1
|
Montandon SA, Beaudier P, Ullate-Agote A, Helleboid PY, Kummrow M, Roig-Puiggros S, Jabaudon D, Andersson L, Milinkovitch MC, Tzika AC. Regulatory and disruptive variants in the CLCN2 gene are associated with modified skin color pattern phenotypes in the corn snake. Genome Biol 2025; 26:73. [PMID: 40140900 PMCID: PMC11948899 DOI: 10.1186/s13059-025-03539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Snakes exhibit a broad variety of adaptive colors and color patterns, generated by the spatial arrangement of chromatophores, but little is known of the mechanisms responsible for these spectacular traits. Here, we investigate a mono-locus trait with two recessive alleles, motley and stripe, that both cause pattern aberrations in the corn snake. RESULTS We use mapping-by-sequencing to identify the genomic interval where the causal mutations reside. With our differential gene expression analyses, we find that CLCN2 (Chloride Voltage-Gated Channel 2), a gene within the genomic interval, is significantly downregulated in Motley embryonic skin. Furthermore, we identify the stripe allele as the insertion of an LTR-retrotransposon in CLCN2, resulting in a disruptive mutation of the protein. We confirm the involvement of CLCN2 in color pattern formation by producing knock-out snakes that present a phenotype similar to Stripe. In humans and mice, disruption of CLCN2 results in leukoencephalopathy, as well as retinal and testes degeneration. Our single-cell transcriptomic analyses in snakes reveal that CLCN2 is indeed expressed in chromatophores during embryogenesis and in the adult brain, but the behavior and fertility of Motley and Stripe corn snakes are not impacted. CONCLUSIONS Our genomic, transcriptomic, and functional analyses identify a plasma membrane anion channel to be involved in color pattern development in snakes and show that an active LTR-retrotransposon might be a key driver of trait diversification in corn snakes.
Collapse
Affiliation(s)
- Sophie A Montandon
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- Present address: Bracco Suisse S.A., Plan-les-Ouates, Switzerland
| | - Pierre Beaudier
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Asier Ullate-Agote
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- Present address: Biomedical Engineering Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Pierre-Yves Helleboid
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Maya Kummrow
- Tierspital, University of Zurich, Zurich, Switzerland
| | - Sergi Roig-Puiggros
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Michel C Milinkovitch
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.
| | - Athanasia C Tzika
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Shi C, Chen SX. Structural and ultrastructural aspects of the skin of large yellow croaker Larimichthys crocea. JOURNAL OF FISH BIOLOGY 2024; 104:1836-1847. [PMID: 38488309 DOI: 10.1111/jfb.15718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 06/27/2024]
Abstract
The skin color of the large yellow croaker (Larimichthys crocea) is a crucial indicator to determine its economic value. However, the location of pigment cells in the skin structure is uncertain. To determine the pigment cell type in the skin, the vertical order and ultrastructure of pigment cells were examined using light microscopy and transmission electron microscopy. Both dorsal and ventral skins comprise the epidermis, dermis, and hypodermis. Xanthophores, melanophores, and iridophores were observed in the dermis of the dorsal skin, whereas the latter two were in the dermis of the ventral skin. Interestingly, the size of xanthophores in the dorsal skin was significantly smaller than that of xanthophores in the ventral skin; however, the density of dorsal xanthophores was significantly higher than that of ventral xanthophores. The type L-iridophores with large crystalline structures were observed in the uppermost area of the upper pigment layer, which contributed to the strikingly metallic luster shown by the ventral skin. The melanophores were exclusively found in the dorsal skin, offering the purpose of camouflage. Taken together, our results indicated that the pigment cells display different arrangement patterns between dorsal and ventral skin, and the golden color in the ventral skin results from the coexistence of light-reflecting iridophores and light-absorbing xanthophores.
Collapse
Affiliation(s)
- Chenchen Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Ng TT, Lau CC, Tan MP, Wong LL, Sung YY, Sifzizul Tengku Muhammad T, Van de Peer Y, LiYing S, Danish-Daniel M. Cutaneous transcriptomic profiling and candidate pigment genes in the wild discus ( Symphysodon spp.). NEW ZEALAND JOURNAL OF ZOOLOGY 2023. [DOI: 10.1080/03014223.2023.2180763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Tian Tsyh Ng
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Aquacity Tropical Fish Sdn. Bhd., Kuala Lumpur, Malaysia
| | - Cher Chien Lau
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Min Pau Tan
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Li Lian Wong
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | | | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, and Centre for Plant Systems Biology, Ghent, Belgium
| | - Sui LiYing
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Muhd Danish-Daniel
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| |
Collapse
|
4
|
Tetraspanin Cd9b plays a role in fertility in zebrafish. PLoS One 2022; 17:e0277274. [DOI: 10.1371/journal.pone.0277274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
In mice, CD9 expression on the egg is required for efficient sperm-egg fusion and no effects on ovulation or male fertility are observed in CD9 null animals. Here we show that cd9b knockout zebrafish also appear to have fertility defects. In contrast to mice, fewer eggs were laid by cd9b knockout zebrafish pairs and, of the eggs laid, a lower percentage were fertilised. These effects could not be linked to primordial germ cell numbers or migration as these were not altered in the cd9b mutants. The decrease in egg numbers could be rescued by exchanging either cd9b knockout partner, male or female, for a wildtype partner. However, the fertilisation defect was only rescued by crossing a cd9b knockout female with a wildtype male. To exclude effects of mating behaviour we analysed clutch size and fertilisation using in vitro fertilisation techniques. Number of eggs and fertilisation rates were significantly reduced in the cd9b mutants suggesting the fertility defects are not solely due to courtship behaviours. Our results indicate that CD9 plays a more complex role in fish fertility than in mammals, with effects in both males and females.
