1
|
Toay S, Sheri N, MacDonald I, Sergeev YV. Human recombinant tyrosinase destabilization caused by the double mutation R217Q/R402Q. Protein Sci 2025; 34:e70029. [PMID: 39840795 PMCID: PMC11751874 DOI: 10.1002/pro.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/23/2025]
Abstract
Oculocutaneous albinism is an autosomal recessive inherited disorder associated with mutations in the TYR gene. A single missense change in the tyrosinase (Tyr) could result in partial or complete loss of catalytic activity. The effect of two genetic mutations in the same Tyr as the molecule is less studied. Here, we study single mutation variants, R217Q, R402Q, and a double mutant variant, R217Q/R402Q, to establish a link between alterations at the level of the atomic model of the protein and the disease phenotype. Human recombinant intra-melanosomal Tyr domains of Tyr and three mutant variants were expressed in T. ni. Larvae were purified using the combination of IMAC and SEC, and diphenolase activities were measured. The Tyr homology model was equilibrated using 100 ns molecular dynamics and analyzed using computational methods. The purified R217Q and R217Q/R402Q variants show decreased catalytic activities compared to those of the Tyr and R402Q variants. The R217Q/R402Q variant has the lowest protein activity and is significantly reduced.
Collapse
Affiliation(s)
- Sarah Toay
- Protein Biochemistry and Molecular Modeling Group, OGVFBNational Eye Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Narin Sheri
- Department of Ophthalmology & Visual SciencesUniversity of AlbertaEdmontonCanada
| | - Ian MacDonald
- Department of Ophthalmology & Visual SciencesUniversity of AlbertaEdmontonCanada
- Department of OphthalmologyUniversity of MontrealMontrealCanada
| | - Yuri V. Sergeev
- Protein Biochemistry and Molecular Modeling Group, OGVFBNational Eye Institute, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
2
|
Green DJ, Michaud V, Lasseaux E, Plaisant C, Fitzgerald T, Birney E, Black GC, Arveiler B, Sergouniotis PI. The co-occurrence of genetic variants in the TYR and OCA2 genes confers susceptibility to albinism. Nat Commun 2024; 15:8436. [PMID: 39349469 PMCID: PMC11443028 DOI: 10.1038/s41467-024-52763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
Although rare genetic conditions are mostly caused by DNA sequence alterations that functionally disrupt individual genes, large-scale studies using genome sequencing have started to unmask additional complexity. Understanding how combinations of variants in different genes shape human phenotypes is expected to provide important insights into the clinical and genetic heterogeneity of rare disorders. Here, we use albinism, an archetypal rare condition associated with hypopigmentation, as an exemplar for the study of genetic interactions. We analyse data from the Genomics England 100,000 Genomes Project alongside a cohort of 1120 individuals with albinism, and investigate the effect of dual heterozygosity for the combination of two established albinism-related variants: TYR:c.1205 G > A (p.Arg402Gln) [rs1126809] and OCA2:c.1327 G > A (p.Val443Ile) [rs74653330]. As each of these changes alone is insufficient to cause disease when present in the heterozygous state, we sought evidence of synergistic effects. We show that, when both variants are present, the probability of receiving a diagnosis of albinism is significantly increased (odds ratio 12.8; 95% confidence interval 6.0 - 24.7; p-value 2.1 ×10-8). Further analyses in an independent cohort, the UK Biobank, support this finding and highlight that heterozygosity for the TYR:c.1205 G > A and OCA2:c.1327 G > A variant combination is associated with statistically significant alterations in visual acuity and central retinal thickness (traits that are considered albinism endophenotypes). The approach discussed in this report opens up new avenues for the investigation of oligogenic patterns in apparently Mendelian disorders.
Collapse
Affiliation(s)
- David J Green
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Vincent Michaud
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
- INSERM U1211, Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Eulalie Lasseaux
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
| | - Claudio Plaisant
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
| | - Tomas Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL- EBI), Wellcome Genome Campus, Cambridge, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL- EBI), Wellcome Genome Campus, Cambridge, UK
| | - Graeme C Black
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Benoît Arveiler
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
- INSERM U1211, Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Panagiotis I Sergouniotis
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL- EBI), Wellcome Genome Campus, Cambridge, UK.
