1
|
Lei Z, Han J, Yi X, Luo X, Zhang W, He D, Gong C, Zhang Y. Higher PEPC activity and vein density contribute to improve cotton leaf water use efficiency under water stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 39846236 DOI: 10.1111/plb.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Plants with the C4 photosynthetic pathway can withstand water stress better than plants with C3 metabolism. However, it is unclear whether C4 photosynthesis can be preliminarily activated in droughted cotton leaves, and if this contributes to increase in water use efficiency (WUE). An upland cotton (Gossypium hirsutum L., Xinluzao45) was used to determine gas exchange, stomatal and vein anatomy, phosphoenolpyruvate carboxykinase (PEPC) and Rubisco enzyme activity, and carbon isotope composition (δ13C) under well-watered, mild or moderate water stress. Water stress triggered reduced photosynthesis, stomatal conductance, and Rubisco activity, but higher vein density (VD), PEPC activity, and WUE. The correlations between δ13C and each of VD and PEPC activity implied that these coordinately contributed to higher leaf WUE via a preliminary induction of C4 photosynthetic pathway. Preliminary C4 photosynthesis indicated by more PEPC enzyme and veins offers an effective way to improve leaf WUE and potentially aids in acclimation to adverse growing conditions.
Collapse
Affiliation(s)
- Z Lei
- College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - J Han
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - X Yi
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - X Luo
- College of Agronomy, Northwest A&F University, Yangling, China
| | - W Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| | - D He
- College of Agronomy, Northwest A&F University, Yangling, China
| | - C Gong
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Y Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China
| |
Collapse
|
2
|
Al-Salman Y, Cano FJ, Mace E, Jordan D, Groszmann M, Ghannoum O. High water use efficiency due to maintenance of photosynthetic capacity in sorghum under water stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6778-6795. [PMID: 39377267 PMCID: PMC11565205 DOI: 10.1093/jxb/erae418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Environmental change requires more crop production per water use to meet the rising global food demands. However, improving crop intrinsic water use efficiency (iWUE) usually comes at the expense of carbon assimilation. Sorghum is a key crop in many vulnerable agricultural systems with higher tolerance to water stress (WS) than most widely planted crops. To investigate physiological controls on iWUE and its inheritance in sorghum, we screened 89 genotypes selected based on inherited haplotypes from an elite line or five exotics lines, containing a mix of geographical origins and dry versus milder climates, which included different aquaporin (AQP) alleles. We found significant variation among key highly heritable gas exchange and hydraulic traits, with some being significantly affected by variation in haplotypes among parental lines. Plants with a higher proportion of the non-stomatal component of iWUE still maintained iWUE under WS by maintaining photosynthetic capacity, independently of reduction in leaf hydraulic conductance. Haplotypes associated with two AQPs (SbPIP1.1 and SbTIP3.2) influenced iWUE and related traits. These findings expand the range of traits that bridge the trade-off between iWUE and productivity in C4 crops, and provide possible genetic regions that can be targeted for breeding.