Collapse
|
5
|
A complex genetic architecture in zebrafish relatives Danio quagga and D. kyathit underlies development of stripes and spots. PLoS Genet 2021; 17:e1009364. [PMID: 33901178 PMCID: PMC8102007 DOI: 10.1371/journal.pgen.1009364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/06/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Vertebrate pigmentation is a fundamentally important, multifaceted phenotype. Zebrafish, Danio rerio, has been a valuable model for understanding genetics and development of pigment pattern formation due to its genetic and experimental tractability, advantages that are shared across several Danio species having a striking array of pigment patterns. Here, we use the sister species D. quagga and D. kyathit, with stripes and spots, respectively, to understand how natural genetic variation impacts phenotypes at cellular and organismal levels. We first show that D. quagga and D. kyathit phenotypes resemble those of wild-type D. rerio and several single locus mutants of D. rerio, respectively, in a morphospace defined by pattern variation along dorsoventral and anteroposterior axes. We then identify differences in patterning at the cellular level between D. quagga and D. kyathit by repeated daily imaging during pattern development and quantitative comparisons of adult phenotypes, revealing that patterns are similar initially but diverge ontogenetically. To assess the genetic architecture of these differences, we employ reduced-representation sequencing of second-generation hybrids. Despite the similarity of D. quagga to D. rerio, and D. kyathit to some D. rerio mutants, our analyses reveal a complex genetic basis for differences between D. quagga and D. kyathit, with several quantitative trait loci contributing to variation in overall pattern and cellular phenotypes, epistatic interactions between loci, and abundant segregating variation within species. Our findings provide a window into the evolutionary genetics of pattern-forming mechanisms in Danio and highlight the complexity of differences that can arise even between sister species. Further studies of natural genetic diversity underlying pattern variation in D. quagga and D. kyathit should provide insights complementary to those from zebrafish mutant phenotypes and more distant species comparisons. Pigment patterns of fishes are diverse and function in a wide range of behaviors. Common pattern themes include stripes and spots, exemplified by the closely related minnows Danio quagga and D. kyathit, respectively. We show that these patterns arise late in development owing to alterations in the development and arrangements of pigment cells. In the closely related model organism zebrafish (D. rerio) single genes can switch the pattern from stripes to spots. Yet, we show that pattern differences between D. quagga and D. kyathit have a more complex genetic basis, depending on multiple genes and interactions between these genes. Our findings illustrate the importance of characterizing naturally occurring genetic variants, in addition to laboratory induced mutations, for a more complete understanding of pigment pattern development and evolution.
Collapse
|
6
|
Owen JP, Kelsh RN, Yates CA. A quantitative modelling approach to zebrafish pigment pattern formation. eLife 2020; 9:52998. [PMID: 32716296 PMCID: PMC7384860 DOI: 10.7554/elife.52998] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/21/2020] [Indexed: 12/14/2022] Open
Abstract
Pattern formation is a key aspect of development. Adult zebrafish exhibit a striking striped pattern generated through the self-organisation of three different chromatophores. Numerous investigations have revealed a multitude of individual cell-cell interactions important for this self-organisation, but it has remained unclear whether these known biological rules were sufficient to explain pattern formation. To test this, we present an individual-based mathematical model incorporating all the important cell-types and known interactions. The model qualitatively and quantitatively reproduces wild type and mutant pigment pattern development. We use it to resolve a number of outstanding biological uncertainties, including the roles of domain growth and the initial iridophore stripe, and to generate hypotheses about the functions of leopard. We conclude that our rule-set is sufficient to recapitulate wild-type and mutant patterns. Our work now leads the way for further in silico exploration of the developmental and evolutionary implications of this pigment patterning system.