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
3
|
Bjeloš M, Ćurić A, Bušić M, Rak B, Kuzmanović Elabjer B. Genetic Linkage between CAPN5 and TYR Variants in the Context of Albinism and Autosomal Dominant Neovascular Inflammatory Vitreoretinopathy Absence: A Case Report. Int J Mol Sci 2024; 25:6442. [PMID: 38928147 PMCID: PMC11204092 DOI: 10.3390/ijms25126442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
We present a case involving a patient whose clinical phenotype aligns with oculocutaneous albinism (OCA), yet exhibits a complex genotype primarily characterized by variants of unknown significance (VUS). An 11-year-old boy manifested iris hypopigmentation and translucency, pronounced photophobia, diminished visual acuity and stereopsis, nystagmus, reduced pigmentation of the retina, and foveal hypoplasia. Genetic testing was performed. A heterozygous missense VUS CAPN5 c.230A>G, p.(Gln77Arg), a heterozygous missense VUS TYR c.1307G>C, p.(Gly436Ala), and a heterozygous missense variant TYR c.1205G>A, p.(Arg402Gln) which was classified as a risk factor, were identified. We hypothesized that the TYR c.1307G>C, p.(Gly436Ala) variant is in genetic disequilibrium with the TYR c.1205G>A, p.(Arg402Gln) variant leading to deficient expression of melanogenic enzymes in retinal cells, resulting in the manifestation of mild OCA. Additionally, this study represents the case where we did not detect chiasmal misrouting in visual evoked potentials, nor did we observe a shift in the distribution of ganglion cell thickness from a temporal to a central position. Moreover, our patient's case supports the probable benign nature of the CAPN5 c.230A>G, p.(Gln77Arg) variant.
Collapse
Affiliation(s)
- Mirjana Bjeloš
- University Eye Department, Reference Center of the Ministry of Health of the Republic of Croatia for Inherited Retinal Dystrophies, Reference Center of the Ministry of Health of the Republic of Croatia for Pediatric Ophthalmology and Strabismus, University Hospital “Sveti Duh”, 10000 Zagreb, Croatia; (M.B.); (A.Ć.); (B.R.); (B.K.E.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ana Ćurić
- University Eye Department, Reference Center of the Ministry of Health of the Republic of Croatia for Inherited Retinal Dystrophies, Reference Center of the Ministry of Health of the Republic of Croatia for Pediatric Ophthalmology and Strabismus, University Hospital “Sveti Duh”, 10000 Zagreb, Croatia; (M.B.); (A.Ć.); (B.R.); (B.K.E.)
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Mladen Bušić
- University Eye Department, Reference Center of the Ministry of Health of the Republic of Croatia for Inherited Retinal Dystrophies, Reference Center of the Ministry of Health of the Republic of Croatia for Pediatric Ophthalmology and Strabismus, University Hospital “Sveti Duh”, 10000 Zagreb, Croatia; (M.B.); (A.Ć.); (B.R.); (B.K.E.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Benedict Rak
- University Eye Department, Reference Center of the Ministry of Health of the Republic of Croatia for Inherited Retinal Dystrophies, Reference Center of the Ministry of Health of the Republic of Croatia for Pediatric Ophthalmology and Strabismus, University Hospital “Sveti Duh”, 10000 Zagreb, Croatia; (M.B.); (A.Ć.); (B.R.); (B.K.E.)
