes accompanied carbohydrate-rich cereals since the beginning of agriculture and yet their domestication history is not as well understood. Lentil (Lens culinaris Medik. subsp. culinaris) was first cultivated in Southwest Asia (SWA) 8000-10,000 years ago but archeological evidence is unclear as to how many times it may have been independently domesticated, in which SWA region(s) this may have happened, and whether wild species within the Lens genus have contributed to the cultivated gene pool. In this study, we combined genotyping-by-sequencing (GBS) of 190 accessions from wild (67) and domesticated (123) lentils from the Old World with archeological information to explore the evolutionary history, domestication, and diffusion of lentils to different environments. GBS led to the discovery of 87,647 single-nucleotide polymorphisms (SNPs), which allowed us to infer the phylogeny of genus Lens. We confirmed previous studies proposing four groups within it. The only gene flow detected was between cultivated varieties and their progenitor (L. culinaris subsp. orientalis) albeit at very low levels. Nevertheless, a few putative hybrids or naturalized cultivars were identified. Within cultivated lentil, we found three geographic groups. Phylogenetics, population structure, and archeological data coincide in a scenario of protracted domestication of lentils, with two domesticated gene pools emerging in SWA. Admixed varieties are found throughout their range, suggesting a relaxed selection process. A small number of alleles involved in domestication and adaptation to climatic variables were identified. Both novel mutation and selection on standing variation are presumed to have played a role in adaptation of lentils to different environments. The results presented have implications for understanding the process of plant domestication (past), the distribution of genetic diversity in germplasm collections (present), and targeting genes in breeding programs (future).
Collapse
Affiliation(s)
- Marta Liber
- Interdisciplinary Center for Archaeology and Evolution of Human Behavior (ICArEHB), Universidade do Algarve, Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), Universidade do Algarve, Faro, Portugal
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal
| | - Isabel Duarte
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Faro, Portugal
| | - Ana Teresa Maia
- Department of Biomedical Sciences and Medicine (DCBM), Universidade do Algarve, Faro, Portugal
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Faro, Portugal
| | - Hugo R. Oliveira
- Interdisciplinary Center for Archaeology and Evolution of Human Behavior (ICArEHB), Universidade do Algarve, Faro, Portugal
- *Correspondence: Hugo R. Oliveira,
| |
Collapse
|
16
|
Kroupin PY, Karlov GI, Bespalova LA, Salina EA, Chernook AG, Watanabe N, Bazhenov MS, Panchenko VV, Nazarova LA, Kovtunenko VY, Divashuk MG. Effects of Rht17 in combination with Vrn-B1 and Ppd-D1 alleles on agronomic traits in wheat in black earth and non-black earth regions. BMC PLANT BIOLOGY 2020; 20:304. [PMID: 33050878 PMCID: PMC7556923 DOI: 10.1186/s12870-020-02514-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Plant height is an important wheat trait that is regulated by multiple genes, among which Rht is of the utmost value. In wheat, Rht-B1p (=Rht17) is a mutant allele of the Rht gene that encodes for a DELLA-protein and results in the development of gibberellin-insensitive plants with a dwarfing phenotype. The pleiotropic effects of dwarfing genes on yield are highly dependent on both the genetic background and the environmental conditions. In Russia, the Central Non-Black Earth Region and Krasnodar Krai are two economically important regions that require differing management for sustainable wheat production for food, feed and industry. The purpose of our study was to compare the pleiotropic effects of Rht-B1p on the main valuable agronomic traits in the F3:4 families of the spring bread wheat Chris Mutant/Novosibirskaya 67 in the genetic background of Vrn-B1a/vrn-B1 (spring/winter phenotype) and Ppd-D1a/Ppd-D1b (insensitivity/sensitivity to photoperiod) alleles in a field experiment in Moscow and Krasnodar Krai. RESULTS Plant height was reduced on average by 21 cm (28%) and 25 cm (30%), respectively; Ppd-D1a slightly strengthened the dwarfing effect in Moscow and mitigated it in Krasnodar Krai. Grain weight of the main spike was reduced by Rht-B1p in Moscow and to lesser extent in Krasnodar; Ppd-D1a and Vrn-B1a tended to partially compensate for this loss in Krasnodar Krai. Thousand grain weight was reduced on average by 5.3 g (16%) and 2.9 g (10%) in Moscow and Krasnodar Krai, respectively, but was partially compensated for by Ppd-D1a in Krasnodar Krai. Harvest index was increased due to Rht-B1p by 6 and 10% in Moscow and Krasnodar Krai, respectively. Rht-B1p resulted in a delay of heading by 1-2 days in Moscow. Ppd-D1a accelerated heading by 1 day and 6 days in Moscow and in Krasnodar Krai, respectively. CONCLUSIONS Rht-B1p could be introduced into wheat breeding along with dwarfing genes such as Rht-B1b and Rht-D1b. Special attention should be paid to its combination with Ppd-D1a and Vrn-B1a as regulators of developmental rates, compensators of adverse effects of Rht-B1p on productivity and enhancers of positive effect of Rht-B1p on harvest index.