Collapse
Affiliation(s)
- Jennifer P Owen
- Department of Biology and Biochemistry and Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, United Kingdom
| | - Robert N Kelsh
- Department of Biology and Biochemistry and Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, United Kingdom
| | - Christian A Yates
- Department of Biology and Biochemistry and Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, United Kingdom
| |
Collapse
|
7
|
Liang Y, Meyer A, Kratochwil CF. Neural innervation as a potential trigger of morphological color change and sexual dimorphism in cichlid fish. Sci Rep 2020; 10:12329. [PMID: 32704058 PMCID: PMC7378239 DOI: 10.1038/s41598-020-69239-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Many species change their coloration during ontogeny or even as adults. Color change hereby often serves as sexual or status signal. The cellular and subcellular changes that drive color change and how they are orchestrated have been barely understood, but a deeper knowledge of the underlying processes is important to our understanding of how such plastic changes develop and evolve. Here we studied the color change of the Malawi golden cichlid (Melanchromis auratus). Females and subordinate males of this species are yellow and white with two prominent black stripes (yellow morph; female and non-breeding male coloration), while dominant males change their color and completely invert this pattern with the yellow and white regions becoming black, and the black stripes becoming white to iridescent blue (dark morph; male breeding coloration). A comparison of the two morphs reveals that substantial changes across multiple levels of biological organization underlie this polyphenism. These include changes in pigment cell (chromatophore) number, intracellular dispersal of pigments, and tilting of reflective platelets (iridosomes) within iridophores. At the transcriptional level, we find differences in pigmentation gene expression between these two color morphs but, surprisingly, 80% of the genes overexpressed in the dark morph relate to neuronal processes including synapse formation. Nerve fiber staining confirms that scales of the dark morph are indeed innervated by 1.3 to 2 times more axonal fibers. Our results might suggest an instructive role of nervous innervation orchestrating the complex cellular and ultrastructural changes that drive the morphological color change of this cichlid species.
Collapse
Affiliation(s)
- Yipeng Liang
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| | - Claudius F Kratochwil
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| |
Collapse
|
8
|
Volkening A, Abbott MR, Chandra N, Dubois B, Lim F, Sexton D, Sandstede B. Modeling Stripe Formation on Growing Zebrafish Tailfins. Bull Math Biol 2020; 82:56. [PMID: 32356149 DOI: 10.1007/s11538-020-00731-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/03/2020] [Indexed: 12/26/2022]
Abstract
As zebrafish develop, black and gold stripes form across their skin due to the interactions of brightly colored pigment cells. These characteristic patterns emerge on the growing fish body, as well as on the anal and caudal fins. While wild-type stripes form parallel to a horizontal marker on the body, patterns on the tailfin gradually extend distally outward. Interestingly, several mutations lead to altered body patterns without affecting fin stripes. Through an exploratory modeling approach, our goal is to help better understand these differences between body and fin patterns. By adapting a prior agent-based model of cell interactions on the fish body, we present an in silico study of stripe development on tailfins. Our main result is a demonstration that two cell types can produce stripes on the caudal fin. We highlight several ways that bone rays, growth, and the body-fin interface may be involved in patterning, and we raise questions for future work related to pattern robustness.
Collapse
Affiliation(s)
- A Volkening
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, USA.
| | - M R Abbott
- Mathematics, Statistics, and Computer Science, Macalester College, St. Paul, MN, USA
| | - N Chandra
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - B Dubois
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - F Lim
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - D Sexton
- Department of Mathematics, University of Idaho, Moscow, ID, USA
| | - B Sandstede
- Division of Applied Mathematics, Brown University, Providence, RI, USA
- Data Science Initiative, Brown University, Providence, RI, USA
| |
Collapse
|
9
|
Navarro-Hernandez IC, López-Ortega O, Acevedo-Ochoa E, Cervantes-Díaz R, Romero-Ramírez S, Sosa-Hernández VA, Meza-Sánchez DE, Juárez-Vega G, Pérez-Martínez CA, Chávez-Munguía B, Galván-Hernández A, Antillón A, Ortega-Blake I, Santos-Argumedo L, Hernández-Hernández JM, Maravillas-Montero JL. Tetraspanin 33 (TSPAN33) regulates endocytosis and migration of human B lymphocytes by affecting the tension of the plasma membrane. FEBS J 2020; 287:3449-3471. [PMID: 31958362 DOI: 10.1111/febs.15216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/20/2019] [Accepted: 01/16/2020] [Indexed: 12/31/2022]
Abstract
B lymphocytes are a leukocyte subset capable of developing several functions apart from differentiating into antibody-secreting cells. These processes are triggered by external activation signals that induce changes in the plasma membrane properties, regulated by the formation of different lipid-bilayer subdomains that are associated with the underlying cytoskeleton through different linker molecules, thus allowing the functional specialization of regions within the membrane. Among these, there are tetraspanin-enriched domains. Tetraspanins constitute a superfamily of transmembrane proteins that establish lateral associations with other molecules, determining its activity and localization. In this study, we identified TSPAN33 as an active player during B-lymphocyte cytoskeleton and plasma membrane-related phenomena, including protrusion formation, adhesion, phagocytosis, and cell motility. By using an overexpression model of TSPAN33 in human Raji cells, we detected a specific distribution of this protein that includes membrane microvilli, the Golgi apparatus, and extracellular vesicles. Additionally, we identified diminished phagocytic ability and altered cell adhesion properties due to the aberrant expression of integrins. Accordingly, these cells presented an enhanced migratory phenotype, as shown by its augmented chemotaxis and invasion rates. When we evaluated the mechanic response of cells during fibronectin-induced spreading, we found that TSPAN33 expression inhibited changes in roughness and membrane tension. Contrariwise, TSPAN33 knockdown cells displayed opposite phenotypes to those observed in the overexpression model. Altogether, our data indicate that TSPAN33 represents a regulatory element of the adhesion and migration of B lymphocytes, suggesting a novel implication of this tetraspanin in the control of the mechanical properties of their plasma membrane.
