1
|
Seth T, Saxena S, Ravi B, Pandey GK. Mastering the plant growth symphony: The interplay between calcium sensing machinery and phytohormone signaling during abiotic stress. Biochim Biophys Acta Gen Subj 2025; 1869:130820. [PMID: 40389037 DOI: 10.1016/j.bbagen.2025.130820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/21/2025]
Abstract
Climate change introduces a multitude of abiotic stressors, affecting plants' ability to thrive and produce. Abiotic stresses significantly impair plant growth, development, and production, jeopardizing food security. Despite extensive research on individual stress adaptation mechanisms, a critical gap remains in understanding the synergistic role of calcium (Ca2+) signaling and phytohormonal regulation in plant stress responses. Ca2+, a ubiquitous second messenger, plays a pivotal role in stress perception and signal transduction, while phytohormones regulate adaptive physiological and molecular responses. This review aims to bridge the knowledge gap by synthesizing recent advancements in Ca2+-phytohormone interactions and their combined role in enhancing plant resilience to abiotic stress. Hence, understanding these interconnected signaling cascades would pave the path for the development of innovative strategies for enhancing crop stress tolerance, thereby promoting sustainable agriculture in the face of climate change.
Collapse
Affiliation(s)
- Tanashvi Seth
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Shruti Saxena
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Barkha Ravi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
2
|
Sun K, Liu Y, Pan Y, Di D, Li J, Xu F, Li L, Mimata Y, Chen Y, Xie L, Wang S, Qi W, Tang Y, Sheng H, Wang B, Sun R, Tan D, Fu D, Yin Y, Xue A, Shi Y, Shao W, Gong L, Jiang Z, Zhang W, Wu Q, Wang Y, Lang M, Ye W, Xu W, Wei S, Shi W, Xu YJ. Non-invasive micro-test technology and applications. BIOPHYSICS REPORTS 2025; 11:96-111. [PMID: 40308937 PMCID: PMC12035745 DOI: 10.52601/bpr.2024.240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/14/2024] [Indexed: 05/02/2025] Open
Abstract
Non-invasive micro-test technology (NMT) reveals dynamic ionic/molecular concentration gradients by measuring fluxes of ions and small molecules in liquid media in 1D, 2D or 3D fashions with sensitivity up to pico- (10-12) or femto- (10-15) moles per cm2 per second. NMT has been applied to study metabolism, signal transduction, genes and/or proteins physiological functions related to transmembrane ionic/molecular activities with live samples under normal conditions or stress. Data on ion and/or molecule homeostasis (IMH) by NMT in biomedical sciences, plant and crop sciences, environmental sciences, marine and space biology as well as traditional Chinese medicine are reviewed.
Collapse
Affiliation(s)
- Kai Sun
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Yunqi Liu
- Zhongguancun Xuyue NMT Industrial Alliance, Beijing 100080, China
- NMT International Alliance, Amherst, Massachusetts 01002, USA
| | - Yanshu Pan
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jianfang Li
- College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Feiyun Xu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Li
- Institute of Agricultural Resources and Environment, Tianjin Academy of Agricultural Sciences, Tianjin 300380, China
| | - Yoshiharu Mimata
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang 261000, Shandong, China
| | - Yingying Chen
- Guangxi Forestry Research Institute, Nanning 530002, China
| | - Lixia Xie
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Siqi Wang
- Key Laboratory of Wastewater Treatment Technology of Liaoning Province, Academy of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Wenqian Qi
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yan Tang
- Technical Institute of Physics and Chemistry, CAS, Beijing 100190, China
| | - Huachun Sheng
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610225, China
| | - Bing Wang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Ruixue Sun
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Dingquan Tan
- Smart Health Institute, Chongqing Vocational College of Media, Chongqing 402560, China
| | - Daohong Fu
- Institute of Biology, Humboldt University of Berlin, Berlin 10099, Germany
| | - Ye Yin
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Ao Xue
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yichao Shi
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Wenjing Shao
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Gong
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou 730000, China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, CAS, Beijing 100190, China
| | - Qiangsheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Yaosheng Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxiu Ye
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang 261000, Shandong, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Shenyang 110016, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yue Jeff Xu
- Zhongguancun Xuyue NMT Industrial Alliance, Beijing 100080, China
- NMT International Alliance, Amherst, Massachusetts 01002, USA
- Xuyue (Beijing) Sci. & Tech. Co., Ltd., Beijing 100080, China
- YoungerUSA LLC, Amherst, Massachusetts 01002, USA
| |
Collapse
|
3
|
Shamloo-Dashtpagerdi R, Lindlöf A, Aliakbari M. The CGA1-SNAT regulatory module potentially contributes to cytokinin-mediated melatonin biosynthesis and drought tolerance in wheat. BMC PLANT BIOLOGY 2025; 25:296. [PMID: 40050781 PMCID: PMC11887191 DOI: 10.1186/s12870-025-06313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Melatonin plays a pivotal role in alleviating abiotic stresses, yet its biosynthesis regulation in crops, particularly wheat, remains unclear. This study explores regulatory components of melatonin biosynthesis under drought stress using bioinformatic, physiochemical, and molecular approaches in contrasting wheat genotypes. RESULTS Bioinformatic analysis identified SNAT, a key melatonin biosynthesis gene, and 88 transcription factors (TFs) from 26 families as potential regulators. The regulatory network for SNAT highlighted CYTOKININ-RESPONSIVE GATA FACTOR 1 (CGA1) as a significant TF. Under drought stress, contrasting wheat genotypes exhibited distinct CGA1-SNAT module expression, melatonin and cytokinin levels, photosynthetic activity, and oxidative damage. Cytokinin treatments regulated the CGA1-SNAT module, altering melatonin content, SPAD values, and chloroplast numbers, particularly in drought-susceptible genotypes. CONCLUSIONS This study uncovers the pivotal role of the CGA1-SNAT module and its interaction with the cytokinin pathway in regulating melatonin biosynthesis during drought stress. These findings enhance our understanding of the molecular mechanisms underpinning drought tolerance and offer promising targets for genetic and biochemical interventions to improve crop resilience.