Collapse
Affiliation(s)
- Pavel Yu Kroupin
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow, 127550, Russia
- Centre for Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya street, 49, Moscow, 127550, Russia
| | - Gennady I Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow, 127550, Russia
- Centre for Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya street, 49, Moscow, 127550, Russia
| | - Ludmila A Bespalova
- Department of Breeding and Seed Production of Wheat and Triticale, National center of grain named after P.P. Lukyanenko, Central Estate of KNIISH, Krasnodar, 350012, Russia
| | - Elena A Salina
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia
| | - Anastasiya G Chernook
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow, 127550, Russia
- Centre for Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya street, 49, Moscow, 127550, Russia
| | - Nobuyoshi Watanabe
- College of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Inashiki, Ibaraki, 300-0393, Japan
| | - Mikhail S Bazhenov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow, 127550, Russia
- Centre for Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya street, 49, Moscow, 127550, Russia
| | - Vladimir V Panchenko
- Department of Breeding and Seed Production of Wheat and Triticale, National center of grain named after P.P. Lukyanenko, Central Estate of KNIISH, Krasnodar, 350012, Russia
| | - Lubov A Nazarova
- Kurchatov Genomics Center-ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow, 127550, Russia
| | - Victor Ya Kovtunenko
- Department of Breeding and Seed Production of Wheat and Triticale, National center of grain named after P.P. Lukyanenko, Central Estate of KNIISH, Krasnodar, 350012, Russia
| | - Mikhail G Divashuk
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow, 127550, Russia.
- Centre for Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya street, 49, Moscow, 127550, Russia.
- Kurchatov Genomics Center-ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow, 127550, Russia.
| |
Collapse
|
17
|
Yu M, Chen H, Mao SL, Dong KM, Hou DB, Chen GY. Contribution of photosynthetic- and yield-related traits towards grain yield in wheat at the individual quantitative trait locus level. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1827979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Ma Yu
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
- Department of Genetic Resources, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Hua Chen
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| | - Shuang-Lin Mao
- Department of Genetic Resources, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
- New Crop Variety Approval Office, Sichuan Seed Station, Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, Sichuan, PR China
| | - Kai-Mi Dong
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| | - Da-Bin Hou
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, PR China
| | - Guo-Yue Chen
- Department of Genetic Resources, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
18
|
Alonge M, Shumate A, Puiu D, Zimin AV, Salzberg SL. Chromosome-Scale Assembly of the Bread Wheat Genome Reveals Thousands of Additional Gene Copies. Genetics 2020; 216:599-608. [PMID: 32796007 PMCID: PMC7536849 DOI: 10.1534/genetics.120.303501] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/10/2020] [Indexed: 11/18/2022] Open
Abstract
Bread wheat (Triticum aestivum) is a major food crop and an important plant system for agricultural genetics research. However, due to the complexity and size of its allohexaploid genome, genomic resources are limited compared to other major crops. The IWGSC recently published a reference genome and associated annotation (IWGSC CS v1.0, Chinese Spring) that has been widely adopted and utilized by the wheat community. Although this reference assembly represents all three wheat subgenomes at chromosome-scale, it was derived from short reads, and thus is missing a substantial portion of the expected 16 Gbp of genomic sequence. We earlier published an independent wheat assembly (Triticum_aestivum_3.1, Chinese Spring) that came much closer in length to the expected genome size, although it was only a contig-level assembly lacking gene annotations. Here, we describe a reference-guided effort to scaffold those contigs into chromosome-length pseudomolecules, add in any missing sequence that was unique to the IWGSC CS v1.0 assembly, and annotate the resulting pseudomolecules with genes. Our updated assembly, Triticum_aestivum_4.0, contains 15.07 Gbp of nongap sequence anchored to chromosomes, which is 1.2 Gbps more than the previous reference assembly. It includes 108,639 genes unambiguously localized to chromosomes, including over 2000 genes that were previously unplaced. We also discovered >5700 additional gene copies, facilitating the accurate annotation of functional gene duplications including at the Ppd-B1 photoperiod response locus.
