1
|
Jiang X, Koenig AM, Walker BJ, Hu J. A cytosolic glyoxylate shunt complements the canonical photorespiratory pathway in Arabidopsis. Nat Commun 2025; 16:4057. [PMID: 40307224 PMCID: PMC12043991 DOI: 10.1038/s41467-025-59349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 04/19/2025] [Indexed: 05/02/2025] Open
Abstract
Photorespiration functions in part to support photosynthetic performance, especially under stress such as high light, yet the underlying mechanisms are poorly understood. To identify modulators of photorespiration under high light, we have isolated genetic suppressors of the photorespiratory mutant hpr1 (hydroxypyruvate reductase 1) from Arabidopsis. A suppressor that partially rescues hpr1 is mapped to GLYR1, which encodes the cytosolic glyoxylate reductase 1 that converts glyoxylate to glycolate. Independent glyr1 mutants also partially rescue hpr1 and another photorespiratory mutant, catalase 2. Our genetic, transcriptomic and metabolic profiling analyses together reveal a connection between cytosolic glyoxylate and a non-canonical photorespiratory route mediated by HPR2, which we name the photorespiratory glyoxylate shunt. This shunt complements the canonical photorespiratory pathway and is especially critical when high photorespiratory fluxes are required and when the major photorespiratory pathway is deficient. Our findings support the metabolic flexibility of photorespiration and may help to improve crop performance under stress.
Collapse
Affiliation(s)
- Xiaotong Jiang
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Amanda M Koenig
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Berkley J Walker
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Xiong Z, Zheng F, Wu C, Tang H, Xiong D, Cui K, Peng S, Huang J. Nitrogen Supply Mitigates Temperature Stress Effects on Rice Photosynthetic Nitrogen Use Efficiency and Water Relations. PLANTS (BASEL, SWITZERLAND) 2025; 14:961. [PMID: 40265920 PMCID: PMC11945697 DOI: 10.3390/plants14060961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/16/2025] [Accepted: 03/16/2025] [Indexed: 04/24/2025]
Abstract
Climate-change-induced temperature fluctuations pose significant threats to global rice production, particularly through their impact on photosynthetic efficiency. The differential mechanisms by which low and high temperatures affect leaf photosynthetic processes in rice remain poorly understood. Here, we investigate the effects of temperature stress (15 °C, 30 °C, 45 °C) on rice photosynthetic performance across a gradient of nitrogen supply levels: low nitrogen (LN), medium nitrogen (MN), and high nitrogen (HN). The low temperature exhibited stronger negative impacts on photosynthesis than the high temperature, primarily through increased mesophyll limitation and disrupted cellular CO2 diffusion, while the high temperature showed less pronounced effects, particularly under HN and MN conditions. While photosynthetic nitrogen use efficiency (PNUE) decreased with increasing nitrogen under the optimal temperature, moderate nitrogen supply maintained optimal PNUE under temperature stress, suggesting that a balanced nitrogen level is crucial for maximizing both photosynthetic capacity and nitrogen use efficiency. Plants with adequate nitrogen maintained higher intrinsic water use efficiency (iWUE) under both temperature extremes through improved coordination between CO2 uptake and water loss. Our findings reveal distinct mechanisms underlying low- and high-temperature stress effects on photosynthesis and highlight the importance of optimizing nitrogen management for enhancing crop resilience to temperature extremes under climate change.
Collapse
Affiliation(s)
- Zhuang Xiong
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (Z.X.); (C.W.); (H.T.)
| | - Fangzhou Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Chao Wu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (Z.X.); (C.W.); (H.T.)
| | - Hui Tang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (Z.X.); (C.W.); (H.T.)
| | - Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.X.); (K.C.); (S.P.)
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.X.); (K.C.); (S.P.)
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.X.); (K.C.); (S.P.)
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.X.); (K.C.); (S.P.)
| |
Collapse
|
3
|
Roze LV, Antoniak A, Sarkar D, Liepman AH, Tejera‐Nieves M, Vermaas JV, Walker BJ. Increasing thermostability of the key photorespiratory enzyme glycerate 3-kinase by structure-based recombination. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:454-466. [PMID: 39550762 PMCID: PMC11772331 DOI: 10.1111/pbi.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/20/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
As global temperatures rise, improving crop yields will require enhancing the thermotolerance of crops. One approach for improving thermotolerance is using bioengineering to increase the thermostability of enzymes catalysing essential biological processes. Photorespiration is an essential recycling process in plants that is integral to photosynthesis and crop growth. The enzymes of photorespiration are targets for enhancing plant thermotolerance as this pathway limits carbon fixation at elevated temperatures. We explored the effects of temperature on the activity of the photorespiratory enzyme glycerate kinase (GLYK) from various organisms and the homologue from the thermophilic alga Cyanidioschyzon merolae was more thermotolerant than those from mesophilic plants, including Arabidopsis thaliana. To understand enzyme features underlying the thermotolerance of C. merolae GLYK (CmGLYK), we performed molecular dynamics simulations using AlphaFold-predicted structures, which revealed greater movement of loop regions of mesophilic plant GLYKs at higher temperatures compared to CmGLYK. Based on these simulations, hybrid proteins were produced and analysed. These hybrid enzymes contained loop regions from CmGLYK replacing the most mobile corresponding loops of AtGLYK. Two of these hybrid enzymes had enhanced thermostability, with melting temperatures increased by 6 °C. One hybrid with three grafted loops maintained higher activity at elevated temperatures. Whilst this hybrid enzyme exhibited enhanced thermostability and a similar Km for ATP compared to AtGLYK, its Km for glycerate increased threefold. This study demonstrates that molecular dynamics simulation-guided structure-based recombination offers a promising strategy for enhancing the thermostability of other plant enzymes with possible application to increasing the thermotolerance of plants under warming climates.