Collapse
Affiliation(s)
| | | | - Massume Aliakbari
- Department of Crop Production and Plant Breeding, Shiraz University, Shiraz, Iran
| |
Collapse
|
4
|
Chang J, Guo Y, Li J, Liu L, Liu J, Yuan L, Wei C, Ma J, Zhang Y, Ahammed GJ, Luan F, Liu Y, Zhang X, Li H. Cyclic nucleotide-gated ion channel 20 regulates melatonin-induced calcium signaling and cold tolerance in watermelon. PLANT PHYSIOLOGY 2025; 197:kiae630. [PMID: 39590516 DOI: 10.1093/plphys/kiae630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Melatonin plays a crucial role in regulating plant cold tolerance, but the mechanisms underlying signal transduction remain elusive. In this study, we discovered that overexpression of the melatonin biosynthetic gene caffeic acid O-methyltransferase1 (COMT1) enhanced watermelon (Citrullus lanatus) cold tolerance, accompanied by the accumulation of cytosolic free calcium ([Ca2+]cyt), a stimulation of Ca2+ influx, and upregulation of 4 Ca2+-permeable channel genes (CNGC2/10/17/20). Conversely, the knockout of COMT1 exhibited contrasting effects compared with its overexpression. Knocking out the 4 CNGC genes revealed that only cyclic nucleotide-gated ion channel 20 (CNGC20) mediates melatonin-induced Ca2+ influx in response to cold stimuli. CNGC20 deletion impeded watermelon callus redifferentiation, prompting us to employ a virus-induced gene silencing strategy to suppress its expression. Silencing CNGC20 compromised COMT1 overexpression-induced [Ca2+]cyt accumulation, Ca2+ influx, and watermelon cold tolerance. Yeast 2-hybrid, bimolecular fluorescence complementation, firefly luciferase complementation imaging, and pull-down assays revealed an interaction between CNGC20 and calmodulin7 (CaM7). Overexpressing CaM7 inhibited melatonin-induced [Ca2+]cyt accumulation, Ca2+ influx, and watermelon cold tolerance. Conversely, silencing CaM7 increased [Ca2+]cyt accumulation, Ca2+ influx, and cold tolerance, whereas COMT1 overexpression failed to further enhance these responses in CaM7-silenced plants, indicating the negative regulation role of CaM7 in melatonin-mediated cold responses. Overall, these findings provide insights into the molecular mechanisms underlying melatonin-enhanced plant cold tolerance via Ca2+ signaling, holding potential for breeding/engineering cold-tolerant cucurbit varieties.
Collapse
Affiliation(s)
- Jingjing Chang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China
| | - Yanliang Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jiayue Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Lingling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jiahe Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jianxiang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan, China
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150000, China
| | - Yunqi Liu
- Scientific Research Promotion Center, Zhongguancun Xuyue Non-invasive Micro-test Technology Industrial Alliance, Beijing 10080, China
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Hao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
5
|
Bychkov I, Kudryakova N, Pojidaeva ES, Doroshenko A, Shitikova V, Kusnetsov V. ABA and Melatonin: Players on the Same Field? Int J Mol Sci 2024; 25:12266. [PMID: 39596332 PMCID: PMC11594332 DOI: 10.3390/ijms252212266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
In plants, abscisic acid (ABA) and melatonin (MT) are conventionally treated as molecules mitigating stress responses. To understand the mechanisms of ABA-MT interplay, we examined the effects of ABA and MT treatment in ABA and MT loss-of-function mutants of Arabidopsis thaliana exposed to high light (HL) stress. ABA constantly suppressed ASMT encoding N-acetylserotonin methyltransferase in the context of differential responses of other MT biosynthesis genes in both the wild type (WT) and mutants. However, this response was absent in the mutant with the disrupted ABI4. Given that the ASMT promoter region contains several potential ABI4-binding elements, these data suggest that ASMT can be a potential target gene for ABI4. A role for ABI4 in the interactions between ABA and MT is supported by the finding that ABI4 is constitutively derepressed in the MT signaling mutants cand2 and gpa1, which exhibited elevated steady state levels of ABI4 transcripts and were not regulated by either stress or melatonin. In addition, the abi4 mutant showed increased modulations in the expression of the MT catabolic genes M2H and M3H in response to ABA treatment, inferring that this transcription factor is a negative regulator of ABA-dependent changes in MT content. Furthermore, all tested mutants with impaired ABA synthesis or signaling displayed elevated steady state MT levels compared to WT, while MT treatment contributed to the downregulation of key ABA synthesis and signaling genes. Collectively, our results suggest that ABA and melatonin act antagonistically, modulating the expression of ABA and MT signaling and metabolism genes. To understand the mechanisms of ABA-MT interactions, we studied the effects of ABA and MT treatment in ABA and MT loss-of-function mutants of Arabidopsis thaliana exposed to severe light stress (SLS).