Collapse
Affiliation(s)
- Michael Alonge
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218
| | - Alaina Shumate
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21211
| | - Daniela Puiu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21211
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21211
| | - Steven L Salzberg
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21211
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
19
|
Würschum T, Leiser WL, Langer SM, Tucker MR, Miedaner T. Genetic Architecture of Cereal Leaf Beetle Resistance in Wheat. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091117. [PMID: 32872389 PMCID: PMC7570205 DOI: 10.3390/plants9091117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Wheat production can be severely damaged by endemic and invasive insect pests. Here, we investigated resistance to cereal leaf beetle in a panel of 876 winter wheat cultivars, and dissected the genetic architecture underlying this insect resistance by association mapping. We observed an effect of heading date on cereal leaf beetle infestation, with earlier heading cultivars being more heavily infested. Flag leaf glaucousness was also found to be correlated with resistance. In line with the strong effect of heading time, we identified Ppd-D1 as a major quantitative trait locus (QTL), explaining 35% of the genotypic variance of cereal leaf beetle resistance. The other identified putative QTL explained much less of the genotypic variance, suggesting a genetic architecture with many small-effect QTL, which was corroborated by a genomic prediction approach. Collectively, our results add to our understanding of the genetic control underlying insect resistances in small-grain cereals.
Collapse
Affiliation(s)
- Tobias Würschum
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany
| | - Willmar L. Leiser
- State Plant Breeding Institute, University of Hohenheim, 70593 Stuttgart, Germany; (W.L.L.); (S.M.L.); (T.M.)
| | - Simon M. Langer
- State Plant Breeding Institute, University of Hohenheim, 70593 Stuttgart, Germany; (W.L.L.); (S.M.L.); (T.M.)
- BASF Agricultural Solutions GmbH, 67063 Ludwigshafen, Germany
| | - Matthew R. Tucker
- School of Agriculture, Food and Wine, Waite Campus, University of Adelaide, 5064 Urrbrae, Australia
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70593 Stuttgart, Germany; (W.L.L.); (S.M.L.); (T.M.)
| |
Collapse
|
20
|
Sun C, Dong Z, Zhao L, Ren Y, Zhang N, Chen F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1354-1360. [PMID: 32065714 PMCID: PMC7206996 DOI: 10.1111/pbi.13361] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/22/2020] [Accepted: 02/01/2020] [Indexed: 05/11/2023]
Abstract
The rapid development and application of molecular marker assays have facilitated genomic selection and genome-wide linkage and association studies in wheat breeding. Although PCR-based markers (e.g. simple sequence repeats and functional markers) and genotyping by sequencing have contributed greatly to gene discovery and marker-assisted selection, the release of a more accurate and complete bread wheat reference genome has resulted in the design of single-nucleotide polymorphism (SNP) arrays based on different densities or application targets. Here, we evaluated seven types of wheat SNP arrays in terms of their SNP number, distribution, density, associated genes, heterozygosity and application. The results suggested that the Wheat 660K SNP array contained the highest percentage (99.05%) of genome-specific SNPs with reliable physical positions. SNP density analysis indicated that the SNPs were almost evenly distributed across the whole genome. In addition, 229 266 SNPs in the Wheat 660K SNP array were located in 66 834 annotated gene or promoter intervals. The annotated genes revealed by the Wheat 660K SNP array almost covered all genes revealed by the Wheat 35K (97.44%), 55K (99.73%), 90K (86.9%) and 820K (85.3%) SNP arrays. Therefore, the Wheat 660K SNP array could act as a substitute for other 6 arrays and shows promise for a wide range of possible applications. In summary, the Wheat 660K SNP array is reliable and cost-effective and may be the best choice for targeted genotyping and marker-assisted selection in wheat genetic improvement.