Collapse
Affiliation(s)
- Itze C Navarro-Hernandez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.,Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Orestes López-Ortega
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ernesto Acevedo-Ochoa
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.,Unidad de Investigación Médica en Inmunoquímica, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico
| | - Rodrigo Cervantes-Díaz
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.,Facultad De Medicina, Universidad Nacional Autónoma De México, Mexico
| | - Sandra Romero-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.,Facultad De Medicina, Universidad Nacional Autónoma De México, Mexico
| | - Víctor A Sosa-Hernández
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.,Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - David E Meza-Sánchez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Guillermo Juárez-Vega
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - César A Pérez-Martínez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Armando Antillón
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José M Hernández-Hernández
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| |
Collapse
|
10
|
Patterson LB, Parichy DM. Zebrafish Pigment Pattern Formation: Insights into the Development and Evolution of Adult Form. Annu Rev Genet 2019; 53:505-530. [DOI: 10.1146/annurev-genet-112618-043741] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vertebrate pigment patterns are diverse and fascinating adult traits that allow animals to recognize conspecifics, attract mates, and avoid predators. Pigment patterns in fish are among the most amenable traits for studying the cellular basis of adult form, as the cells that produce diverse patterns are readily visible in the skin during development. The genetic basis of pigment pattern development has been most studied in the zebrafish, Danio rerio. Zebrafish adults have alternating dark and light horizontal stripes, resulting from the precise arrangement of three main classes of pigment cells: black melanophores, yellow xanthophores, and iridescent iridophores. The coordination of adult pigment cell lineage specification and differentiation with specific cellular interactions and morphogenetic behaviors is necessary for stripe development. Besides providing a nice example of pattern formation responsible for an adult trait of zebrafish, stripe-forming mechanisms also provide a conceptual framework for posing testable hypotheses about pattern diversification more broadly. Here, we summarize what is known about lineages and molecular interactions required for pattern formation in zebrafish, we review some of what is known about pattern diversification in Danio, and we speculate on how patterns in more distant teleosts may have evolved to produce a stunningly diverse array of patterns in nature.
Collapse
Affiliation(s)
| | - David M. Parichy
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| |
Collapse
|
11
|
Saunders LM, Mishra AK, Aman AJ, Lewis VM, Toomey MB, Packer JS, Qiu X, McFaline-Figueroa JL, Corbo JC, Trapnell C, Parichy DM. Thyroid hormone regulates distinct paths to maturation in pigment cell lineages. eLife 2019; 8:e45181. [PMID: 31140974 PMCID: PMC6588384 DOI: 10.7554/elife.45181] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Thyroid hormone (TH) regulates diverse developmental events and can drive disparate cellular outcomes. In zebrafish, TH has opposite effects on neural crest derived pigment cells of the adult stripe pattern, limiting melanophore population expansion, yet increasing yellow/orange xanthophore numbers. To learn how TH elicits seemingly opposite responses in cells having a common embryological origin, we analyzed individual transcriptomes from thousands of neural crest-derived cells, reconstructed developmental trajectories, identified pigment cell-lineage specific responses to TH, and assessed roles for TH receptors. We show that TH promotes maturation of both cell types but in distinct ways. In melanophores, TH drives terminal differentiation, limiting final cell numbers. In xanthophores, TH promotes accumulation of orange carotenoids, making the cells visible. TH receptors act primarily to repress these programs when TH is limiting. Our findings show how a single endocrine factor integrates very different cellular activities during the generation of adult form.
Collapse
Affiliation(s)
- Lauren M Saunders
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| | - Abhishek K Mishra
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| | - Andrew J Aman
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| | - Victor M Lewis
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| | - Matthew B Toomey
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Jonathan S Packer
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Xiaojie Qiu
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | | | - Joseph C Corbo
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Cole Trapnell
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - David M Parichy
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| |
Collapse
|
12
|
Torres-Sánchez M, Gower DJ, Alvarez-Ponce D, Creevey CJ, Wilkinson M, San Mauro D. What lies beneath? Molecular evolution during the radiation of caecilian amphibians. BMC Genomics 2019; 20:354. [PMID: 31072350 PMCID: PMC6507065 DOI: 10.1186/s12864-019-5694-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Background Evolution leaves an imprint in species through genetic change. At the molecular level, evolutionary changes can be explored by studying ratios of nucleotide substitutions. The interplay among molecular evolution, derived phenotypes, and ecological ranges can provide insights into adaptive radiations. Caecilians (order Gymnophiona), probably the least known of the major lineages of vertebrates, are limbless tropical amphibians, with adults of most species burrowing in soils (fossoriality). This enigmatic order of amphibians are very distinct phenotypically from other extant amphibians and likely from the ancestor of Lissamphibia, but little to nothing is known about the molecular changes underpinning their radiation. We hypothesised that colonization of various depths of tropical soils and of freshwater habitats presented new ecological opportunities to caecilians. Results A total of 8540 candidate groups of orthologous genes from transcriptomic data of five species of caecilian amphibians and the genome of the frog Xenopus tropicalis were analysed in order to investigate the genetic machinery behind caecilian diversification. We found a total of 168 protein-coding genes with signatures of positive selection at different evolutionary times during the radiation of caecilians. The majority of these genes were related to functional elements of the cell membrane and extracellular matrix with expression in several different tissues. The first colonization of the tropical soils was connected to the largest number of protein-coding genes under positive selection in our analysis. From the results of our study, we highlighted molecular changes in genes involved in perception, reduction-oxidation processes, and aging that likely were involved in the adaptation to different soil strata. Conclusions The genes inferred to have been under positive selection provide valuable insights into caecilian evolution, potentially underpin adaptations of caecilians to their extreme environments, and contribute to a better understanding of fossorial adaptations and molecular evolution in vertebrates. Electronic supplementary material The online version of this article (10.1186/s12864-019-5694-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Torres-Sánchez
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, 28040, Madrid, Spain. .,Present address: Department of Neuroscience, Spinal Cord and Brain Injury Research Center & Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY, 40536, USA.