Collapse
Affiliation(s)
| | - Natalia Kudryakova
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia; (I.B.); (E.S.P.); (A.D.); (V.S.); (V.K.)
| | | | | | | | | |
Collapse
|
6
|
Gharib A, Su Y, Zuo Z, Chen R, Wang H, Tao T, Chuan M, Bu Q, Luo Y, Li Y, Wang S, Hua Y, Ji Y, Ding J, Liu W, He S, Li P, Xu Y, Xu C, Lu Y, Yang Z. Melatonin enhances metal oxide nanoparticles tolerance in rice seedlings through dual regulation of antioxidant defense and photosynthetic efficiency. PHYSIOLOGIA PLANTARUM 2024; 176:e70020. [PMID: 39686887 DOI: 10.1111/ppl.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
The growing utilization of metal oxide nanoparticles (MONPs) presents novel and potential hazards to plants. However, the impacts of MONPs on plants and the mechanisms underlying their tolerance to MONPs remain unclear. In this study, we demonstrated that both CuO and ZnO nanoparticles hindered plant growth and triggered oxidative damage in rice seedlings. The role of melatonin in rice tolerance to MONPs was elucidated through a comprehensive analysis of OsCOMT mutant and overexpression plants, which showed melatonin deficiency and sufficiency, respectively. Our results revealed that the melatonin-deficient OsCOMT mutant plants exhibited hypersensitivity to MONPs, while the melatonin-sufficient OsCOMT overexpression plants showed enhanced MONPs tolerance. Physiological assessments further indicated that melatonin counteracted rice oxidative damage triggered by MONPs by increasing the activities of antioxidative enzymes, including superoxide dismutase, peroxidase, catalase, and glutathione reductase. Moreover, melatonin was found to foster rice growth under MONP stress by positively regulating the maximum photochemical efficiency, reducing non-photochemical fluorescence quenching, and promoting the biosynthesis of sucrose and starch. These findings not only highlight the hazardous effects of MONPs on plants, but also underscore the pivotal role of melatonin in bolstering plant resilience against MONPs.
Collapse
Affiliation(s)
- Ahmed Gharib
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
- National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza, Egypt
| | - Yanze Su
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Zhihao Zuo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Rujia Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Hanyao Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Tianyun Tao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Mingli Chuan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Qing Bu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Yanmo Luo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Yaoqing Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Shuting Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Yu Hua
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Yi Ji
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Jianheng Ding
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Wei Liu
- China Reclamation Seed Industry Co., Ltd., Shanghai, China
| | - Shuihua He
- China Reclamation Seed Industry Co., Ltd., Shanghai, China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Yue Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Zhang M, Chen X, Wang N, Guan L, Wang L, Chen X, Yang Z, Sun Y, Fan Y, Meng Y, Liu M, Chen W, Wu F, Song R, Wang S, Lu X, Wang J, Guo L, Zhao L, Nan H, Zhang K, Feng K, Ye W. GhCOMT33D modulates melatonin synthesis, impacting plant response to Cd 2+ in cotton via ROS. PHYSIOLOGIA PLANTARUM 2024; 176:e14647. [PMID: 39641144 DOI: 10.1111/ppl.14647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
Caffeic acid-3-O-methyltransferase (COMT) serves as the final pivotal enzyme in melatonin biosynthesis and plays a crucial role in governing the synthesis of melatonin in plants. This research used bioinformatics to analyze the phylogenetic relationships, gene structure, and promoter cis-acting elements of the upland cotton COMT gene family members, which it identified as the key gene GhCOMT33D to promote melatonin synthesis and responding to Cd2+ stress. After silencing GhCOMT33D through virus-induced gene silencing (VIGS), cotton seedlings showed less resistance to Cd2+ stress. Under Cd2+ stress, the melatonin content in the silenced plants significantly decreased, while ROS, MDA, and proline accumulated in the plant cells. The stomatal aperture of the leaves was reduced, hindering normal photosynthesis, leading to cotton leaves withering and yellowing, and epidermal cells becoming twisted and deformed, with a large number of gaps appearing. The non-silenced plants had a significantly higher melatonin content and were in better condition, providing important evidence for further research on how plant melatonin enhances the Cd2+ resistance of cotton and its regulatory mechanisms.
