1
|
Miryeganeh M. Epigenetic Mechanisms Driving Adaptation in Tropical and Subtropical Plants: Insights and Future Directions. PLANT, CELL & ENVIRONMENT 2025; 48:3487-3499. [PMID: 39776407 PMCID: PMC11963486 DOI: 10.1111/pce.15370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025]
Abstract
Epigenetic mechanisms, including DNA methylation, histone modifications, and Noncoding RNAs, play a critical role in enabling plants to adapt to environmental changes without altering their DNA sequence. These processes dynamically regulate gene expression in response to diverse stressors, making them essential for plant resilience under changing global conditions. This review synthesises research on tropical and subtropical plants-species naturally exposed to extreme temperatures, salinity, drought, and other stressors-while drawing parallels with similar mechanisms observed in arid and temperate ecosystems. By integrating molecular biology with plant ecology, this synthesis highlights how tropical plants provide valuable models for understanding resilience strategies applicable across broader plant taxa. This review underscores the potential of epigenetic mechanisms to inform conservation strategies and agricultural innovations aimed at bolstering plant resilience in the face of climate change.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Okinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| |
Collapse
|
2
|
Ono K, Hashiguchi M, Tanaka R, Hara T. Seasonal changes in pigment content in overwintering and current-year leaves of Sasa senanensis from snowmelt to before leaf-fall of canopy deciduous trees. JOURNAL OF PLANT RESEARCH 2025; 138:215-230. [PMID: 39688725 DOI: 10.1007/s10265-024-01607-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 12/08/2024] [Indexed: 12/18/2024]
Abstract
Sasa senanensis (a dwarf bamboo), an evergreen herbaceous plant native to the cool temperate regions of eastern Asia, endures seasonal temperature fluctuations and significant variations in light intensity typical for understory plants. Following snowmelt in early spring, the light intensity received by Sasa leaves surges, then diminishes as the canopy of upper deciduous trees develops. The current-year leaves of S. senanensis unfold under these shaded conditions, rendering the preservation of overwintering leaves vital for maintaining photosynthetic productivity in early spring. This study investigated the adaptations of overwintering leaves of S. senanensis to the low temperatures and elevated light conditions typical of early spring, examining whether these leaves dissipate absorbed light energy as heat and/or reduce their antenna size in response to increased light levels. Comprehensive analyses of Fv/Fm and photosynthetic pigment compositions were conducted throughout the spring to autumn seasons from 2014 to 2017. Our results indicate that Fv/Fm in overwintering leaves was initially low in early spring but increased gradually before the onset of shading, maintaining high levels under shaded conditions across all examined years. The chlorophyll a/b ratio increased post-snowmelt and decreased with intensified shading annually, with the exception of 2015, suggesting that reductions in antenna size are not essential for Fv/Fm recovery. Furthermore, the quantities and de-epoxidation state of xanthophyll cycle pigments increased after snowmelt despite rising temperatures, then decreased with progressive shading each year, indicating that overwintering leaves adapt to early spring conditions by modulating their xanthophyll cycle pigments. This study demonstrates that the overwintering leaves of S. senanensis exhibit a flexible response in photosystem pigments to variations in the light environment.