Collapse
Affiliation(s)
- Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Zhongdong Dong
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
21
|
Trouern-Trend AJ, Falk T, Zaman S, Caballero M, Neale DB, Langley CH, Dandekar AM, Stevens KA, Wegrzyn JL. Comparative genomics of six Juglans species reveals disease-associated gene family contractions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:410-423. [PMID: 31823432 DOI: 10.1111/tpj.14630] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Juglans (walnuts), the most speciose genus in the walnut family (Juglandaceae), represents most of the family's commercially valuable fruit and wood-producing trees. It includes several species used as rootstock for their resistance to various abiotic and biotic stressors. We present the full structural and functional genome annotations of six Juglans species and one outgroup within Juglandaceae (Juglans regia, J. cathayensis, J. hindsii, J. microcarpa, J. nigra, J. sigillata and Pterocarya stenoptera) produced using BRAKER2 semi-unsupervised gene prediction pipeline and additional tools. For each annotation, gene predictors were trained using 19 tissue-specific J. regia transcriptomes aligned to the genomes. Additional functional evidence and filters were applied to multi-exonic and mono-exonic putative genes to yield between 27 000 and 44 000 high-confidence gene models per species. Comparison of gene models to the BUSCO embryophyta dataset suggested that, on average, genome annotation completeness was 85.6%. We utilized these high-quality annotations to assess gene family evolution within Juglans, and among Juglans and selected Eurosid species. We found notable contractions in several gene families in J. hindsii, including disease resistance-related wall-associated kinase (WAK), Catharanthus roseus receptor-like kinase (CrRLK1L) and others involved in abiotic stress response. Finally, we confirmed an ancient whole-genome duplication that took place in a common ancestor of Juglandaceae using site substitution comparative analysis.
Collapse
Affiliation(s)
| | - Taylor Falk
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Sumaira Zaman
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Madison Caballero
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - David B Neale
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Charles H Langley
- Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Kristian A Stevens
- Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
- Department of Computer Science, University of California Davis, Davis, CA, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
22
|
Gaudinier A, Blackman BK. Evolutionary processes from the perspective of flowering time diversity. THE NEW PHYTOLOGIST 2020; 225:1883-1898. [PMID: 31536639 DOI: 10.1111/nph.16205] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/30/2019] [Indexed: 05/18/2023]
Abstract
Although it is well appreciated that genetic studies of flowering time regulation have led to fundamental advances in the fields of molecular and developmental biology, the ways in which genetic studies of flowering time diversity have enriched the field of evolutionary biology have received less attention despite often being equally profound. Because flowering time is a complex, environmentally responsive trait that has critical impacts on plant fitness, crop yield, and reproductive isolation, research into the genetic architecture and molecular basis of its evolution continues to yield novel insights into our understanding of domestication, adaptation, and speciation. For instance, recent studies of flowering time variation have reconstructed how, when, and where polygenic evolution of phenotypic plasticity proceeded from standing variation and de novo mutations; shown how antagonistic pleiotropy and temporally varying selection maintain polymorphisms in natural populations; and provided important case studies of how assortative mating can evolve and facilitate speciation with gene flow. In addition, functional studies have built detailed regulatory networks for this trait in diverse taxa, leading to new knowledge about how and why developmental pathways are rewired and elaborated through evolutionary time.
Collapse
Affiliation(s)
- Allison Gaudinier
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Benjamin K Blackman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
23
|
Würschum T, Langer SM, Longin CFH, Tucker MR, Leiser WL. Refining the genetic architecture of flag leaf glaucousness in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:981-991. [PMID: 31953547 PMCID: PMC7021748 DOI: 10.1007/s00122-019-03522-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/20/2019] [Indexed: 05/27/2023]
Abstract
The cuticle is the plant's barrier against abiotic and biotic stresses, and the deposition of epicuticular wax crystals results in the scattering of light, an effect termed glaucousness. Here, we dissect the genetic architecture of flag leaf glaucousness in wheat toward a future targeted design of the cuticle. The cuticle serves as a barrier that protects plants against abiotic and biotic stresses. Differences in cuticle composition can be detected by the scattering of light on epicuticular wax crystals, which causes a phenotype termed glaucousness. In this study, we dissected the genetic architecture of flag leaf glaucousness in a panel of 1106 wheat cultivars of global origin. We observed a large genotypic variation, but the geographic pattern suggests that other wax layer characteristics besides glaucousness may be important in conferring tolerance to abiotic stresses such as heat and drought. Genome-wide association mapping identified two major quantitative trait loci (QTL) on chromosomes 3A and 2B. The latter corresponds to the W1 locus, but further characterization revealed that it is likely to contain additional QTL. The same holds true for the major QTL on 3A, which was also found to show an epistatic interaction with another locus located a few centiMorgan distal to it. Genome-wide prediction and the identification of a few additional putative QTL revealed that small-effect QTL also contribute to the trait. Collectively, our results illustrate the complexity of the genetic control of flag leaf glaucousness, with additive effects and epistasis, and lay the foundation for the cloning of the underlying genes toward a more targeted design of the cuticle by plant breeding.