Collapse
Affiliation(s)
- Yazen Al-Salman
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, ACT, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Francisco Javier Cano
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, ACT, Australia
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| | - Emma Mace
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, ACT, Australia
- Queensland Alliance for Agriculture and Food Innovation, Hermitage Research Facility, University of Queensland, Warwick, QLD, Australia
- Department of Agriculture and Fisheries, Agri-Science Queensland, Warwick, QLD, Australia
| | - David Jordan
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, ACT, Australia
- Queensland Alliance for Agriculture and Food Innovation, Hermitage Research Facility, University of Queensland, Warwick, QLD, Australia
- Department of Agriculture and Fisheries, Agri-Science Queensland, Warwick, QLD, Australia
| | - Michael Groszmann
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, ACT, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
- Grains Research and Development Corporation (GRDC), Barton, ACT 2600, Australia
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, ACT, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
3
|
Battle MW, Vialet-Chabrand S, Kasznicki P, Simkin AJ, Lawson T. Fast stomatal kinetics in sorghum enable tight coordination with photosynthetic responses to dynamic light intensity and safeguard high water use efficiency. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6796-6809. [PMID: 39292501 PMCID: PMC11565209 DOI: 10.1093/jxb/erae389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
In this study, we assessed 43 accessions of sorghum from 16 countries across three continents. Our objective was to identify stomatal and photosynthetic traits that could be exploited in breeding programmes to increase photosynthesis without increasing water use under dynamic light environments. Under field conditions, sorghum crops often have limited water availability and are exposed to rapidly fluctuating light intensities, which influences both photosynthesis and stomatal behaviour. Our results highlight a tight coupling between photosynthetic rate (A) and stomatal conductance (gs) even under dynamic light conditions that results in steady intrinsic water use efficiency (Wi). This was mainly due to rapid stomatal responses, with the majority of sorghum accessions responding within ≤5 min. The maintenance of the ratio of the concentration of CO2 inside the leaf (Ci) and the surrounding atmospheric concentration (Ca) over a large range of accessions suggests high stomatal sensitivity to changes in Ci, that could underlie the rapid gs responses and extremely close relationship between A and gs under both dynamic and steady-state conditions. Therefore, sorghum represents a prime candidate for uncovering the elusive mechanisms that coordinate A and gs, and such information could be used to design crops with high A without incurring significant water losses and eroding Wi.
Collapse
Affiliation(s)
- Martin W Battle
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | | | - Piotr Kasznicki
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Andrew J Simkin
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
4
|
Crawford JD, Twohey RJ, Pathare VS, Studer AJ, Cousins AB. Differences in stomatal sensitivity to CO2 and light influence variation in water use efficiency and leaf carbon isotope composition in two genotypes of the C4 plant Zea mays. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6748-6761. [PMID: 38970337 DOI: 10.1093/jxb/erae286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The ratio of net CO2 uptake (Anet) and stomatal conductance (gs) is an intrinsic measurement of leaf water use efficiency (WUEi); however, its measurement can be challenging for large phenotypic screens. Measurements of the leaf carbon isotope composition (δ13Cleaf) may be a scalable tool to approximate WUEi for screening because it in part reflects the competing influences of Anet and gs on the CO2 partial pressure (pCO2) inside the leaf over time. However, in C4 photosynthesis, the CO2-concentrating mechanism complicates the relationship between δ13Cleaf and WUEi. Despite this complicated relationship, several studies have shown genetic variation in δ13Cleaf across C4 plants. Yet there has not been a clear demonstration of if Anet or gs are the causal mechanisms controlling WUEi and δ13Cleaf. Our approach was to characterize leaf photosynthetic traits of two Zea mays recombinant inbred lines (Z007E0067 and Z007E0150) which consistently differ for δ13Cleaf even though they have minimal confounding genetic differences. We demonstrate that these two genotypes contrasted in WUEi driven by differences in the speed of stomatal responses to changes in pCO2 and light that lead to unproductive leaf water loss. These findings provide support that differences in δ13Cleaf in closely related genotypes do reflect greater WUEi and further suggest that differences in stomatal kinetic response to changing environmental conditions is a key target to improve WUEi.
