1
|
Tao J, Yang Y, Wang Q. Two Growing-Season Warming Partly Promoted Growth but Decreased Reproduction and Ornamental Value of Impatiens oxyanthera. PLANTS (BASEL, SWITZERLAND) 2024; 13:511. [PMID: 38498484 PMCID: PMC10892807 DOI: 10.3390/plants13040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
Climate warming profoundly affects the vegetative growth, flowering phenology and sexual reproduction of plants; therefore, it affects the ornamental value of wild flowers. Despite this, the extent and mechanism of the impact remain unclear. Here, we conducted a warming experiment for two growing seasons (increases of 1.89 °C in 2017 and 2.37 °C in 2018) with infrared heaters to examine the effects of warming on the ornamental value of the wild flower Impatiens oxyanthera, endemic to China, in Mount Emei. We evaluated the comprehensive ornamental value based on plant morphology and flowering characteristics using the analytic hierarchy process (AHP) and disentangled the impact of the two traits on ornamental value using principal component analysis (PCA) and the partial least squares structural equation model (PLS-SEM) under ambient and warming treatments. We hypothesized that warming would reduce the ornamental value of I. oxyanthera in terms of plant morphology and flowering traits. Our results showed that warming significantly decreased plant height and crown width and increased branch number and single-leaf area. Warming also decreased vexillum length, corolla tube length, nectar spur length and pedicel length. In addition, warming shortened flowering duration per plant and reduced flower number, while there was no significant effect on flower longevity and flower color at full-bloom stage between the control and warming treatment. Therefore, the comprehensive ornamental value under warming was lower than that under the control. Pedicel length, flower color, flower longevity and flowering duration per plant were the main factors affecting the comprehensive ornamental value. The PLS-SEM showed that warming had an indirect negative effect on ornamental value via direct negative effects on flowering traits. Collectively, these results indicate that, although promoting vegetative growth, short-term warming significantly decreased the ornamental value of I. oxyanthera due to warming-caused smaller flowers and shorter flowering duration.
Collapse
Affiliation(s)
- Jiayu Tao
- Southwest Key Laboratory of Wildlife Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| | - Youqin Yang
- Southwest Key Laboratory of Wildlife Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| | - Qiong Wang
- Southwest Key Laboratory of Wildlife Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| |
Collapse
|
2
|
Li Y, Tao F, Hao Y, Tong J, Xiao Y, Zhang H, He Z, Reynolds M. Linking genetic markers with an eco-physiological model to pyramid favourable alleles and design wheat ideotypes. PLANT, CELL & ENVIRONMENT 2023; 46:780-795. [PMID: 36517924 DOI: 10.1111/pce.14518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Genetic markers can be linked with eco-physiological crop models to accurately predict genotype performance and individual markers' contributions in target environments, exploring interactions between genotype and environment. Here, wheat (Triticum aestivum L.) yield was dissected into seven traits corresponding to cultivar genetic coefficients in an eco-physiological model. Loci for these traits were discovered through the genome-wide association studies (GWAS). The cultivar genetic coefficients were derived from the loci using multiple linear regression or random forest, building a marker-based eco-physiological model. It is then applied to simulate wheat yields and design virtual ideotypes. The results indicated that the loci identified through GWAS explained 46%-75% variations in cultivar genetic coefficients. Using the marker-based model, the normalized root mean square error (nRMSE) between the simulated yield and observed yield was 13.95% by multiple linear regression and 13.62% by random forest. The nRMSE between the simulated and observed maturity dates was 1.24% by multiple linear regression and 1.11% by random forest, respectively. Structural equation modelling indicated that variations in grain yield could be well explained by cultivar genetic coefficients and phenological data. In addition, 24 pleiotropic loci in this study were detected on 15 chromosomes. More significant loci were detected by the model-based dissection method than considering yield per se. Ideotypes were identified by higher yield and more favourable alleles of cultivar genetic traits. This study proposes a genotype-to-phenotype approach and demonstrates novel ideas and tools to support the effective breeding of new cultivars with high yield through pyramiding favourable alleles and designing crop ideotypes.
Collapse
Affiliation(s)
- Yibo Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fulu Tao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingyang Tong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yonggui Xiao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - He Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
3
|
Janusauskaite D, Kadziene G. Influence of Different Intensities of Tillage on Physiological Characteristics and Productivity of Crop-Rotation Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3107. [PMID: 36432836 PMCID: PMC9694223 DOI: 10.3390/plants11223107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 11/11/2022] [Indexed: 05/27/2023]
Abstract
The aim of this study was to evaluate the effect of different intensities of tillage on the physiological characteristics and productivity of plants in crop rotation. Five tillage practices (DP-deep ploughing (22-24 cm); SP-shallow ploughing (16-18 cm); SH-shallow harrowing (8-10 cm); DH-deep harrowing (14-16 cm); and DD-direct drilling) were investigated in a long-term experiment in Dotnuva. The crop rotation was as follows: winter oilseed rape → spring wheat → spring barley → field pea → winter wheat. The simplification of conventional tillage negatively affected the photosynthetic indices of the majority of the crop rotation plants. The most favorable conditions for the photosynthetic processes in the plants were identified in the deep-ploughing treatment. The photochemical activity was negatively influenced and leaf senescence was accelerated under direct drilling. Direct drilling significantly decreased the grain yield of winter oilseed rape, spring wheat, and spring barley by 10.5%, 12.8%, and 17.2%, respectively, compared to deep ploughing. The grain yield of winter wheat was similar under deep ploughing and direct drilling; conversely, under shallow ploughing, shallow harrowing, and deep harrowing, the yield tended to decrease compared to deep ploughing.