Collapse
Affiliation(s)
- Menghao Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, China
| | - Ning Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Lijun Guan
- Institute of Agricultural Science of 13th Division of Xinjiang Production and Construction Corps, Hami, Xinjiang, China
| | - Lidong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Xiao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Zhining Yang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Yuping Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Yuan Meng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Mengyue Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Wenhua Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Fange Wu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Ruize Song
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, China
| | - Hongyu Nan
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Kunpeng Zhang
- Anyang Institute of Technology, Anyang, Henan, China
| | - Keyun Feng
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, China
| |
Collapse
|
8
|
Wang Y, Zhang Y, Guo Y, Ji N, Chen Y, Sun Y, Wang Z, Guan L, Guo P. Integrated transcriptomic and metabolomic analysis reveals the effects and potential mechanism of hydrogen peroxide on pigment metabolism in postharvest broccoli. J Food Sci 2024; 89:6189-6202. [PMID: 39175179 DOI: 10.1111/1750-3841.17308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/24/2024] [Accepted: 07/28/2024] [Indexed: 08/24/2024]
Abstract
To understand the effects and related potential mechanism of H2O2 on pigment metabolism in postharvest broccoli, an integrated analysis of transcriptome and metabolome was performed. Results suggested that 65 differentially expressed genes and 26 differentially accumulated metabolites involved in chlorophyll, carotenoid, and flavonoid metabolism were identified. H2O2 treatment delayed the decrease of chlorophyll content by upregulating the expressions of chlorophyll synthetic genes, thylakoid synthetic genes, and 15 light-harvesting complex genes compared with the control and diphenylene iodonium treatments. H2O2 treatment decreased the accumulation of 11 flavonoids and 5 flavonols by downregulating the flavonoid synthetic genes. In addition, H2O2 treatment promoted carotenoid biosynthesis to eliminate reactive oxygen species in thylakoids, thereby protecting chlorophyll molecules from degradation. The inhibition of flavonoids and flavonols accumulation and chlorophyll decrease was the crucial reason for the delayed yellowing in H2O2 treatment. This study provides a new method and theoretical support for delaying the yellowing process in postharvest broccoli.
Collapse
Affiliation(s)
- Yunqiao Wang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, People's Republic of China
| | - Yuxiao Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, People's Republic of China
| | - Yanyin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, People's Republic of China
| | - Nana Ji
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, People's Republic of China
| | - Ying Chen
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, People's Republic of China
| | - Yupeng Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, People's Republic of China
| | - Zhengli Wang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, People's Republic of China
| | - Lingxing Guan
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, People's Republic of China
| | - Pengcheng Guo
- Curriculum and Teaching Methodology, Zibo Normal College, Zibo, People's Republic of China
| |
Collapse
|
9
|
Zhang Z, Yuan L, Dang J, Zhang Y, Wen Y, Du Y, Liang Y, Wang Y, Liu T, Li T, Hu X. 5-Aminolevulinic acid improves cold resistance through regulation of SlMYB4/SlMYB88-SlGSTU43 module to scavenge reactive oxygen species in tomato. HORTICULTURE RESEARCH 2024; 11:uhae026. [PMID: 38495031 PMCID: PMC10940124 DOI: 10.1093/hr/uhae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/14/2024] [Indexed: 03/19/2024]
Abstract
Cold stress severely affects the growth and quality of tomato. 5-Aminolevulinic acid (ALA) can effectively improve tomato's cold stress tolerance. In this study, a tomato glutathione S-transferase gene, SlGSTU43, was identified. Results showed that ALA strongly induced the expression of SlGSTU43 under cold stress. SlGSTU43-overexpressing lines showed increased resistance to cold stress through an enhanced ability to scavenge reactive oxygen species. On the contrary, slgstu43 mutant lines were sensitive to cold stress, and ALA did not improve their cold stress tolerance. Thus, SlGSTU43 is a key gene in the process of ALA improving tomato cold tolerance. Through yeast library screening, SlMYB4 and SlMYB88 were preliminarily identified as transcription factors that bind to the SlGSTU43 promoter. Electrophoretic mobility shift, yeast one-hybrid, dual luciferase, and chromatin immunoprecipitation assays experiments verified that SlMYB4 and SlMYB88 can bind to the SlGSTU43 promoter. Further experiments showed that SlMYB4 and SlMYB88 are involved in the process of ALA-improving tomato's cold stress tolerance and they positively regulate the expression of SlGSTU43. The findings provide new insights into the mechanism by which ALA improves cold stress tolerance. SlGSTU43, as a valuable gene, could be added to the cold-responsive gene repository. Subsequently, it could be used in genetic engineering to enhance the cold tolerance of tomato.
Collapse
Affiliation(s)
- Zhengda Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Luqiao Yuan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Jiao Dang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Yuhui Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Yongshuai Wen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Yu Du
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yufei Liang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ya Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Ahammed GJ, Li Z, Chen J, Dong Y, Qu K, Guo T, Wang F, Liu A, Chen S, Li X. Reactive oxygen species signaling in melatonin-mediated plant stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108398. [PMID: 38359555 DOI: 10.1016/j.plaphy.2024.108398] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Reactive oxygen species (ROS) are crucial signaling molecules in plants that play multifarious roles in prompt response to environmental stimuli. Despite the classical thoughts that ROS are toxic when accumulate in excess, recent advances in plant ROS signaling biology reveal that ROS participate in biotic and abiotic stress perception, signal integration, and stress-response network activation, hence contributing to plant defense and stress tolerance. ROS production, scavenging and transport are fine-tuned by plant hormones and stress-response signaling pathways. Crucially, the emerging plant hormone melatonin attenuates excessive ROS accumulation under stress, whereas ROS signaling mediates melatonin-induced plant developmental response and stress tolerance. In particular, RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) proteins responsible for apoplastic ROS generation act downstream of melatonin to mediate stress response. In this review, we discuss promising developments in plant ROS signaling and how ROS might mediate melatonin-induced plant resilience to environmental stress.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Zhe Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Jingying Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Yifan Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Kehao Qu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Tianmeng Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Fenghua Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Airong Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China.