| | - Biljana Kuzmanović Elabjer
- University Eye Department, Reference Center of the Ministry of Health of the Republic of Croatia for Inherited Retinal Dystrophies, Reference Center of the Ministry of Health of the Republic of Croatia for Pediatric Ophthalmology and Strabismus, University Hospital “Sveti Duh”, 10000 Zagreb, Croatia; (M.B.); (A.Ć.); (B.R.); (B.K.E.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
4
|
Zolghadri S, Saboury AA. Catalytic mechanism of tyrosinases. Enzymes 2024; 56:31-54. [PMID: 39304290 DOI: 10.1016/bs.enz.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Tyrosinases (TYR) play a key role in melanin biosynthesis by catalyzing two reactions: monophenolase and diphenolase activities. Despite low amino acid sequence homology, TYRs from various organisms (from bacteria to humans) have similar active site architectures and catalytic mechanisms. The active site of the TYRs contains two copper ions coordinated by histidine (His) residues. The catalytic mechanism of TYRs involves electron transfer between copper sites, leading to the hydroxylation of monophenolic compounds to diphenols and the subsequent oxidation of these to corresponding dopaquinones. Although extensive studies have been conducted on the structure, catalytic mechanism, and enzymatic capabilities of TYRs, some mechanistic aspects are still debated. This chapter will delve into the structure of the active site, catalytic function, and inhibition mechanism of TYRs. The goal is to improve our understanding of the molecular mechanisms underlying TYR activity. This knowledge can help in developing new strategies to modulate TYR function and potentially treat diseases linked to melanin dysregulation.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran.
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Si S, Jia X, Xu L, Qin Q, Wu J, Ji W, Dong K, Zhang X, Cao L, Wang H, Liu P, Wang R, Bai J, Fu S, Huang Y, Sun W. Identification and characterization of the compound heterozygous variants of TYR gene in a northern Chinese family with Oculocutaneous albinism type 1. Pigment Cell Melanoma Res 2023; 36:472-480. [PMID: 37403904 DOI: 10.1111/pcmr.13111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/01/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Oculocutaneous albinism (OCA) is a genetically heterogeneous disease and is most inherited in an autosomal recessive manner. The characteristic manifestation of OCA is due to disfunction of melanin synthesis. OCA1 is the most severe subtype of OCA and is caused by homozygous or compound heterozygous variants in tyrosinase (TYR) gene, which is the key gene for melanin synthesis. This study aimed to identify the genetic variants of a northern Chinese family with OCA1. Clinical information and peripheral blood samples were collected. PCR amplification and Sanger sequencing were used to detect the entire exons and adjacent flanking sequences of TYR gene. Functional prediction of variants was performed by various bioinformatic analyses, while the pathogenicity classification of variants was evaluated according to ACMG standards and guidelines. A missense variant NM_000372.5:c.107G > C;NP_000363.1:p.C36S was discovered in TYR gene which converted cysteine to serine. Another variant in intron, NM_000372.5:c.1037-7 T > A, also affected the function of TYR gene. We verified the pathogenicity of the intron variant with a pCAS2 mini-gene based splicing assay and found that c.1037-7 T > A led to an insertion of 5 bp upstream from the common acceptor site of exon 3, which caused a frameshift TYR:c.1037-7 T > A:p.G346Efs*11. The results showed that the compound heterozygous variants c.107G > C:p.C36S and c.1037-7 T > A:p.G346Efs*11 of TYR gene were the pathogenic variants for this OCA1 family.
Collapse
Affiliation(s)
- Shuhan Si
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xueyuan Jia
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Lidan Xu
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Qian Qin
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Jie Wu
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Wei Ji
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Kexian Dong
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xuelong Zhang
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Lin Cao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Rongrong Wang
- McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jing Bai
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Songbin Fu
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Yun Huang
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| | - Wenjing Sun
- Laboratory of Medical Genetics (Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education), Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Stroupe S, Martone C, McCann B, Juras R, Kjöllerström HJ, Raudsepp T, Beard D, Davis BW, Derr JN. Chromosome-level reference genome for North American bison (Bison bison) and variant database aids in identifying albino mutation. G3 (BETHESDA, MD.) 2023; 13:jkad156. [PMID: 37481261 PMCID: PMC10542314 DOI: 10.1093/g3journal/jkad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023]
Abstract
We developed a highly contiguous chromosome-level reference genome for North American bison to provide a platform to evaluate the conservation, ecological, evolutionary, and population genomics of this species. Generated from a F1 hybrid between a North American bison dam and a domestic cattle bull, completeness and contiguity exceed that of other published bison genome assemblies. To demonstrate the utility for genome-wide variant frequency estimation, we compiled a genomic variant database consisting of 3 true albino bison and 44 wild-type pelage color bison. Through the examination of genomic variants fixed in the albino cohort and absent in the controls, we identified a nonsynonymous single nucleotide polymorphism (SNP) mutation on chromosome 29 in exon 3 of the tyrosinase gene (c.1114C>T). A TaqMan SNP Genotyping Assay was developed to genotype this SNP in a total of 283 animals across 29 herds. This assay confirmed the absence of homozygous variants in all animals except 7 true albino bison included in this study. In addition, the only heterozygous animals identified were 2 wild-type pelage color dams of albino offspring. Therefore, we propose that this new high-quality bison genome assembly and incipient variant database provides a highly robust and informative resource for genomics investigations for this iconic North American species.