Collapse
Affiliation(s)
- Joseph D Crawford
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Robert J Twohey
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Varsha S Pathare
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Anthony J Studer
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Shapira O, Hochberg U, Joseph A, McAdam S, Azoulay-Shemer T, Brodersen CR, Holbrook NM, Zait Y. Wind speed affects the rate and kinetics of stomatal conductance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1552-1562. [PMID: 39410670 DOI: 10.1111/tpj.17066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 11/19/2024]
Abstract
Understanding the relationship between wind speed and gas exchange in plants is a longstanding challenge. Our aim was to investigate the impact of wind speed on maximum rates of gas exchange and the kinetics of stomatal responses. We conducted experiments in different angiosperm and fern species using an infrared gas analyzer equipped with a controlled leaf fan, enabling precise control of the boundary layer conductance. We first showed that the chamber was adequately mixed even at extremely low wind speed (<0.005 m s-1) and evaluated the link between fan speed, wind speed, and boundary layer conductance. We observed that higher wind speeds led to increased gas exchange of both water vapor and CO₂, primarily due to the increase in boundary layer conductance. This increase in transpiration subsequently reduced epidermal pressure, leading to stomatal opening. We documented that stomatal opening in response to light was 2.5 times faster at a wind speed of 2 m s-1 compared to minimal wind speed in Vicia faba, while epidermal peels in a buffer with no transpiration exhibited a similar opening rate. The increase in stomatal conductance under high wind was also observed in four angiosperm species under field conditions, but it was not observed in Boston fern (Nephrolepis exaltata), which lacks epidermal mechanical advantage. Our findings highlight the significant impact of boundary layer conductance on determining gas exchange rates and the kinetics of gas exchange responses to environmental changes.
Collapse
Affiliation(s)
- Or Shapira
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Newe Ya'ar, Israel
| | - Ariel Joseph
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Scott McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Tamar Azoulay-Shemer
- Fruit Tree Sciences, Volcani Center, Agricultural Research Organization, Newe Ya'ar, Israel
| | - Craig R Brodersen
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Noel Michelle Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Yotam Zait
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
6
|
Yang C, Lu J, Xiong Z, Wang B, Ren T, Cong R, Lu Z, Li X. Potassium deficiency enhances imbalances in rice water relations under water deficit by decreasing leaf hydraulic conductance. PHYSIOLOGIA PLANTARUM 2024; 176:e14360. [PMID: 38797869 DOI: 10.1111/ppl.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Abstract
Potassium (K+) is an essential macronutrient for appropriate plant development and physiology. However, little is known about the mechanisms involved in the regulation of leaf water relations by K under water deficit. A pot experiment with two K supplies of 0.45 and 0 g K2O per pot (3 kg soil per pot) and two watering conditions (well-watered and water-deficit) was conducted to explore the effects of K deficiency on canopy transpiration characteristics, leaf water status, photosynthesis, and hydraulic traits in two rice genotypes with contrasting resistance to drought. The results showed that K deficiency reduced canopy transpiration rate by decreasing stomatal conductance, which led to higher canopy temperatures, resulting in limited water deficit tolerance in rice. In addition, K deficiency led to further substantial reductions in leaf relative water content and water potential under water deficit, which increased the imbalance in leaf water relations under water deficit. Notably, K deficiency limited leaf gas exchange by reducing leaf hydraulic conductance, but decreased the intrinsic water use efficiency under water deficit, especially for the drought-resistant cultivar. Further analysis of the underlying process of leaf hydraulic resistance revealed that the key limiting factor of leaf hydraulic conductance under K deficiency was the outside-xylem hydraulic conductance rather than the xylem hydraulic conductance. Overall, our results provide a comprehensive perspective for assessing leaf water relations under K deficiency, water deficit, and their combined stresses, which will be useful for optimal rice fertilization strategies.