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China.
| |
Collapse
|
11
|
Supriya L, Dake D, Muthamilarasan M, Padmaja G. Melatonin-mediated regulation of autophagy is independent of ABA under drought stress in sensitive variety of Gossypium hirsutum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108409. [PMID: 38346368 DOI: 10.1016/j.plaphy.2024.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 03/16/2024]
Abstract
Autophagy is a highly conserved process that plays a crucial role in adaptation of plants to stress conditions. Melatonin and abscisic acid (ABA) share an antagonistic relationship; however, both are reported to elevate autophagy individually. Here, we report that melatonin alleviates drought stress effects like wilting and stunted growth in 18-day-old plants of drought-sensitive variety of cotton (Gossypium hirsutum L.) and improves the plant growth, chlorophyll content, photosynthetic efficiency, and sugar metabolism and transport. Melatonin priming increased the endogenous melatonin content (5.02-times) but decreased the ABA (2.63-times) by reducing NCED3 expression as compared to unprimed plants under drought. Also, elevated expression of ATG8c and ATG8f correlated with higher lipidated-ATG8 levels and modulation of RAPTOR1 suggesting a higher occurrence of autophagy and regulation of plant growth in primed stressed plants. Additionally, decreased TPS63 and increased TPP22 expression could have lowered the accumulation of trehalose-6-P (T6P) in primed stressed plants thus contributing to autophagy progression. Priming also enhanced the expression of MAPK6 and RAF18, and increased the transcript/protein levels of SnRK2.6 and KIN10, which is pointing towards melatonin's beneficial effect on autophagy under drought. Despite higher ABA content, elevated TPS63 and downregulated TPP22 could have hindered autophagy induction in unprimed stressed plants. Although fluridone treatment reduced the ABA content, the expression of SnRK2.6 and KIN10 remained unaltered in fluridone-treated and untreated primed plants indicating the ABA-independent expression. These results suggest that the melatonin-mediated activation of MAPK contributes to the ABA-independent activation of SnRK2, consequently, SnRK1 and autophagy under drought.
Collapse
Affiliation(s)
- Laha Supriya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Deepika Dake
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Gudipalli Padmaja
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India.
| |
Collapse
|
12
|
Wang L, Tanveer M, Wang H, Arnao MB. Melatonin as a key regulator in seed germination under abiotic stress. J Pineal Res 2024; 76:e12937. [PMID: 38241678 DOI: 10.1111/jpi.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
Seed germination (SG) is the first stage in a plant's life and has an immense importance in sustaining crop production. Abiotic stresses reduce SG by increasing the deterioration of seed quality, and reducing germination potential, and seed vigor. Thus, to achieve a sustainable level of crop yield, it is important to improve SG under abiotic stress conditions. Melatonin (MEL) is an important biomolecule that interplays in developmental processes and regulates many adaptive responses in plants, especially under abiotic stresses. Thus, this review specifically summarizes and discusses the mechanistic basis of MEL-mediated SG under abiotic stresses. MEL regulates SG by regulating some stress-specific responses and some common responses. For instance, MEL induced stress specific responses include the regulation of ionic homeostasis, and hydrolysis of storage proteins under salinity stress, regulation of C-repeat binding factors signaling under cold stress, starch metabolism under high temperature and heavy metal stress, and activation of aquaporins and accumulation of osmolytes under drought stress. On other hand, MEL mediated regulation of gibberellins biosynthesis and abscisic acid catabolism, redox homeostasis, and Ca2+ signaling are amongst the common responses. Nonetheless factors such as endogenous MEL contents, plant species, and growth conditions also influence above-mentioned responses. In conclusion, MEL regulates SG under abiotic stress conditions by interacting with different physiological mechanisms.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Mohsin Tanveer
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Hongling Wang
- CAS Research Center for Ecology and Environment of Central Asia, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Marino B Arnao
- Phytohormones & Plant Development Laboratory, Department of Plant Biology (Plant Physiology), University of Murcia, Murcia, Spain
| |
Collapse
|
13
|
Jiang M, Song Y, Yang R, Zheng C, Zheng Y, Zhang H, Li S, Tan Y, Huang J, Shu Q, Li R. Melatonin activates the OsbZIP79-OsABI5 module that orchestrates nitrogen and ROS homeostasis to alleviate nitrogen-limitation stress in rice. PLANT COMMUNICATIONS 2023; 4:100674. [PMID: 37598294 PMCID: PMC10721462 DOI: 10.1016/j.xplc.2023.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Melatonin (Mel) has previously been reported to effectively alleviate nitrogen-limitation (N-L) stress and thus increase nitrogen-use efficiency (NUE) in several plants, but the underlying mechanism remains obscure. Here, we revealed that OsbZIP79 (BASIC LEUCINE ZIPPER 79) is transcriptionally activated under N-L conditions, and its expression is further enhanced by exogenous Mel. By the combined use of omics, genetics, and biological techniques, we revealed that the OsbZIP79-OsABI5 (ABSCISIC ACID INSENSITIVE 5) module stimulated regulation of reactive oxygen species (ROS) homeostasis and the uptake and metabolism of nitrogen under conditions of indoor nitrogen limitation (1/16 normal level). OsbZIP79 activated the transcription of OsABI5, and OsABI5 then bound to the promoters of target genes, including genes involved in ROS homeostasis and nitrogen metabolism, activating their transcription. This module was also indispensable for upregulation of several other genes involved in abscisic acid catabolism, nitrogen uptake, and assimilation under N-L and Mel treatment, although these genes were not directly transactivated by OsABI5. Field experiments demonstrated that Mel significantly improved rice growth under low nitrogen (L-N, half the normal level) by the same mechanism revealed in the nitrogen-limitation study. Mel application produced a 28.6% yield increase under L-N and thus similar increases in NUE. Also, two OsbZIP79-overexpression lines grown in L-N field plots had significantly higher NUE (+13.7% and +21.2%) than their wild types. Together, our data show that an OsbZIP79-OsABI5 module regulates the rice response to N insufficiency (N limitation or low N), which is important for increasing NUE in rice production.