Collapse
Affiliation(s)
- Sam Stroupe
- Department of Veterinary Pathobiology, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | - Carly Martone
- Department of Veterinary Pathobiology, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | - Blake McCann
- National Park Service, Theodore Roosevelt National Park, Medora, ND 58645, USA
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | - Helena Josefina Kjöllerström
- Department of Veterinary Integrative Biosciences, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | - Donald Beard
- Texas Parks and Wildlife, Caprock Canyons State Park & Trailway, Quitaque, TX 79255, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
- Department of Small Animal Clinical Sciences, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | - James N Derr
- Department of Veterinary Pathobiology, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| |
Collapse
|
7
|
Woods T, Sergeev YV. Evaluating the Cysteine-Rich and Catalytic Subdomains of Human Tyrosinase and OCA1-Related Mutants Using 1 μs Molecular Dynamics Simulation. Int J Mol Sci 2023; 24:13032. [PMID: 37685839 PMCID: PMC10487697 DOI: 10.3390/ijms241713032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
The inherited disorder oculocutaneous albinism type 1 (OCA1) is caused by mutations in the TYR gene encoding tyrosinase (Tyr), an enzyme essential to producing pigments throughout the human body. The intramelanosomal domain of Tyr consists of the cysteine-rich and tyrosinase catalytic subdomains, which are essential for enzymatic activity. In protein unfolding, the roles of these subdomains are not well established. Here, we performed six molecular dynamics simulations at room temperature for Tyr and OCA1-related mutant variants P406L and R402Q intramelanosomal domains. The proteins were simulated for 1 μs in water and urea to induce unfolding. In urea, we observed increases in surface area, decreases in intramolecular hydrogen bonding, and decreases in hydrophobic interactions, suggesting a 'molten globule' state for each protein. Between all conditions, the cysteine-rich subdomain remains stable, whereas the catalytic subdomain shows increased flexibility. This flexibility is intensified by the P406L mutation, while R402Q increases the catalytic domain's rigidity. The cysteine-rich subdomain is rigid, preventing the protein from unfolding, whereas the flexibility of the catalytic subdomain accommodates mutational changes that could inhibit activity. These findings match the conclusions from our experimental work suggesting the function alteration by the P406L mutation, and the potential role of R402Q as a polymorphism.