Collapse
Affiliation(s)
- Cheng Yang
- College of Resources and Environment / Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jianwei Lu
- College of Resources and Environment / Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Zhihao Xiong
- College of Resources and Environment / Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Bin Wang
- College of Resources and Environment / Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Tao Ren
- College of Resources and Environment / Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Rihuan Cong
- College of Resources and Environment / Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Zhifeng Lu
- College of Resources and Environment / Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiaokun Li
- College of Resources and Environment / Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Luo D, Huang G, Zhang Q, Zhou G, Peng S, Li Y. Plasticity of mesophyll cell density and cell wall thickness and composition play a pivotal role in regulating plant growth and photosynthesis under shading in rapeseed. ANNALS OF BOTANY 2023; 132:963-978. [PMID: 37739395 PMCID: PMC10808032 DOI: 10.1093/aob/mcad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND AIMS Plasticity of leaf growth and photosynthesis is an important strategy of plants to adapt to shading stress; however, their strategy of leaf development to achieve a simultaneous increase in leaf area and photosynthesis under shading remains unknown. METHODS In the present study, a pot experiment was conducted using three rapeseed genotypes of Huayouza 50 (HYZ50), Zhongshuang 11 (ZS11) and Huayouza 62 (HYZ62), and the responses of plant growth, leaf morphoanatomical traits, cell wall composition and photosynthesis to shading were investigated. KEY RESULTS Shading significantly increased leaf area per plant (LAplant) in all genotypes, but the increase in HYZ62 was greater than that in HYZ50 and ZS11. The greater increment of LAplant in HYZ62 was related to the larger decrease in leaf mass per area (LMA) and leaf density (LD), which were in turn related to less densely packed mesophyll cells and thinner cell walls (Tcw). Moreover, shading significantly increased photosynthesis in HYZ62 but significantly decreased it in HYZ50. The enhanced photosynthesis in HYZ62 was related to increased mesophyll conductance (gm) due primarily to thinner cell walls. CONCLUSIONS The data presented indicate that the different plasticity of mesophyll cell density, cell wall thickness and cell wall composition in response to shading can dramatically affect leaf growth and photosynthesis.
Collapse
Affiliation(s)
- Dongxu Luo
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guanjun Huang
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiangqiang Zhang
- Rice Ecophysiology and Precise Management Laboratory, College of Agronomy, Anhui Agricultural University, Anhui 230036, China
| | - Guangsheng Zhou
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shaobing Peng
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yong Li
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
8
|
Zhang Y, Zhang N, Chai X, Sun T. Machine learning for image-based multi-omics analysis of leaf veins. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4928-4941. [PMID: 37410807 DOI: 10.1093/jxb/erad251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Veins are a critical component of the plant growth and development system, playing an integral role in supporting and protecting leaves, as well as transporting water, nutrients, and photosynthetic products. A comprehensive understanding of the form and function of veins requires a dual approach that combines plant physiology with cutting-edge image recognition technology. The latest advancements in computer vision and machine learning have facilitated the creation of algorithms that can identify vein networks and explore their developmental progression. Here, we review the functional, environmental, and genetic factors associated with vein networks, along with the current status of research on image analysis. In addition, we discuss the methods of venous phenotype extraction and multi-omics association analysis using machine learning technology, which could provide a theoretical basis for improving crop productivity by optimizing the vein network architecture.
Collapse
Affiliation(s)
- Yubin Zhang
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St, Beijing 100081, China
| | - Ning Zhang
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St, Beijing 100081, China
| | - Xiujuan Chai
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St, Beijing 100081, China
| | - Tan Sun
- Key Laboratory of Agricultural Big Data, Ministry of Agriculture and Rural Affairs, Beijing, China
- Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St, Beijing 100081, China
| |
Collapse
|
9
|
Al-Salman Y, Ghannoum O, Cano FJ. Midday water use efficiency in sorghum is linked to faster stomatal closure rate, lower stomatal aperture and higher stomatal density. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1661-1676. [PMID: 37300871 DOI: 10.1111/tpj.16346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Most studies assume midday gas exchange measurements capture the leaf's daytime performance. However, stomatal conductance (gs ) and photosynthesis (An ) fluctuate diurnally due to endogenous and environmental rhythms, which can affect intrinsic water use efficiency (iWUE). Six Sorghum lines with contrasting stomatal anatomical traits were grown in environmentally controlled conditions, and leaf gas exchange was measured three times a day. Stomatal anatomy and kinetic responses to light transients were also measured. The highest An and gs and the lowest iWUE were observed at midday for most lines. Diurnally averaged iWUE correlated positively with morning and midday iWUE and negatively with the time taken for stomata to close after transition to low light intensity (kclose ). There was significant variation among sorghum lines for kclose , and smaller kclose correlated with lower gs and higher stomatal density (SD) across the lines. In turn, gs was negatively correlated with SD and regulated by the operational stomatal aperture regardless of stomatal size. Altogether, our data suggest a common physiology to improve iWUE in sorghum related to the control of water loss without impacting photosynthesis relying on higher SD, lower stomatal aperture and faster stomatal closing in response to low light intensity.