Collapse
Affiliation(s)
- Ludmila V. Roze
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
| | - Anna Antoniak
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Daipayan Sarkar
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
| | | | - Mauricio Tejera‐Nieves
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
- Great Lakes Bioenergy Research CenterEast LansingMIUSA
| | - Josh V. Vermaas
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Berkley J. Walker
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
- Great Lakes Bioenergy Research CenterEast LansingMIUSA
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
4
|
Gregory LM, Scott KF, Sharpe LA, Roze LV, Schmiege SC, Hammer JM, Way DA, Walker BJ. Rubisco activity and activation state dictate photorespiratory plasticity in Betula papyrifera acclimated to future climate conditions. Sci Rep 2024; 14:26340. [PMID: 39487181 PMCID: PMC11530445 DOI: 10.1038/s41598-024-77049-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Plant metabolism faces a challenge of investing enough enzymatic capacity to a pathway without overinvestment. As it takes energy and resources to build, operate, and maintain enzymes, there are benefits and drawbacks to accurately matching capacity to the pathway influx. The relationship between functional capacity and physiological load could be explained through symmorphosis, which would quantitatively match enzymatic capacity to pathway influx. Alternatively, plants could maintain excess enzymatic capacity to manage unpredictable pathway influx. In this study, we use photorespiration as a case study to investigate these two hypotheses in Betula papyrifera. This involves altering photorespiratory influx by manipulating the growth environment, via changes in CO2 concentration and temperature, to determine how photorespiratory capacity acclimates to environmental treatments. Surprisingly, the results from these measurements indicate that there is no plasticity in photorespiratory capacity in B. papyrifera, and that a fixed capacity is maintained under each growth condition. The fixed capacity is likely due to the existence of reserve capacity in the pathway that manages unpredictable photorespiratory influx in dynamic environments. Additionally, we found that B. papyrifera had a constant net carbon assimilation under each growth condition due to an adjustment of functional rubisco activity driven by changes in activation state. These results provide insight into the acclimation ability and limitations of B. papyrifera to future climate scenarios currently predicted in the next century.
Collapse
Affiliation(s)
- Luke M Gregory
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kate F Scott
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Luke A Sharpe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ludmila V Roze
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Stephanie C Schmiege
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Julia M Hammer
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Danielle A Way
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Berkley J Walker
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
5
|
Leverett A, Kromdijk J. The long and tortuous path towards improving photosynthesis by engineering elevated mesophyll conductance. PLANT, CELL & ENVIRONMENT 2024; 47:3411-3427. [PMID: 38804598 DOI: 10.1111/pce.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
The growing demand for global food production is likely to be a defining issue facing humanity over the next 50 years. To tackle this challenge, there is a desire to bioengineer crops with higher photosynthetic efficiencies, to increase yields. Recently, there has been a growing interest in engineering leaves with higher mesophyll conductance (gm), which would allow CO2 to move more efficiently from the substomatal cavities to the chloroplast stroma. However, if crop yield gains are to be realised through this approach, it is essential that the methodological limitations associated with estimating gm are fully appreciated. In this review, we summarise these limitations, and outline the uncertainties and assumptions that can affect the final estimation of gm. Furthermore, we critically assess the predicted quantitative effect that elevating gm will have on assimilation rates in crop species. We highlight the need for more theoretical modelling to determine whether altering gm is truly a viable route to improve crop performance. Finally, we offer suggestions to guide future research on gm, which will help mitigate the uncertainty inherently associated with estimating this parameter.