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK
| | | | - Christopher J Creevey
- Institute for Global Food Security, Queen's University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, UK
| | - Mark Wilkinson
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - Diego San Mauro
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
13
|
Usui Y, Aramaki T, Kondo S, Watanabe M. The minimal gap-junction network among melanophores and xanthophores required for stripe-pattern formation in zebrafish. Development 2019; 146:dev.181065. [DOI: 10.1242/dev.181065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
Connexin39.4 (Cx39.4) and Connexin41.8 (Cx41.8), two gap-junction proteins expressed in both melanophores and xanthophores, are critical for the intercellular communication among pigment cells that is necessary for generating the stripe pigment pattern of zebrafish. We previously characterized the gap-junction properties of Cx39.4 and Cx41.8, but how these proteins contribute to stripe formation remains unclear; this is because distinct types of connexins potentially form heteromeric gap junctions, which precludes accurate elucidation of individual connexin functions in vivo. Here, by arranging Cx39.4 and Cx41.8 expression in pigment cells, we identified the simplest gap-junction network required for stripe generation: Cx39.4 expression in melanophores is required but expression in xanthophores is not necessary for stripe patterning, whereas Cx41.8 expression in xanthophores is sufficient for the patterning, and Cx41.8 expression in melanophores might stabilize the stripes. Moreover, patch-clamp recordings revealed that Cx39.4 gap junctions exhibit spermidine-dependent rectification property. Our results suggest that Cx39.4 facilitates the critical cell-cell interactions between melanophores and xanthophores that mediate a unidirectional activation-signal transfer from xanthophores to melanophores, which is essential for melanophore survival.
Collapse
Affiliation(s)
- Yuu Usui
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiro Aramaki
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeru Kondo
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- CREST, Japan Science and Technology Agency, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masakatsu Watanabe
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Volkening A, Sandstede B. Iridophores as a source of robustness in zebrafish stripes and variability in Danio patterns. Nat Commun 2018; 9:3231. [PMID: 30104716 PMCID: PMC6089994 DOI: 10.1038/s41467-018-05629-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/13/2018] [Indexed: 11/11/2022] Open
Abstract
Zebrafish (Danio rerio) feature black and yellow stripes, while related Danios display different patterns. All these patterns form due to the interactions of pigment cells, which self-organize on the fish skin. Until recently, research focused on two cell types (melanophores and xanthophores), but newer work has uncovered the leading role of a third type, iridophores: by carefully orchestrated transitions in form, iridophores instruct the other cells, but little is known about what drives their form changes. Here we address this question from a mathematical perspective: we develop a model (based on known interactions between the original two cell types) that allows us to assess potential iridophore behavior. We identify a set of mechanisms governing iridophore form that is consistent across a range of empirical data. Our model also suggests that the complex cues iridophores receive may act as a key source of redundancy, enabling both robust patterning and variability within Danio.
Collapse
Affiliation(s)
- Alexandria Volkening
- Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI, 02912, USA.
- Mathematical Biosciences Institute, Ohio State University, 1735 Neil Avenue, Columbus, OH, 43210, USA.
| | - Björn Sandstede
- Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI, 02912, USA
| |
Collapse
|
15
|
Usui Y, Kondo S, Watanabe M. Melanophore multinucleation pathways in zebrafish. Dev Growth Differ 2018; 60:454-459. [PMID: 30088265 DOI: 10.1111/dgd.12564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022]
Abstract
In zebrafish, apart from mononuclear melanophores, bi- and trinuclear melanophores are frequently observed; however, the manner in which multinucleation of these cells occurs during fish development remains unknown. Here, we analyzed the processes underlying multinucleation of zebrafish melanophores. Transgenic zebrafish in which melanophore nuclei were labeled with a histone H2B-red fluorescent reporter protein were used to evaluate the distribution of mono-, bi-, and trinuclear melanophores in both the trunk and fin. Half of the melanophores examined were binuclear and approximately 1% were trinuclear. We compared cell size, cell motility, and survival rate between mono- and binuclear melanophores grown in a culture dish, and we found that cell size and survival rate were significantly larger in binuclear melanophores. We then analyzed the behavior of melanoblasts and melanophores from transgenic zebrafish using in vivo and in vitro live-cell imaging. We detected division and differentiation of melanoblasts, as well as melanoblast nuclear division without subsequent cellular division. In addition, we observed cellular and nuclear division in melanophores, although these events were very infrequent in vitro. On the basis of our findings, we present a scheme for melanophore multinucleation in zebrafish.