Collapse
Affiliation(s)
- Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Simon M Langer
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
- BASF Agricultural Solutions GmbH, Gatersleben, Germany
| | - C Friedrich H Longin
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|
24
|
Chernook AG, Kroupin PY, Bespalova LA, Panchenko VV, Kovtunenko VY, Bazhenov MS, Nazarova LA, Karlov GI, Kroupina AY, Divashuk MG. Phenotypic effects of the dwarfing gene Rht-17 in spring durum wheat under two climatic conditions. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alleles of the genes, conferring a dwarfing phenotype, play a crucial role in wheat breeding, as they not only reduce plant height, ensuring their resistance to lodging, but also have a number of positive and negative pleiotropic effects on plant productivity. Durum wheat carries only two subgenomes (A and B), which limits the use of the D-subgenome genes and requires the expansion of the arsenal of dwarfing alleles and the study of their effects on height and agronomically important traits. We studied the effect of the gibberellin-insensitive allele Rht-B1p in the B2F2:3 families, developed by crossing Chris Mutant /#517//LD222 in a field experiment in Moscow and Krasnodar. In our experiments, plants homozygous for Rht-B1p were shorter than those homozygous for the wild-type allele Rht-B1a by 36.3 cm (40 %) in Moscow and 49.5 cm (48 %) in Krasnodar. In the field experiment in Krasnodar, each plant with Rht-B1p had one less internode than any plant with Rht-B1a, which additionally contributed to the decrease in plant height. Grain weight per main spike was lower in plants with Rht-B1p than in plants with Rht-B1a by 12 % in Moscow and by 23 % in Krasnodar due to a decrease in 1000 grain weight in both regions of the field experiment. The number of grains per main spike in plants with Rht-B1p was higher in comparison to that with Rht-B1a by 6.5 % in Moscow due to an increase in spikelet number per main spike and by 11 % in Krasnodar due to an increase in grain number per spikelet. The onset of heading in plants with Rht-B1p in comparison with the plants with the wild-type allele Rht-B1a was 7 days later in Krasnodar. The possibility and prospects for the use of Rht-B1p in the breeding of durum wheat are discussed.
Collapse
Affiliation(s)
- A. G. Chernook
- All-Russian Research Institute of Agricultural Biotechnology, Laboratory of Applied Genomics and Crop Breeding; Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Centre for Molecular Biotechnology
| | - P. Yu. Kroupin
- All-Russian Research Institute of Agricultural Biotechnology, Laboratory of Applied Genomics and Crop Breeding; Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Centre for Molecular Biotechnology
| | | | | | | | - M. S. Bazhenov
- All-Russian Research Institute of Agricultural Biotechnology, Laboratory of Applied Genomics and Crop Breeding; Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Centre for Molecular Biotechnology
| | - L. A. Nazarova
- All-Russian Research Institute of Agricultural Biotechnology, Laboratory of Applied Genomics and Crop Breeding
| | - G. I. Karlov
- All-Russian Research Institute of Agricultural Biotechnology, Laboratory of Applied Genomics and Crop Breeding; Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Centre for Molecular Biotechnology
| | - A. Yu. Kroupina
- All-Russian Research Institute of Agricultural Biotechnology, Laboratory of Applied Genomics and Crop Breeding
| | - M. G. Divashuk
- All-Russian Research Institute of Agricultural Biotechnology, Laboratory of Applied Genomics and Crop Breeding; Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Centre for Molecular Biotechnology
| |
Collapse
|
25
|
Würschum T, Rapp M, Miedaner T, Longin CFH, Leiser WL. Copy number variation of Ppd-B1 is the major determinant of heading time in durum wheat. BMC Genet 2019; 20:64. [PMID: 31357926 PMCID: PMC6664704 DOI: 10.1186/s12863-019-0768-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