Collapse
Affiliation(s)
- Meng Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China; National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Yue Song
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China; National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Ruifang Yang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chenfan Zheng
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China; National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Yunchao Zheng
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Huali Zhang
- State Key Laboratory of Rice Breeding and Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| | - Shan Li
- National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Yuanyuan Tan
- National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Jianzhong Huang
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China
| | - Qingyao Shu
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China; National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China.
| | - Ruiqing Li
- College of Agronomy, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
14
|
Ma L, Song T, Yu Y, Liu L, Qu M, Zhou S, Meng X, Fan H. Target of rapamycin (TOR) plays a role in regulating ROS-induced chloroplast damage during cucumber (Cucumis sativus) leaf senescence. PHYSIOLOGIA PLANTARUM 2023; 175:e14124. [PMID: 38148210 DOI: 10.1111/ppl.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/04/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
In cucumber production, delaying leaf senescence is crucial for improving cucumber yield and quality. Target of rapamycin (TOR) is a highly conserved serine/threonine protein kinase in eukaryotes, which can integrate exogenous and endogenous signals (such as cell energy state levels) to stimulate cell growth, proliferation, and differentiation. However, no studies have yet examined the regulatory role of TOR signalling in cucumber leaf senescence. In this study, the effects of TOR signalling on dark-induced cucumber leaf senescence were investigated using the TOR activator MHY1485 and inhibitor AZD8055 combined with transient transformation techniques. The results indicate that TOR responds to dark-induced leaf senescence, and alterations in TOR activity/expression influence cucumber leaf resistance to dark-induced senescence. Specifically, in plants with elevated TOR activity/expression, we observed reduced expression of senescence-related genes, less membrane lipid damage, decreased cell apoptosis, lower levels of reactive oxygen species production, and less damage to the photosynthetic system compared to the control. In contrast, in plants with reduced TOR activity/expression, we observed higher expression of senescence-related genes, increased membrane lipid damage, enhanced cell apoptosis, elevated levels of reactive oxygen species production, and more damage to the photosynthetic system. These comprehensive results underscore the critical role of TOR in regulating dark-induced cucumber leaf senescence. These findings provide a foundation for controlling premature leaf senescence in cucumber production and offer insights for further exploration of leaf senescence mechanisms and the development of more effective control methods.
Collapse
Affiliation(s)
- Lifeng Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Tiefeng Song
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Yongbo Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Linghao Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Mengqi Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuang Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Fruit and Vegetable Biology and Germplasm Enhancement, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Fruit and Vegetable Biology and Germplasm Enhancement, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
15
|
Lei P, Yu F, Liu X. Recent advances in cellular degradation and nuclear control of leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5472-5486. [PMID: 37453102 DOI: 10.1093/jxb/erad273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Senescence is the final stage of plant growth and development, and is a highly regulated process at the molecular, cellular, and organismal levels. When triggered by age, hormonal, or environmental cues, plants actively adjust their metabolism and gene expression to execute the progression of senescence. Regulation of senescence is vital for the reallocation of nutrients to sink organs, to ensure reproductive success and adaptations to stresses. Identification and characterization of hallmarks of leaf senescence are of great importance for understanding the molecular regulatory mechanisms of plant senescence, and breeding future crops with more desirable senescence traits. Tremendous progress has been made in elucidating the genetic network underpinning the metabolic and cellular changes in leaf senescence. In this review, we focus on three hallmarks of leaf senescence - chlorophyll and chloroplast degradation, loss of proteostasis, and activation of senescence-associated genes (SAGs), and discuss recent findings of the molecular players and the crosstalk of senescence pathways.