Collapse
Affiliation(s)
- Yuu Usui
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Shigeru Kondo
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,Japan Science and Technology Agency, CREST, Suita, Osaka, Japan
| | - Masakatsu Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
16
|
Sawada R, Aramaki T, Kondo S. Flexibility of pigment cell behavior permits the robustness of skin pattern formation. Genes Cells 2018; 23:537-545. [PMID: 29797484 DOI: 10.1111/gtc.12596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/24/2018] [Indexed: 12/16/2022]
Abstract
The striped pigmentation pattern of zebrafish is determined by the interaction between pigment cells with different colors. Recent studies show the behaviors of pigment cells are substantially different according to the environment. Interestingly, the resulting patterns are almost identical, suggesting a robustness of the patterning mechanism. To know how this robustness originates, we investigated the behavior of melanophores in various environments including different developmental stages, different body positions, and different genetic backgrounds. Normally, when embryonic melanophores are excluded from the yellow stripe region in the body trunk, two different cellular behaviors are observed. Melanophores migrate to join the black stripe or disappear (die) in the position. In environments where melanophore migration was restricted, we observed that most melanophores disappeared in their position, resulting in the complete exclusion of melanophores from the yellow stripe. In environments where melanophore cell death was restricted, most melanophores migrated to join the black stripes, also resulting in complete exclusion. When both migration and cell death were restricted, melanophores remained alive in the yellow stripes. These results show that migration and cell death complement each other to achieve the exclusion of melanophores. This flexibility may be the basis of the mechanistic robustness of skin pattern formation.
Collapse
Affiliation(s)
- Risa Sawada
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Toshihiro Aramaki
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Shigeru Kondo
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
17
|
Dini S, Binder BJ, Green JEF. Understanding interactions between populations: Individual based modelling and quantification using pair correlation functions. J Theor Biol 2017; 439:50-64. [PMID: 29197512 DOI: 10.1016/j.jtbi.2017.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 11/02/2017] [Accepted: 11/19/2017] [Indexed: 11/26/2022]
Abstract
Understanding the underlying mechanisms that produce the huge variety of swarming and aggregation patterns in animals and cells is fundamental in ecology, developmental biology, and regenerative medicine, to name but a few examples. Depending upon the nature of the interactions between individuals (cells or animals), a variety of different large-scale spatial patterns can be observed in their distribution; examples include cell aggregates, stripes of different coloured skin cells, etc. For the case where all individuals are of the same type (i.e., all interactions are alike), a considerable literature already exists on how the collective organisation depends on the inter-individual interactions. Here, we focus on the less studied case where there are two different types of individuals present. Whilst a number of continuum models of this scenario exist, it can be difficult to compare these models to experimental data, since real cells and animals are discrete. In order to overcome this problem, we develop an agent-based model to simulate some archetypal mechanisms involving attraction and repulsion. However, with this approach (as with experiments), each realisation of the model is different, due to stochastic effects. In order to make useful comparisons between simulations and experimental data, we need to identify the robust features of the spatial distributions of the two species which persist over many realisations of the model (for example, the size of aggregates, degree of segregation or intermixing of the two species). In some cases, it is possible to do this by simple visual inspection. In others, the features of the pattern are not so clear to the unaided eye. In this paper, we introduce a pair correlation function (PCF), which allows us to analyse multi-species spatial distributions quantitatively. We show how the differing strengths of inter-individual attraction and repulsion between species give rise to different spatial patterns, and how the PCF can be used to quantify these differences, even when it might be impossible to recognise them visually.
Collapse
Affiliation(s)
- S Dini
- School of Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - B J Binder
- School of Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - J E F Green
- School of Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
18
|
Cooper CD. Insights from zebrafish on human pigment cell disease and treatment. Dev Dyn 2017; 246:889-896. [DOI: 10.1002/dvdy.24550] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/22/2017] [Accepted: 06/29/2017] [Indexed: 12/24/2022] Open
Affiliation(s)
- Cynthia D. Cooper
- School of Molecular Biosciences; Washington State University Vancouver; Vancouver Washington
| |
Collapse
|
19
|
Mahalwar P, Singh AP, Fadeev A, Nüsslein-Volhard C, Irion U. Heterotypic interactions regulate cell shape and density during color pattern formation in zebrafish. Biol Open 2016; 5:1680-1690. [PMID: 27742608 PMCID: PMC5155543 DOI: 10.1242/bio.022251] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The conspicuous striped coloration of zebrafish is produced by cell-cell interactions among three different types of chromatophores: black melanophores, orange/yellow xanthophores and silvery/blue iridophores. During color pattern formation xanthophores undergo dramatic cell shape transitions and acquire different densities, leading to compact and orange xanthophores at high density in the light stripes, and stellate, faintly pigmented xanthophores at low density in the dark stripes. Here, we investigate the mechanistic basis of these cell behaviors in vivo, and show that local, heterotypic interactions with dense iridophores regulate xanthophore cell shape transition and density. Genetic analysis reveals a cell-autonomous requirement of gap junctions composed of Cx41.8 and Cx39.4 in xanthophores for their iridophore-dependent cell shape transition and increase in density in light-stripe regions. Initial melanophore-xanthophore interactions are independent of these gap junctions; however, subsequently they are also required to induce the acquisition of stellate shapes in xanthophores of the dark stripes. In summary, we conclude that, whereas homotypic interactions regulate xanthophore coverage in the skin, their cell shape transitions and density is regulated by gap junction-mediated, heterotypic interactions with iridophores and melanophores. Summary: The conspicuous pigmentation pattern of zebrafish is produced by three kinds of interacting pigment cells. Here we address the cellular consequences of these interactions in wild-type fish and mutants with altered pigment patterns.