Background Heading time is an important adaptive trait in durum wheat. In hexaploid wheat, Photoperiod-1 (Ppd) loci are essential regulators of heading time, with Ppd-B1 conferring photoperiod insensitivity through copy number variations (CNV). In tetraploid wheat, the D-genome Ppd-D1 locus is absent and generally, our knowledge on the genetic architecture underlying heading time lacks behind that of bread wheat. Results In this study, we employed a panel of 328 diverse European durum genotypes that were evaluated for heading time at five environments. Genome-wide association mapping identified six putative QTL, with a major QTL on chromosome 2B explaining 26.2% of the genotypic variance. This QTL was shown to correspond to copy number variation at Ppd-B1, for which two copy number variants appear to be present. The higher copy number confers earlier heading and was more frequent in the heat and drought prone countries of lower latitude. In addition, two other QTL, corresponding to Vrn-B3 (TaFT) and Ppd-A1, were found to explain 9.5 and 5.3% of the genotypic variance, respectively. Conclusions Our results revealed the yet unknown role of copy number variation of Ppd-B1 as the major source underlying the variation in heading time in European durum wheat. The observed geographic patterns underline the adaptive value of this polymorphism and suggest that it is already used in durum breeding to tailor cultivars to specific target environments. In a broader context our findings provide further support for a more widespread role of copy number variation in mediating abiotic and biotic stress tolerance in plants. Electronic supplementary material The online version of this article (10.1186/s12863-019-0768-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Matthias Rapp
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - C Friedrich H Longin
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|
26
|
Wang S, Xu S, Chao S, Sun Q, Liu S, Xia G. A Genome-Wide Association Study of Highly Heritable Agronomic Traits in Durum Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:919. [PMID: 31379901 PMCID: PMC6652809 DOI: 10.3389/fpls.2019.00919] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/28/2019] [Indexed: 05/24/2023]
Abstract
Uncovering the genetic basis of key agronomic traits, and particularly of drought tolerance, addresses an important priority for durum wheat improvement. Here, a genome-wide association study (GWAS) in 493 durum wheat accessions representing a worldwide collection was employed to address the genetic basis of 17 agronomically important traits and a drought wilting score. Using a linear mixed model with 4 inferred subpopulations and a kinship matrix, we identified 90 marker-trait-associations (MTAs) defined by 78 markers. These markers could be merged into 44 genomic loci by linkage disequilibrium (r 2 > 0.2). Based on sequence alignment of the markers to the reference genome of bread wheat, we identified 14 putative candidate genes involved in enzymes, hormone-response, and transcription factors. The GWAS in durum wheat and a previous quantitative trait locus (QTL) analysis in bread wheat identified a consensus QTL locus.4B.1 conferring drought tolerance, which was further scanned for the presence of potential candidate genes. A haplotype analysis of this region revealed that two minor haplotypes were associated with both drought tolerance and reduced plant stature, thought to be the effect of linkage with the semi-dwarfing gene Rht-B1. Haplotype variants in the key chromosome 4B region were informative regarding evolutionary divergence among durum, emmer and bread wheat. Over all, the data are relevant in the context of durum wheat improvement and the isolation of genes underlying variation in some important quantitative traits.