Collapse
Affiliation(s)
| | - Yuri V. Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
8
|
Osuna I, Dolinska MB, Sergeev YV. In Vitro Reconstitution of the Melanin Pathway's Catalytic Activities Using Tyrosinase Nanoparticles. Int J Mol Sci 2022; 24:639. [PMID: 36614088 PMCID: PMC9820814 DOI: 10.3390/ijms24010639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The melanogenesis pathway is characterized by a series of reactions catalyzed by key enzymes, such as tyrosinase (TYR), tyrosinase-related protein 2 (TYRP2), and tyrosinase-related protein 1 (TYRP1), to produce melanin pigment. However, in vitro studies of the catalytic activity were incomplete because of a lack of commercially available enzyme substrates, such as dopachrome. Herein, human recombinant intra-melanosomal domains of key enzymes were produced in Trichoplusia ni (T. ni) larvae and then purified using a combination of chromatography techniques in catalytically active form. Using Michaelis-Menten kinetics, the diphenol oxidase activity of tyrosinase achieved the maximum production of native dopachrome at 10 min of incubation at 37 °C for TYR immobilized to magnetic beads (TYR-MB). The presence of dopachrome was confirmed spectrophotometrically at 475 nm through HPLC analysis and in the TYRP2-catalyzed reaction, yielding 5,6-dihydroxyindole-2-carboxylic acid (DHICA). In the TYRP1-driven oxidation of DHICA, the formation of 5,6-indolequinone-2-carboxylic acid (IQCA) was confirmed at ~560 nm. This is the first in vitro reconstitution of the reactions from the melanogenic pathway based on intra-melanosomal domains. In the future, this approach could be used for quantitative in vitro analysis of the melanin pathway, biochemical effects associated with inherited disease-related mutations, and drug screens.
Collapse
Affiliation(s)
| | | | - Yuri V. Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, MD 20891, USA
| |
Collapse
|
9
|
The retinal pigmentation pathway in human albinism: Not so black and white. Prog Retin Eye Res 2022; 91:101091. [PMID: 35729001 DOI: 10.1016/j.preteyeres.2022.101091] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
Albinism is a pigment disorder affecting eye, skin and/or hair. Patients usually have decreased melanin in affected tissues and suffer from severe visual abnormalities, including foveal hypoplasia and chiasmal misrouting. Combining our data with those of the literature, we propose a single functional genetic retinal signalling pathway that includes all 22 currently known human albinism disease genes. We hypothesise that defects affecting the genesis or function of different intra-cellular organelles, including melanosomes, cause syndromic forms of albinism (Hermansky-Pudlak (HPS) and Chediak-Higashi syndrome (CHS)). We put forward that specific melanosome impairments cause different forms of oculocutaneous albinism (OCA1-8). Further, we incorporate GPR143 that has been implicated in ocular albinism (OA1), characterised by a phenotype limited to the eye. Finally, we include the SLC38A8-associated disorder FHONDA that causes an even more restricted "albinism-related" ocular phenotype with foveal hypoplasia and chiasmal misrouting but without pigmentation defects. We propose the following retinal pigmentation pathway, with increasingly specific genetic and cellular defects causing an increasingly specific ocular phenotype: (HPS1-11/CHS: syndromic forms of albinism)-(OCA1-8: OCA)-(GPR143: OA1)-(SLC38A8: FHONDA). Beyond disease genes involvement, we also evaluate a range of (candidate) regulatory and signalling mechanisms affecting the activity of the pathway in retinal development, retinal pigmentation and albinism. We further suggest that the proposed pigmentation pathway is also involved in other retinal disorders, such as age-related macular degeneration. The hypotheses put forward in this report provide a framework for further systematic studies in albinism and melanin pigmentation disorders.
Collapse
|
10
|
Marek-Yagel D, Abudi-Sinreich S, Macarov M, Veber A, Shalva N, Philosoph AM, Pode-Shakked B, Malicdan MCV, Anikster Y. Oculocutaneous albinism and bleeding diathesis due to a novel deletion in the HPS3 gene. Front Genet 2022; 13:936064. [PMID: 36046236 PMCID: PMC9420964 DOI: 10.3389/fgene.2022.936064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Hermansky–Pudlak syndrome (HPS) is a group of rare autosomal recessive disorders characterized by oculocutaneous albinism (OCA) and bleeding diathesis. To date, 11 HPS types have been reported (HPS-1 to HPS-11), each defined by disease-causing variants in specific genes. Variants in the HPS1 gene were found in approximately 15% of HPS patients, most of whom harbor the Puerto Rican founder mutation. In this study, we report six affected individuals from three nonconsanguineous families of Ashkenazi Jewish descent, who presented with OCA and multiple ecchymoses and had normal platelet number and size. Linkage analysis indicated complete segregation to HPS3. Sequencing of the whole coding region and the intron boundaries of HPS3 revealed a heterozygous c.1163+1G>A variant in all six patients. Long-range PCR amplification revealed that all affected individuals also carry a 14,761bp deletion that includes the 5′UTR and exon 1 of HPS3, encompassing regions with long interspersed nuclear elements. The frequency of the c.1163+1G>A splice site variant was found to be 1:200 in the Ashkenazi Jewish population, whereas the large deletion was not detected in 300 Ashkenazi Jewish controls. These results present a novel HPS3 deletion mutation and suggest that the prevalence of HPS-3 in Ashkenazi Jews is more common than previously thought.