Collapse
Affiliation(s)
- Prateek Mahalwar
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Ajeet Pratap Singh
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Andrey Fadeev
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | | | - Uwe Irion
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| |
Collapse
|
20
|
Watanabe M, Sawada R, Aramaki T, Skerrett IM, Kondo S. The Physiological Characterization of Connexin41.8 and Connexin39.4, Which Are Involved in the Striped Pattern Formation of Zebrafish. J Biol Chem 2016; 291:1053-63. [PMID: 26598520 PMCID: PMC4714190 DOI: 10.1074/jbc.m115.673129] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/02/2015] [Indexed: 11/06/2022] Open
Abstract
The zebrafish has a striped skin pattern on its body, and Connexin41.8 (Cx41.8) and Cx39.4 are involved in striped pattern formation. Mutations in these connexins change the striped pattern to a spot or labyrinth pattern. In this study, we characterized Cx41.8 and Cx39.4 after expression in Xenopus oocytes. In addition, we analyzed Cx41.8 mutants Cx41.8I203F and Cx41.8M7, which caused spot or labyrinth skin patterns, respectively, in transgenic zebrafish. In the electrophysiological analysis, the gap junctions formed by Cx41.8 and Cx39.4 showed distinct sensitivity to transjunctional voltage. Analysis of non-junctional (hemichannel) currents revealed a large voltage-dependent current in Cx39.4-expressing oocytes that was absent in cells expressing Cx41.8. Junctional currents induced by both Cx41.8 and Cx39.4 were reduced by co-expression of Cx41.8I203F and abolished by co-expression of Cx41.8M7. In the transgenic experiment, Cx41.8I203F partially rescued the Cx41.8 null mutant phenotype, whereas Cx41.8M7 failed to rescue the null mutant, and it elicited a more severe phenotype than the Cx41.8 null mutant, as evidenced by a smaller spot pattern. Our results provide evidence that gap junctions formed by Cx41.8 play an important role in stripe/spot patterning and suggest that mutations in Cx41.8 can effect patterning by way of reduced function (I203F) and dominant negative effects (M7). Our results suggest that functional differences in Cx41.8 and Cx39.4 relate to spot or labyrinth mutant phenotypes and also provide evidence that these two connexins interact in vivo and in vitro.
Collapse
Affiliation(s)
- Masakatsu Watanabe
- From the Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan,
| | - Risa Sawada
- From the Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiro Aramaki
- From the Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - I Martha Skerrett
- the Biology Department, Buffalo State College, Buffalo, New York, 14222, and
| | - Shigeru Kondo
- From the Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan, CREST, Japan Science and Technology Agency, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Irion U, Singh AP, Nüsslein-Volhard C. The Developmental Genetics of Vertebrate Color Pattern Formation. Curr Top Dev Biol 2016; 117:141-69. [DOI: 10.1016/bs.ctdb.2015.12.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Volkening A, Sandstede B. Modelling stripe formation in zebrafish: an agent-based approach. J R Soc Interface 2015; 12:20150812. [PMID: 26538560 PMCID: PMC4685853 DOI: 10.1098/rsif.2015.0812] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/13/2015] [Indexed: 11/12/2022] Open
Abstract
Zebrafish have distinctive black stripes and yellow interstripes that form owing to the interaction of different pigment cells. We present a two-population agent-based model for the development and regeneration of these stripes and interstripes informed by recent experimental results. Our model describes stripe pattern formation, laser ablation and mutations. We find that fish growth shortens the necessary scale for long-range interactions and that iridophores, a third type of pigment cell, help align stripes and interstripes.