Collapse
Affiliation(s)
- Shubin Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Steven Xu
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Shiaoman Chao
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Qun Sun
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Shuwei Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
27
|
Hassan MA, Yang M, Fu L, Rasheed A, Zheng B, Xia X, Xiao Y, He Z. Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat. PLANT METHODS 2019; 15:37. [PMID: 31011362 PMCID: PMC6463666 DOI: 10.1186/s13007-019-0419-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/01/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plant height is an important selection target since it is associated with yield potential, stability and particularly with lodging resistance in various environments. Rapid and cost-effective estimation of plant height from airborne devices using a digital surface model can be integrated with academic research and practical wheat breeding programs. A bi-parental wheat population consisting of 198 doubled haploid lines was used for time-series assessments of progress in reaching final plant height and its accuracy was assessed by quantitative genomic analysis. UAV-based data were collected at the booting and mid-grain fill stages from two experimental sites and compared with conventional measurements to identify quantitative trait loci (QTL) underlying plant height. RESULTS A significantly high correlation of R 2 = 0.96 with a 5.75 cm root mean square error was obtained between UAV-based plant height estimates and ground truth observations at mid-grain fill across both sites. Correlations for UAV and ground-based plant height data were also very high (R 2 = 0.84-0.85, and 0.80-0.83) between plant height at the booting and mid-grain fill stages, respectively. Broad sense heritabilities were 0.92 at booting and 0.90-0.91 at mid-grain fill across sites for both data sets. Two major QTL corresponding to Rht-B1 on chromosome 4B and Rht-D1 on chromosome 4D explained 61.3% and 64.5% of the total phenotypic variations for UAV and ground truth data, respectively. Two new and stable QTL on chromosome 6D seemingly associated with accelerated plant growth was identified at the booting stage using UAV-based data. Genomic prediction accuracy for UAV and ground-based data sets was significantly high, ranging from r = 0.47-0.55 using genome-wide and QTL markers for plant height. However, prediction accuracy declined to r = 0.20-0.31 after excluding markers linked to plant height QTL. CONCLUSION This study provides a fast way to obtain time-series estimates of plant height in understanding growth dynamics in bread wheat. UAV-enabled phenotyping is an effective, high-throughput and cost-effective approach to understand the genetic basis of plant height in genetic studies and practical breeding.
Collapse
Affiliation(s)
- Muhammad Adeel Hassan
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| | - Mengjiao Yang
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, 830052 China
| | - Luping Fu
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| | - Awais Rasheed
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- International Maize and Wheat Improvement Centre (CIMMYT) China Office, c/o CAAS, Beijing, 100081 China
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Bangyou Zheng
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, 4067 Australia
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| | - Yonggui Xiao
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- International Maize and Wheat Improvement Centre (CIMMYT) China Office, c/o CAAS, Beijing, 100081 China
| |
Collapse
|
28
|
Rasheed A, Xia X. From markers to genome-based breeding in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:767-784. [PMID: 30673804 DOI: 10.1007/s00122-019-03286-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/16/2019] [Indexed: 05/22/2023]
Abstract
Recent technological advances in wheat genomics provide new opportunities to uncover genetic variation in traits of breeding interest and enable genome-based breeding to deliver wheat cultivars for the projected food requirements for 2050. There has been tremendous progress in development of whole-genome sequencing resources in wheat and its progenitor species during the last 5 years. High-throughput genotyping is now possible in wheat not only for routine gene introgression but also for high-density genome-wide genotyping. This is a major transition phase to enable genome-based breeding to achieve progressive genetic gains to parallel to projected wheat production demands. These advances have intrigued wheat researchers to practice less pursued analytical approaches which were not practiced due to the short history of genome sequence availability. Such approaches have been successful in gene discovery and breeding applications in other crops and animals for which genome sequences have been available for much longer. These strategies include, (i) environmental genome-wide association studies in wheat genetic resources stored in genbanks to identify genes for local adaptation by using agroclimatic traits as phenotypes, (ii) haplotype-based analyses to improve the statistical power and resolution of genomic selection and gene mapping experiments, (iii) new breeding strategies for genome-based prediction of heterosis patterns in wheat, and (iv) ultimate use of genomics information to develop more efficient and robust genome-wide genotyping platforms to precisely predict higher yield potential and stability with greater precision. Genome-based breeding has potential to achieve the ultimate objective of ensuring sustainable wheat production through developing high yielding, climate-resilient wheat cultivars with high nutritional quality.