Collapse
Affiliation(s)
- Kiyomi Ono
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Megumi Hashiguchi
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toshihiko Hara
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
3
|
Pierrat ZA, Magney T, Maguire A, Brissette L, Doughty R, Bowling DR, Logan B, Parazoo N, Frankenberg C, Stutz J. Seasonal timing of fluorescence and photosynthetic yields at needle and canopy scales in evergreen needleleaf forests. Ecology 2024; 105:e4402. [PMID: 39161201 DOI: 10.1002/ecy.4402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024]
Abstract
The seasonal timing and magnitude of photosynthesis in evergreen needleleaf forests (ENFs) has major implications for the carbon cycle and is increasingly sensitive to changing climate. Earlier spring photosynthesis can increase carbon uptake over the growing season or cause early water reserve depletion that leads to premature cessation and increased carbon loss. Determining the start and the end of the growing season in ENFs is challenging due to a lack of field measurements and difficulty in interpreting satellite data, which are impacted by snow and cloud cover, and the pervasive "greenness" of these systems. We combine continuous needle-scale chlorophyll fluorescence measurements with tower-based remote sensing and gross primary productivity (GPP) estimates at three ENF sites across a latitudinal gradient (Colorado, Saskatchewan, Alaska) to link physiological changes with remote sensing signals during transition seasons. We derive a theoretical framework for observations of solar-induced chlorophyll fluorescence (SIF) and solar intensity-normalized SIF (SIFrelative) under snow-covered conditions, and show decreased sensitivity compared with reflectance data (~20% reduction in measured SIF vs. ~60% reduction in near-infrared vegetation index [NIRv] under 50% snow cover). Needle-scale fluorescence and photochemistry strongly correlated (r2 = 0.74 in Colorado, 0.70 in Alaska) and showed good agreement on the timing and magnitude of seasonal transitions. We demonstrate that this can be scaled to the site level with tower-based estimates of LUEP and SIFrelative which were well correlated across all sites (r2 = 0.70 in Colorado, 0.53 in Saskatchewan, 0.49 in Alaska). These independent, temporally continuous datasets confirm an increase in physiological activity prior to snowmelt across all three evergreen forests. This suggests that data-driven and process-based carbon cycle models which assume negligible physiological activity prior to snowmelt are inherently flawed, and underscores the utility of SIF data for tracking phenological events. Our research probes the spectral biology of evergreen forests and highlights spectral methods that can be applied in other ecosystems.
Collapse
Affiliation(s)
- Zoe Amie Pierrat
- Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Troy Magney
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Andrew Maguire
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Logan Brissette
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Russell Doughty
- College of Atmospheric and Geographic Sciences, University of Oklahoma, Norman, Oklahoma, USA
| | - David R Bowling
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Barry Logan
- Biology Department, Bowdoin College, Brunswick, Maine, USA
| | - Nicholas Parazoo
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Christian Frankenberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Jochen Stutz
- Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
4
|
Sun Y, Wen J, Gu L, Joiner J, Chang CY, van der Tol C, Porcar-Castell A, Magney T, Wang L, Hu L, Rascher U, Zarco-Tejada P, Barrett CB, Lai J, Han J, Luo Z. From remotely-sensed solar-induced chlorophyll fluorescence to ecosystem structure, function, and service: Part II-Harnessing data. GLOBAL CHANGE BIOLOGY 2023; 29:2893-2925. [PMID: 36802124 DOI: 10.1111/gcb.16646] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 05/03/2023]
Abstract
Although our observing capabilities of solar-induced chlorophyll fluorescence (SIF) have been growing rapidly, the quality and consistency of SIF datasets are still in an active stage of research and development. As a result, there are considerable inconsistencies among diverse SIF datasets at all scales and the widespread applications of them have led to contradictory findings. The present review is the second of the two companion reviews, and data oriented. It aims to (1) synthesize the variety, scale, and uncertainty of existing SIF datasets, (2) synthesize the diverse applications in the sector of ecology, agriculture, hydrology, climate, and socioeconomics, and (3) clarify how such data inconsistency superimposed with the theoretical complexities laid out in (Sun et al., 2023) may impact process interpretation of various applications and contribute to inconsistent findings. We emphasize that accurate interpretation of the functional relationships between SIF and other ecological indicators is contingent upon complete understanding of SIF data quality and uncertainty. Biases and uncertainties in SIF observations can significantly confound interpretation of their relationships and how such relationships respond to environmental variations. Built upon our syntheses, we summarize existing gaps and uncertainties in current SIF observations. Further, we offer our perspectives on innovations needed to help improve informing ecosystem structure, function, and service under climate change, including enhancing in-situ SIF observing capability especially in "data desert" regions, improving cross-instrument data standardization and network coordination, and advancing applications by fully harnessing theory and data.