Collapse
Affiliation(s)
| | - Björn Sandstede
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| |
Collapse
|
23
|
Abstract
Colour patterns are prominent features of many animals and have important functions in communication, such as camouflage, kin recognition and mate choice. As targets for natural as well as sexual selection, they are of high evolutionary significance. The molecular mechanisms underlying colour pattern formation in vertebrates are not well understood. Progress in transgenic tools, in vivo imaging and the availability of a large collection of mutants make the zebrafish (Danio rerio) an attractive model to study vertebrate colouration. Zebrafish display golden and blue horizontal stripes that form during metamorphosis as mosaics of yellow xanthophores, silvery or blue iridophores and black melanophores in the hypodermis. Lineage tracing revealed the origin of the adult pigment cells and their individual cellular behaviours during the formation of the striped pattern. Mutant analysis indicated that interactions between all three pigment cell types are required for the formation of the pattern, and a number of cell surface molecules and signalling systems have been identified as mediators of these interactions. The understanding of the mechanisms that underlie colour pattern formation is an important step towards deciphering the genetic basis of variation in evolution.
Collapse
|
24
|
Is pigment patterning in fish skin determined by the Turing mechanism? Trends Genet 2015; 31:88-96. [DOI: 10.1016/j.tig.2014.11.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 11/18/2022]
|
25
|
Irion U, Frohnhöfer HG, Krauss J, Çolak Champollion T, Maischein HM, Geiger-Rudolph S, Weiler C, Nüsslein-Volhard C. Gap junctions composed of connexins 41.8 and 39.4 are essential for colour pattern formation in zebrafish. eLife 2014; 3:e05125. [PMID: 25535837 PMCID: PMC4296512 DOI: 10.7554/elife.05125] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/22/2014] [Indexed: 11/20/2022] Open
Abstract
Interactions between all three pigment cell types are required to form the stripe pattern of adult zebrafish (Danio rerio), but their molecular nature is poorly understood. Mutations in leopard (leo), encoding Connexin 41.8 (Cx41.8), a gap junction subunit, cause a phenotypic series of spotted patterns. A new dominant allele, leotK3, leads to a complete loss of the pattern, suggesting a dominant negative impact on another component of gap junctions. In a genetic screen, we identified this component as Cx39.4 (luchs). Loss-of-function alleles demonstrate that luchs is required for stripe formation in zebrafish; however, the fins are almost not affected. Double mutants and chimeras, which show that leo and luchs are only required in xanthophores and melanophores, but not in iridophores, suggest that both connexins form heteromeric gap junctions. The phenotypes indicate that these promote homotypic interactions between melanophores and xanthophores, respectively, and those cells instruct the patterning of the iridophores. DOI:http://dx.doi.org/10.7554/eLife.05125.001 The colour patterns that mark an animal's skin, hair, or feathers—called the pigmentation pattern—can be very important for its survival and fitness, helping it to hide from predators or to attract a mate. As a result, there is considerable interest in understanding how genes, proteins, and cells work together to produce the many different pigmentation patterns that exist in the animal world. Adult zebrafish have a characteristic pigmentation pattern of horizontal dark and light stripes on their bodies and fins. There are three types of pigment cell that create this pattern. Xanthophores and iridophores are found all over the body, and the dark stripes also contain melanophore cells. The silvery, reflective iridophores are the first of the cells to populate the skin, giving rise to the first light stripe. They then form a dense network of cells that breaks up to form the darker stripes. However, iridophores are not required to form stripes in the fins, suggesting that patterning occurs differently in the fins and the body. Mutations to a gene called leopard, or leo for short, cause spots to form on the skin of the zebrafish in place of the usual stripes. This gene encodes a member of the connexin family of proteins, which form channels in the membranes that surround cells. These channels—known as gap junctions—allow neighbouring cells to communicate with each other. Each gap junction is made up of two half channels, with one half coming from each neighbouring cells. If the two half channels are identical, the gap junction is known as ‘homomeric’; ‘heteromeric’ gap junctions are made from two different half channels, each consisting of a different connexin protein. The connexin encoded by leo is required for both types of gap junction to form between melanophores and xanthophores. Irion et al. discovered a new mutation to the leo gene that completely disrupts the patterning of the zebrafish. A technique called a genetic screen revealed that the same patterning defects are also seen in the body of zebrafish with mutations to another gene called luchs, which encodes a different connexin protein to the one produced by leo. However, the fins of zebrafish with mutant versions of luchs remain striped. The findings of Irion et al. suggest that heteromeric gap junctions formed from the connexins produced by leo and luchs are important for xanthophores and melanophores to communicate with each other and so form the stripy patterning seen on the body of the zebrafish. The signals transmitted through the gap junctions may also make the iridophores adopt the looser arrangement that is required for the dark stripes to form. As a next step, it will be important to identify the signals that pass through these gap junctions that allow the cells to communicate with their neighbours and establish the pigmentation pattern. DOI:http://dx.doi.org/10.7554/eLife.05125.002
Collapse
Affiliation(s)
- Uwe Irion
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Jana Krauss
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | - Christian Weiler
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | |
Collapse
|
26
|
Parichy DM, Spiewak JE. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution. Pigment Cell Melanoma Res 2014; 28:31-50. [PMID: 25421288 DOI: 10.1111/pcmr.12332] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/20/2014] [Indexed: 12/25/2022]
Abstract
Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage, and mate choice and have played important roles in speciation. Here, we review studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post-embryonic, peripheral nerve-associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow-orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns.
Collapse
Affiliation(s)
- David M Parichy
- Department of Biology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|