Collapse
Affiliation(s)
- Awais Rasheed
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT), c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
29
|
Chen L, Du Y, Lu Q, Chen H, Meng R, Cui C, Lu S, Yang Y, Chai Y, Li J, Liu L, Qi X, Li H, Mishina K, Yu F, Hu YG. The Photoperiod-Insensitive Allele Ppd-D1a Promotes Earlier Flowering in Rht12 Dwarf Plants of Bread Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1312. [PMID: 30405643 PMCID: PMC6204387 DOI: 10.3389/fpls.2018.01312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/20/2018] [Indexed: 05/03/2023]
Abstract
The gibberellin-responsive dwarfing gene Rht12 can significantly reduce plant height without changing seedling vigor and substantially increase ear fertility in bread wheat (Triticum aestivum. L). However, Rht12 delays heading date and anthesis date, hindering the use of Rht12 in wheat improvement. To promote early flowering of the Rht12 dwarf plants, the photoperiod-insensitive allele Ppd-D1a was introduced through a cross between Jinmai47 (Ppd-D1a) and Karcagi (Rht12). The results showed that Ppd-D1a can rescue the delaying effect of Rht12 on flowering time and promote earlier flowering by 9.0 days (163.2°Cd) in the Rht12 dwarf plants by shortening the late reproduction phase. Plant height was reduced by Rht12 (43.2%) and Ppd-D1a (10.9%), achieving dwarf plants with higher lodging resistance. Ear fertility, like the grain number per spike, was significantly increased by Rht12 (21.3%), while it was reduced by Ppd-D1a (6.5%). However, thousand kernel weight was significantly reduced by Rht12 (12.9%) but significantly increased by Ppd-D1a (16.9%). Finally, plant yield was increased by 16.4 and 8.2%, and harvest index was increased by 24.9 and 15.4% in the Rht12 dwarf lines and tall lines with Ppd-D1a, respectively. Clearly, there was an additive interaction between Rht12 and Ppd-D1 and the introduction of Ppd-D1a advanced the flowering time and improved the yield traits of Rht12 dwarf plants, suggesting that the combination of Rht12 and Ppd-D1a would be conducive to the successful use of Rht12 in wheat breeding programs.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yingying Du
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Qiumei Lu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Hua Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Ruishuang Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Chunge Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Shan Lu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yongmao Chai
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Juan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Lulu Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Xiangning Qi
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Hang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Kohei Mishina
- National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Fei Yu
- College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Xianyang, China
| |
Collapse
|
30
|
Würschum T, Leiser WL, Langer SM, Tucker MR, Longin CFH. Phenotypic and genetic analysis of spike and kernel characteristics in wheat reveals long-term genetic trends of grain yield components. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2071-2084. [PMID: 29959471 DOI: 10.1007/s00122-018-3133-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 05/24/2023]
Abstract
Phenotypic and genetic analysis of six spike and kernel characteristics in wheat revealed geographic patterns as well as long-term trends arising from breeding progress, particularly in regard to spikelet fertility, i.e. the number of kernels per spikelet, a grain yield component that appears to underlie the increase in the number of kernels per spike. Wheat is a staple crop of global relevance that faces continuous demands for improved grain yield. In this study, we evaluated a panel of 407 winter wheat cultivars for six characteristics of spike and kernel development. All traits showed a large genotypic variation and had high heritabilities. We observed geographic patterns for some traits in addition to long-term trends showing a continuous increase in the number of kernels per spike. This breeding progress is likely due to the increase in spikelet fertility, i.e. the number of kernels per spikelet. While the number of kernels per spike and spikelet fertility were significantly positively correlated, both traits showed a significant negative correlation with thousand-kernel weight. Genome-wide association mapping identified only small- and moderate-effect QTL and an effect of the phenology loci Rht-D1 and Ppd-D1 on some of the traits. The allele frequencies of some QTL matched the observed geographic patterns. The quantitative inheritance of all traits with contributions of additional small-effect QTL was substantiated by genomic prediction. Taken together, our results suggest that some of the examined traits were already the basis of grain yield progress in wheat in the past decades. A more targeted exploitation of the available variation, potentially coupled with genomic approaches, may assist wheat breeding in continuing to increase yield levels globally.
Collapse
Affiliation(s)
- Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Simon M Langer
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
- Bayer AG, European Wheat Breeding Center, Am Schwabeplan 8, 06466, Gatersleben, Germany
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - C Friedrich H Longin
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|
31
|
Trevaskis B. Developmental Pathways Are Blueprints for Designing Successful Crops. FRONTIERS IN PLANT SCIENCE 2018; 9:745. [PMID: 29922318 PMCID: PMC5996307 DOI: 10.3389/fpls.2018.00745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/15/2018] [Indexed: 05/29/2023]
Abstract
Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene-gene or gene-environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted.
Collapse
Affiliation(s)
- Ben Trevaskis
- CSIRO Agriculture and Food, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|