Collapse
Affiliation(s)
- Pei Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
16
|
Ali M, Pan Y, Liu H, Cheng Z. Melatonin interaction with abscisic acid in the regulation of abiotic stress in Solanaceae family plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1271137. [PMID: 37767290 PMCID: PMC10520282 DOI: 10.3389/fpls.2023.1271137] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Solanaceous vegetable crops are cultivated and consumed worldwide. However, they often confront diverse abiotic stresses that significantly impair their growth, yield, and overall quality. This review delves into melatonin and abscisic acid (ABA) biosynthesis and their roles in abiotic stress responses. It closely examines the intricate interplay between melatonin and ABA in managing stress within plants, revealing both collaborative and antagonistic effects and elucidating the underlying molecular mechanisms. Melatonin and ABA mutually influence each other's synthesis, metabolism and that of other plant hormones, a key focus of this study. The study highlights melatonin's role in aiding stress management through ABA-dependent pathways and key genes in the melatonin-ABA interaction. Specifically, melatonin downregulates ABA synthesis genes and upregulates catabolism genes, leading to reduced ABA levels. It also directly scavenges H2O2, enhancing antioxidant enzyme activities, thereby underscoring their collaborative role in mediating stress responses. Moreover, the interplay between melatonin and ABA plays an essential role in multiple physiological processes of plants, including stomatal behaviors, wax accumulation, delay leaf senescence, seed germination, and seedlings growth, among others. Recognizing these relationships in Solanaceae vegetable crops holds great importance for improving agricultural practices and crop quality. In summary, this review offers a comprehensive overview of recent studies on the melatonin and ABA interplay, serving as a valuable resource for researchers and breeders dedicated to fortifying crop resilience and productivity within challenging environments.
Collapse
Affiliation(s)
| | | | | | - Zhihui Cheng
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
17
|
Qin H, Cui X, Shu X, Zhang J. The transcription factor VaNAC72-regulated expression of the VaCP17 gene from Chinese wild Vitis amurensis enhances cold tolerance in transgenic grape (V. vinifera). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107768. [PMID: 37247556 DOI: 10.1016/j.plaphy.2023.107768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Papain-like cysteine proteases (PLCP) play diverse roles in plant biology. In our previous studies, a VaCP17 gene from the cold-tolerant Vitis amurensis accession 'Shuangyou' was isolated and its role in cold tolerance was preliminarily verified in Arabidopsis. Here, we confirmed the function of VaCP17 in cold tolerance by stably overexpressing VaCP17 in the cold-sensitive Vitis vinifera cultivar 'Thompson Seedless' and transiently silencing VaCP17 in 'Shuangyou' leaves. The results showed that overexpression of VaCP17 improved the cold tolerance in 'Thompson Seedless' as manifested by reduced electrolyte leakage and malondialdehyde accumulation, chlorophyll homeostasis, increased antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) activitiy, and rapid up-regulation of stress-related genes (VvKIN2, VvRD29B, and VvNCED1) compared with wild-type line. Conversely, RNA interfere-mediated knockdown of VaCP17 in 'Shuangyou' leaves resulted in opposite physiological and biochemical responses and exacerbated leaves wilting compared with control. Subsequently, by yeast one-hybrid, dual-luciferase assays, and transient overexpression of VaNAC72 in 'Shuangyou' leaves, a VaCP17-interacting protein VaNAC72 was confirmed to promote the expression of VaCP17 under cold stress, which depends on abscisic acid, methyl jasmonate, and salicylic acid signaling. By yeast two-hybrids, bimolecular fluorescence complementation and luciferase complementation assays, it was found that VaNAC72 could form homodimers or heterodimers with VaCBF2. Furthermore, co-expression analysis confirmed that VaNAC72 works synergistically with VaCBF2 or VaCP17 to up-regulate the expression of VaCP17. In conclusion, the study revealed that the VaNAC72-VaCP17 module positively regulated cold tolerance in grapevine, and this knowledge is useful for further revealing the cold-tolerance mechanism of V. amurensis and grape molecular breeding.
Collapse
Affiliation(s)
- Haoxiang Qin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaoyue Cui
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xin Shu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
18
|
Zeng F, Nazir MM, Ahmed T, Noman M, Ali S, Rizwan M, Alam MS, Lwalaba JLW, Zhang G. Calcium and L-glutamate present the opposite role in managing arsenic in barley. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121141. [PMID: 36702433 DOI: 10.1016/j.envpol.2023.121141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Arsenic contamination in agricultural soils has posed tremendous threat to sustainable crop production and human health via food chain. Calcium and Glutamate have been well-documented in metal(loid)s detoxification, but it is poorly understood how they regulate arsenic-induced toxicity to plants. In this study, the effect of glutamate and calcium at high concentration on arsenic toxicity and accumulation in barley seedling was accessed in terms of plant growth, photosynthetic efficacy, arsenic uptake, translocation and accumulation, antioxidant defense, nutrient uptake and the expression of As transporters. Our results have demonstrated that calcium could effectively ameliorate arsenic toxicity to barley seedlings, which is mainly attributed to its beneficial effect on increasing nutrient uptake, reducing the aboveground arsenic accumulation and enhancing antioxidative defense capacity. However, it is unexpected that glutamate considerably exacerbated the arsenic toxicity to barley seedlings. More importantly, for the first time, glutamate was observed to tremendously facilitate the root-to-shoot translocation of arsenic by 41.8- to 60.8-fold, leading to 90% of the total amount of As accumulating in barley shoots. The reason of this phenomenon can be well explained by the glutamate-triggered enormous upregulation of genes involved in arsenic uptake (HvPHT1;1, HvPHR2 and HvNIP3;2), reduction (HvHAC1;1), translocation (HvABCC7, HvNIP1;1 and HvNIP3;3) and intracellular sequestration (HvABCC1). These findings suggest that calcium and glutamate function as the opposite player in managing arsenic, with calcium being an effective alleviator of arsenic stress to ensure the safe production of crops; while glutamate being a highly efficient phytoextraction agent for phytoremediation of arsenate-contaminated soils.