Collapse
Affiliation(s)
- Alistair Leverett
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Sargent D, Amthor JS, Stinziano JR, Evans JR, Whitney SM, Bange MP, Tissue DT, Conaty WC, Sharwood RE. The importance of species-specific and temperature-sensitive parameterisation of A/C i models: A case study using cotton (Gossypium hirsutum L.) and the automated 'OptiFitACi' R-package. PLANT, CELL & ENVIRONMENT 2024; 47:1701-1715. [PMID: 38294051 DOI: 10.1111/pce.14800] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/10/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024]
Abstract
Leaf gas exchange measurements are an important tool for inferring a plant's photosynthetic biochemistry. In most cases, the responses of photosynthetic CO2 assimilation to variable intercellular CO2 concentrations (A/Ci response curves) are used to model the maximum (potential) rate of carboxylation by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, Vcmax) and the rate of photosynthetic electron transport at a given incident photosynthetically active radiation flux density (PAR; JPAR). The standard Farquhar-von Caemmerer-Berry model is often used with default parameters of Rubisco kinetic values and mesophyll conductance to CO2 (gm) derived from tobacco that may be inapplicable across species. To study the significance of using such parameters for other species, here we measured the temperature responses of key in vitro Rubisco catalytic properties and gm in cotton (Gossypium hirsutum cv. Sicot 71) and derived Vcmax and J2000 (JPAR at 2000 µmol m-2 s-1 PAR) from cotton A/Ci curves incrementally measured at 15°C-40°C using cotton and other species-specific sets of input parameters with our new automated fitting R package 'OptiFitACi'. Notably, parameterisation by a set of tobacco parameters produced unrealistic J2000:Vcmax ratio of <1 at 25°C, two- to three-fold higher estimates of Vcmax above 15°C, up to 2.3-fold higher estimates of J2000 and more variable estimates of Vcmax and J2000, for our cotton data compared to model parameterisation with cotton-derived values. We determined that errors arise when using a gm,25 of 2.3 mol m-2 s-1 MPa-1 or less and Rubisco CO2-affinities in 21% O2 (KC 21%O2) at 25°C outside the range of 46-63 Pa to model A/Ci responses in cotton. We show how the A/Ci modelling capabilities of 'OptiFitACi' serves as a robust, user-friendly, and flexible extension of 'plantecophys' by providing simplified temperature-sensitivity and species-specificity parameterisation capabilities to reduce variability when modelling Vcmax and J2000.
Collapse
Affiliation(s)
- Demi Sargent
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- CSIRO Agriculture and Food, Narrabri, New South Wales, Australia
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jeffrey S Amthor
- Department of Biological Sciences, Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | | | - John R Evans
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Spencer M Whitney
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Michael P Bange
- Cotton Seed Distributors Ltd, Wee Waa, New South Wales, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Global Centre for Land-Based Innovation, Hawkesbury Campus, Western Sydney University, Richmond, New South Wales, Australia
| | - Warren C Conaty
- CSIRO Agriculture and Food, Narrabri, New South Wales, Australia
| | - Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Global Centre for Land-Based Innovation, Hawkesbury Campus, Western Sydney University, Richmond, New South Wales, Australia
- School of Science, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
7
|
Roze LV, Johnson A, Gregory LM, Tejera-Nieves M, Walker BJ. High Throughput Phosphoglycolate Phosphatase Activity Assay Using Crude Leaf Extract and Recombinant Enzyme to Determine Kinetic Parameters K m and V max Using a Microplate Reader. Methods Mol Biol 2024; 2792:3-17. [PMID: 38861074 DOI: 10.1007/978-1-0716-3802-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Determining enzyme activities involved in photorespiration, either in a crude plant tissue extract or in a preparation of a recombinant enzyme, is time-consuming, especially when large number of samples need to be processed. This chapter presents a phosphoglycolate phosphatase (PGLP) activity assay that is adapted for use in a 96-well microplate format. The microplate format for the assay requires fewer enzymes and reagents and allows rapid and less expensive measurement of PGLP enzyme activity. The small volume of reaction mix in a 96-well microplate format enables the determination of PGLP enzyme activity for screening many plant samples, multiple enzyme activities using the same protein extract, and/or identifying kinetic parameters for a recombinant enzyme. To assist in preparing assay reagents, we also present an R Shiny buffer preparation app for PGLP and other photorespiratory enzyme activities and a Km and Vmax calculation app.
Collapse
Affiliation(s)
- Ludmila V Roze
- Department of Energy - Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Audrey Johnson
- Department of Energy - Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Luke M Gregory
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Mauricio Tejera-Nieves
- Department of Energy - Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Berkley J Walker
- Department of Energy - Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
Roze LV, Johnson A, Walker BJ. High Throughput Glycerate Kinase Activity Assay Using Crude Leaf Extract and Recombinant Enzyme to Determine Kinetic Parameters K m and V max Using a Microplate Reader. Methods Mol Biol 2024; 2792:83-95. [PMID: 38861080 DOI: 10.1007/978-1-0716-3802-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
We describe an assay for measuring the activity of D-glycerate 3-kinase (GLYK) in a 96-well microplate format with the use of a set of coupling enzymes. The assay is appropriate for use with a crude protein extract prepared from leaf tissue and with the recombinant purified enzyme. The 96-well microplate format reduces the needed amounts of reagents and coupling enzymes, making the assay less expensive, high throughput, and suitable for the determination of kinetic parameters Km and Vmax. In addition, we provide a two-step discontinuous assay modified from past work, making it possible to measure the activity of GLYK at temperatures higher than 45 °C.
Collapse
Affiliation(s)
- Ludmila V Roze
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Audrey Johnson
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Berkley J Walker
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|