Collapse
Affiliation(s)
- Ying Sun
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Jiaming Wen
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Joanna Joiner
- National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
| | - Christine Y Chang
- US Department of Agriculture, Agricultural Research Service, Adaptive Cropping Systems Laboratory, Beltsville, Maryland, USA
| | - Christiaan van der Tol
- Affiliation Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands
| | - Albert Porcar-Castell
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland
| | - Troy Magney
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Lixin Wang
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, USA
| | - Leiqiu Hu
- Department of Atmospheric and Earth Science, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Uwe Rascher
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Pablo Zarco-Tejada
- School of Agriculture and Food (SAF-FVAS) and Faculty of Engineering and Information Technology (IE-FEIT), University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher B Barrett
- Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, New York, USA
| | - Jiameng Lai
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Jimei Han
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| | - Zhenqi Luo
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Porcar-Castell A, Malenovský Z, Magney T, Van Wittenberghe S, Fernández-Marín B, Maignan F, Zhang Y, Maseyk K, Atherton J, Albert LP, Robson TM, Zhao F, Garcia-Plazaola JI, Ensminger I, Rajewicz PA, Grebe S, Tikkanen M, Kellner JR, Ihalainen JA, Rascher U, Logan B. Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. NATURE PLANTS 2021; 7:998-1009. [PMID: 34373605 DOI: 10.1038/s41477-021-00980-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/28/2021] [Indexed: 05/27/2023]
Abstract
For decades, the dynamic nature of chlorophyll a fluorescence (ChlaF) has provided insight into the biophysics and ecophysiology of the light reactions of photosynthesis from the subcellular to leaf scales. Recent advances in remote sensing methods enable detection of ChlaF induced by sunlight across a range of larger scales, from using instruments mounted on towers above plant canopies to Earth-orbiting satellites. This signal is referred to as solar-induced fluorescence (SIF) and its application promises to overcome spatial constraints on studies of photosynthesis, opening new research directions and opportunities in ecology, ecophysiology, biogeochemistry, agriculture and forestry. However, to unleash the full potential of SIF, intensive cross-disciplinary work is required to harmonize these new advances with the rich history of biophysical and ecophysiological studies of ChlaF, fostering the development of next-generation plant physiological and Earth-system models. Here, we introduce the scale-dependent link between SIF and photosynthesis, with an emphasis on seven remaining scientific challenges, and present a roadmap to facilitate future collaborative research towards new applications of SIF.
Collapse
Affiliation(s)
- Albert Porcar-Castell
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland.
| | - Zbyněk Malenovský
- School of Geography, Planning, and Spatial Sciences, College of Sciences Engineering and Technology, University of Tasmania, Hobart, Tasmania, Australia
| | - Troy Magney
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Shari Van Wittenberghe
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland
- Laboratory of Earth Observation, University of Valencia, Paterna, Spain
| | - Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), Tenerife, Spain
| | - Fabienne Maignan
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Yongguang Zhang
- International Institute for Earth System Sciences, Nanjing University, Nanjing, China
| | - Kadmiel Maseyk
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - Jon Atherton
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland
| | - Loren P Albert
- Institute at Brown for Environment and Society, Brown University, Providence, RI, USA
- Biology Department, West Virginia University, Morgantown, WV, USA
| | - Thomas Matthew Robson
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Feng Zhao
- School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China
| | | | - Ingo Ensminger
- Department of Biology, Graduate Programs in Cell & Systems Biology and Ecology & Evolutionary Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Paulina A Rajewicz
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS), University of Helsinki, Helsinki, Finland
| | - Steffen Grebe
- Molecular Plant Biology, University of Turku, Turku, Finland
| | - Mikko Tikkanen
- Molecular Plant Biology, University of Turku, Turku, Finland
| | - James R Kellner
- Institute at Brown for Environment and Society, Brown University, Providence, RI, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Janne A Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Uwe Rascher
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Barry Logan
- Biology Department, Bowdoin College, Brunswick, ME, USA
| |
Collapse
|