Collapse
Affiliation(s)
- Fanrong Zeng
- College of Agriculture, Yangtze University, Jingzhou, 434025, China; Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Muhammad Mudassir Nazir
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Noman
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Mohammad Shah Alam
- College of Agriculture, Yangtze University, Jingzhou, 434025, China; Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jonas Lwalaba Wa Lwalaba
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
19
|
Khanna K, Bhardwaj R, Alam P, Reiter RJ, Ahmad P. Phytomelatonin: A master regulator for plant oxidative stress management. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:260-269. [PMID: 36731287 DOI: 10.1016/j.plaphy.2023.01.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Phytomelatonin is the multifunctional molecule that governs a range of developmental processes in plants subjected to a plethora of environmental cues. It acts as an antioxidant molecule to regulate the oxidative burst through reactive oxygen species (ROS) scavenging. Moreover, it also activates stress-responsive genes followed by alleviating oxidation. Phytomelatonin also stimulates antioxidant enzymes that further regulate redox homeostasis in plants under adverse conditions. This multifunctional molecule also regulates different physiological processes of plants in terms of leaf senescence, seed germination, lateral root growth, photosynthesis, etc. Due to its versatile nature, it is regarded as a master regulator of plant cell physiology and it holds a crucial position in molecular signaling as well. Phytomelatonin mediated oxidative stress management occurs through a series of antioxidative defense systems, both enzymatic as well as non-enzymatic, along with the formation of an array of secondary defensive metabolites that counteract the stresses. These phytomelatonin-derived antioxidants reduce the lipid peroxidation and improve membrane integrity of the cells subjected to stress. Here in, the data from transcriptomic and omics approaches are summarized which help to identify the gene regulatory mechanisms involved in the regulation of redox homeostasis and oxidative stress management. Further, we also recap the signaling cascade underlying phytomelatonin interactions with both ROS and reactive nitrogen species (RNS)and their crosstalk. The discoveries related to phytomelatonin have shown that this regulatory master molecule is critical for plant cell physiology. The current review is focussed the role of phytomelatonin as a multifunctional molecule in plant stress management.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India; Department of Microbiology, DAV University, Sarmastpur, Jalandhar, 144001, Punjab, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, Texas, USA
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
20
|
Shreya S, Supriya L, Padmaja G. Melatonin induces drought tolerance by modulating lipoxygenase expression, redox homeostasis and photosynthetic efficiency in Arachis hypogaea L. FRONTIERS IN PLANT SCIENCE 2022; 13:1069143. [PMID: 36544878 PMCID: PMC9760964 DOI: 10.3389/fpls.2022.1069143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Melatonin (N-acetyl-5-hydroxy tryptamine), a multipotent biomolecule is well known for its ability to confer tolerance to several abiotic and biotic stresses. The regulation of melatonin-mediated drought tolerance in drought-distinguished varieties can be different due to discriminating redox levels. The present study was focused on assessing the effects of melatonin priming against polyethylene glycol (PEG)-induced stress with respect to the antioxidant system, photosynthetic parameters, lipoxygenase expression, JA and ABA levels in drought-sensitive (Kadiri-7) and drought-tolerant (Kadiri-9) varieties. Exogenous melatonin alleviated the drought stress effects in sensitive variety (Kadiri-7) by increasing the endogenous melatonin content with an improved antioxidant system and photosynthetic attributes. The primed stressed plants of the sensitive variety exhibited reduced expression and activity of the chlorophyll degrading enzymes (Chl-deg PRX, pheophytinase and chlorophyllase) with a concomitant increase in chlorophyll content in comparison to unprimed controls. Interestingly, melatonin priming stimulated higher expression and activity of lipoxygenase (LOX) as well as enhanced the expression of genes involved in the synthesis of jasmonic acid (JA) including its content in drought stressed plants of the sensitive variety. The expression of NCED3 (involved in ABA-biosynthesis) was upregulated while CYP707A2 (ABA-degradation) was downregulated which corresponded with higher ABA levels. Contrastingly, priming caused a decrease in endogenous melatonin content under drought stress in tolerant variety (Kadiri-9) which might be due to feedback inhibition of its synthesis to maintain intracellular redox balance and regulate better plant metabolism. Furthermore, the higher endogenous melatonin content along with improved antioxidant system, photosynthetic efficiency and LOX expression associated with the increased levels of JA and ABA in unprimed stressed plants of the tolerant variety (Kadiri-9) is pointing towards the effectiveness of melatonin in mediating drought stress tolerance. Overall, exogenous melatonin alleviated the adverse effects of drought stress in sensitive variety while having no add-on effect on drought stress responses of tolerant variety which is inherently equipped to withstand the given duration of drought stress treatment.
Collapse
|