Collapse
Affiliation(s)
- Daiva Janusauskaite
- Department of Plant Nutrition and Agroecology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto 1, LT-58344 Kedainiai, Lithuania
| | - Grazina Kadziene
- Department of Soil and Crop Management, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto 1, LT-58344 Kedainiai, Lithuania
| |
Collapse
|
4
|
Li Y, Tao F, Hao Y, Tong J, Xiao Y, He Z, Reynolds M. Wheat traits and the associated loci conferring radiation use efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:565-582. [PMID: 36004546 DOI: 10.1111/tpj.15954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Wheat (Triticum aestivum L.) radiation use efficiency (RUE) must be raised through crop breeding to further increase the yield potential, as the harvest index is now close to its theoretical limit. Field experiments including 209 wheat cultivars which have been widely cultivated in China since the 1940s were conducted in two growing seasons (2018-2019 and 2019-2020) to evaluate the variations of phenological, physiological, plant architectural, and yield-related traits and their contributions to RUE and to identify limiting factors for wheat yield potential. The average annual genetic gain in grain yield was 0.60% (or 45.32 kg ha-1 year-1 ; R2 = 0.44, P < 0.01), mainly attributed to the gain in RUE (r = 0.85, P < 0.01). The net photosynthetic rates were positively and closely correlated with grain RUE and grain yield, suggesting source as a limiting factor to future yield gains. Thirty-four cultivars were identified, exhibiting not only high RUE, but also traits contributing to high RUE and 11 other critical traits - of known genetic basis - as potential parents for breeding to improve yield and RUE. Our findings reveal wheat traits and the associated loci conferring RUE, which are valuable for facilitating marker-assisted breeding to improve wheat RUE and yield potential.
Collapse
Affiliation(s)
- Yibo Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fulu Tao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingyang Tong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yonggui Xiao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
5
|
Xu H, Hassan MA, Sun D, Wu Z, Jiang G, Liu B, Ni Q, Yang W, Fang H, Li J, Chen X. Effects of Low Temperature Stress on Source-Sink Organs in Wheat and Phosphorus Mitigation Strategies. FRONTIERS IN PLANT SCIENCE 2022; 13:807844. [PMID: 35222472 PMCID: PMC8873184 DOI: 10.3389/fpls.2022.807844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The 21st century presents many challenges to mankind, including climate change, fast growing human population, and serious concerns over food security. Wheat is a leading cereal crop that largely fulfills the global food needs. Low temperature stress accompanied by nutrient-starved soils is badly disrupting the source-sink relationship of wheat, thus causing an acute decline in final yield and deteriorating the grain quality. This review paper aimed to understand how low temperature stress affects wheat source-sink organs (i.e., leaves, roots, and spikes) and how phosphorus application reliefs in alleviating its harmful consequences. Also, we discussed mitigation strategies to enhance wheat capacity to adapt to varying temperature extremes and made rational recommendations based on modern agronomic and breeding approaches. Therefore, this study is likely to establish a solid foundation for improving the tolerance to low temperature stress and to improve its phosphorus utilization efficiency in wheat.
Collapse
Affiliation(s)
- Hui Xu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | | | - Dongyue Sun
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Zhaochen Wu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Gang Jiang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Binbin Liu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Qianqian Ni
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wenkang Yang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Hao Fang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jincai Li
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing, China
| | - Xiang Chen
- College of Agronomy, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Jagadish SVK, Way DA, Sharkey TD. Scaling plant responses to high temperature from cell to ecosystem. PLANT, CELL & ENVIRONMENT 2021; 44:1987-1991. [PMID: 33987846 DOI: 10.1111/pce.14082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Affiliation(s)
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
- Terrestrial Ecosystem Science & Technology Group, Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Zhu T, De Lima CFF, De Smet I. The Heat is On: How Crop Growth, Development and Yield Respond to High Temperature. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab308. [PMID: 34185832 DOI: 10.1093/jxb/erab308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 06/13/2023]
Abstract
Plants are exposed to a wide range of temperatures during their life cycle and need to continuously adapt. These adaptations need to deal with temperature changes on a daily and seasonal level and with temperatures affected by climate change. Increasing global temperatures negatively impact crop performance, and several physiological, biochemical, morphological and developmental responses to increased temperature have been described that allow plants to mitigate this. In this review, we assess various growth, development, and yield-related responses of crops to extreme and moderate high temperature, focusing on knowledge gained from both monocot (e.g. wheat, barley, maize, rice) and dicot crops (e.g. soybean and tomato) and incorporating information from model plants (e.g. Arabidopsis and Brachypodium). This revealed common and different responses between dicot and monocot crops, and defined different temperature thresholds depending on the species, growth stage and organ.
Collapse
Affiliation(s)
- Tingting Zhu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca De Lima
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|