Collapse
Affiliation(s)
- Yazen Al-Salman
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Francisco Javier Cano
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| |
Collapse
|
10
|
Tamang BG, Zhang Y, Zambrano MA, Ainsworth EA. Anatomical determinants of gas exchange and hydraulics vary with leaf shape in soybean. ANNALS OF BOTANY 2023; 131:909-920. [PMID: 36111999 PMCID: PMC10332398 DOI: 10.1093/aob/mcac118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Leaf shape in crops can impact light distribution and carbon capture at the whole plant and canopy level. Given similar leaf inclination, narrow leaves can allow a greater fraction of incident light to pass through to lower canopy leaves by reducing leaf area index, which can potentially increase canopy-scale photosynthesis. Soybean has natural variation in leaf shape which can be utilized to optimize canopy architecture. However, the anatomical and physiological differences underlying variation in leaf shape remain largely unexplored. METHODS In this study, we selected 28 diverse soybean lines with leaf length to width ratios (leaf ratio) ranging between 1.1 and 3.2. We made leaf cross-sectional, gas exchange, vein density and hydraulic measurements and studied their interrelationships among these lines. KEY RESULTS Our study shows that narrow leaves tend to be thicker, with an ~30 µm increase in leaf thickness for every unit increase in leaf ratio. Interestingly, thicker leaves had a greater proportion of spongy mesophyll while the proportions of palisade and paraveinal mesophyll decreased. In addition, narrow and thicker leaves had greater photosynthesis and stomatal conductance per unit area along with greater leaf hydraulic conductance. CONCLUSIONS Our results suggest that selecting for narrow leaves can improve photosynthetic performance and potentially provide a yield advantage in soybean.
Collapse
Affiliation(s)
- Bishal G Tamang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yanqun Zhang
- China Institute of Water Resources and Hydropower Research, Department of Irrigation and Drainage, Beijing, China
| | - Michelle A Zambrano
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Elizabeth A Ainsworth
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Global Change and Photosynthesis Research Unit, USDA ARS, Urbana, IL, USA
| |
Collapse
|
11
|
Al-Salman Y, Cano FJ, Pan L, Koller F, Piñeiro J, Jordan D, Ghannoum O. Anatomical drivers of stomatal conductance in sorghum lines with different leaf widths grown under different temperatures. PLANT, CELL & ENVIRONMENT 2023; 46:2142-2158. [PMID: 37066624 DOI: 10.1111/pce.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 06/08/2023]
Abstract
Sustaining crop productivity and resilience in water-limited environments and under rising temperatures are matters of concern worldwide. We investigated the leaf anatomical traits that underpin our recently identified link between leaf width (LW) and intrinsic water use efficiency (iWUE), as traits of interest in plant breeding. Ten sorghum lines with varying LW were grown under three temperatures to expand the range of variation of both LW and gas exchange rates. Leaf gas exchange, surface morphology and cross-sectional anatomy were measured and analysed using structural equations modelling. Narrower leaves had lower stomatal conductance (gs ) and higher iWUE across growth temperatures. They also had smaller intercellular airspaces, stomatal size, percentage of open stomatal aperture relative to maximum, hydraulic pathway, mesophyll thickness, and leaf mass per area. Structural modelling revealed a developmental association among leaf anatomical traits that underpinned gs variation in sorghum. Growing temperature and LW both impacted leaf gas exchange rates, but only LW directly impacted leaf anatomy. Wider leaves may be more productive under well-watered conditions, but consume more water for growth and development, which is detrimental under water stress.
Collapse
Affiliation(s)
- Yazen Al-Salman
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, ACT, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Francisco J Cano
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, ACT, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Madrid, Spain
| | - Ling Pan
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, ACT, Australia
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Fiona Koller
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, ACT, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Juan Piñeiro
- Department of Biology, IVAGRO, Campus de Excelencia Internacional Agroalimentario, Capus del Rio San Pedro, University of Cádiz, Puerto Real, Spain
| | - David Jordan
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, ACT, Australia
- Hermitage Research Facility, The University of Queensland, Warwick, Queensland, Australia
- Agri-Science Queensland, Department of Agriculture & Fisheries, Hermitage Research Facility, Warwick, Queensland, Australia
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, ACT, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
12
|
Al-Salman Y, Ghannoum O, Cano FJ. Elevated [CO2] negatively impacts C4 photosynthesis under heat and water stress without penalizing biomass. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2875-2890. [PMID: 36800252 PMCID: PMC10401618 DOI: 10.1093/jxb/erad063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/15/2023] [Indexed: 06/06/2023]
Abstract
Elevated [CO2] (eCO2) and water stress reduce leaf stomatal conductance (gs), which may affect leaf thermoregulation during heat waves (heat stress). Two sorghum lines, with different leaf width were grown in a glasshouse at a mean day temperature of 30 °C, under different [CO2] and watering levels, and subjected to heat stress (43 °C) for 6 d at the start of the reproductive stage. We measured leaf photosynthetic and stomatal responses to light transients before harvesting the plants. Photosynthesis at growth conditions (Agrowth) and biomass accumulation were enhanced by eCO2 under control conditions. Heat stress increased gs, especially in wider leaves, and reduced the time constant of stomatal opening (kopen) at ambient [CO2] but not eCO2. However, heat stress reduced photosynthesis under water stress and eCO2 due to increased leaf temperature and reduced evaporative cooling. eCO2 prevented the reduction of biomass under both water and heat stress, possibly due to improved plant and soil water status as a result of reduced gs. Our results suggest that the response of the C4 crop sorghum to future climate conditions depends on the trade-off between low gs needed for high water use efficiency and drought tolerance, and the high gs needed for improved thermoregulation and heat tolerance under an eCO2 future.
Collapse
Affiliation(s)
- Yazen Al-Salman
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Francisco Javier Cano
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| |
Collapse
|
13
|
Liu X, Xu B, Gu W, Yin Y, Wang H. Plant leaf veins coupling feature representation and measurement method based on DeepLabV3. FRONTIERS IN PLANT SCIENCE 2022; 13:1043884. [PMID: 36507417 PMCID: PMC9730334 DOI: 10.3389/fpls.2022.1043884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
The plant leaf veins coupling feature representation and measurement method based on DeepLabV3+ is proposed to solve problems of slow segmentation, partial occlusion of leaf veins, and low measurement accuracy of leaf veins parameters. Firstly, to solve the problem of slow segmentation, the lightweight MobileNetV2 is selected as the extraction network for DeepLabV3+. On this basis, the Convex Hull-Scan method is applied to repair leaf veins. Subsequently, a refinement algorithm, Floodfill MorphologyEx Medianblur Morphological Skeleton (F-3MS), is proposed, reducing the burr phenomenon of leaf veins' skeleton lines. Finally, leaf veins' related parameters are measured. In this study, mean intersection over union (MIoU) and mean pixel accuracy (mPA) reach 81.50% and 92.89%, respectively, and the average segmentation speed reaches 9.81 frames per second. Furthermore, the network model parameters are compressed by 89.375%, down to 5.813M. Meanwhile, leaf veins' length and width are measured, yielding an accuracy of 96.3642% and 96.1358%, respectively.
Collapse
|
14
|
Struik PC, Driever SM. Intriguing correlations between leaf architecture and intrinsic water-use efficiency enable selective breeding to mitigate climate challenges. PLANT, CELL & ENVIRONMENT 2022; 45:1607-1611. [PMID: 35274305 PMCID: PMC9313581 DOI: 10.1111/pce.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Paul Christiaan Struik
- Centre for Crop Systems AnalysisWageningen University and ResearchWageningenThe Netherlands
| | - Steven Michiel Driever
- Centre for Crop Systems AnalysisWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|