Collapse
Affiliation(s)
- Dina Marek-Yagel
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Tel-Hahsomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shachar Abudi-Sinreich
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, United States
| | - Michal Macarov
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alvit Veber
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Tel-Hahsomer, Israel
| | - Nechama Shalva
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Tel-Hahsomer, Israel
| | - Amit Mary Philosoph
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Tel-Hahsomer, Israel
| | - Ben Pode-Shakked
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Tel-Hahsomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Talpiot Medical Leadership Program, Sheba Medical Center, Ramat Gan, Tel-Hahsomer, Israel
| | - May Christine V. Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, United States
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director and National Human Genome Research Institute, Bethesda, MD, United States
| | - Yair Anikster
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Tel-Hahsomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Ramat Gan, Tel-Hahsomer, Israel
- *Correspondence: Yair Anikster,
| |
Collapse
|
11
|
Kirchler M, Konigorski S, Norden M, Meltendorf C, Kloft M, Schurmann C, Lippert C. transferGWAS: GWAS of images using deep transfer learning. Bioinformatics 2022; 38:3621-3628. [PMID: 35640976 DOI: 10.1093/bioinformatics/btac369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/05/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Medical images can provide rich information about diseases and their biology. However, investigating their association with genetic variation requires non-standard methods. We propose transferGWAS, a novel approach to perform genome-wide association studies directly on full medical images. First, we learn semantically meaningful representations of the images based on a transfer learning task, during which a deep neural network is trained on independent but similar data. Then, we perform genetic association tests with these representations. RESULTS We validate the type I error rates and power of transferGWAS in simulation studies of synthetic images. Then we apply transferGWAS in a genome-wide association study of retinal fundus images from the UK Biobank. This first-of-a-kind GWAS of full imaging data yielded 60 genomic regions associated with retinal fundus images, of which 7 are novel candidate loci for eye-related traits and diseases. AVAILABILITY AND IMPLEMENTATION Our method is implemented in Python and available at https://github.com/mkirchler/transferGWAS/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Matthias Kirchler
- Digital Health-Machine Learning Research Group, Digital Health Center, Hasso Plattner Institute, University of Potsdam, 14482 Potsdam, Germany.,Department of Computer Science, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Stefan Konigorski
- Digital Health-Machine Learning Research Group, Digital Health Center, Hasso Plattner Institute, University of Potsdam, 14482 Potsdam, Germany.,Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthias Norden
- Digital Health & Personalized Medicine Research Group, Digital Health Center, Hasso Plattner Institute, University of Potsdam, 14482 Potsdam, Germany.,Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christian Meltendorf
- Department of Electrical Engineering - Mechatronics - Optometry, Beuth University of Applied Sciences Berlin, 13353 Berlin, Germany
| | - Marius Kloft
- Department of Computer Science, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Claudia Schurmann
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Digital Health & Personalized Medicine Research Group, Digital Health Center, Hasso Plattner Institute, University of Potsdam, 14482 Potsdam, Germany
| | - Christoph Lippert
- Digital Health-Machine Learning Research Group, Digital Health Center, Hasso Plattner Institute, University of Potsdam, 14482 Potsdam, Germany.,Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
12
|
Michaud V, Lasseaux E, Green DJ, Gerrard DT, Plaisant C, Fitzgerald T, Birney E, Arveiler B, Black GC, Sergouniotis PI. The contribution of common regulatory and protein-coding TYR variants to the genetic architecture of albinism. Nat Commun 2022; 13:3939. [PMID: 35803923 PMCID: PMC9270319 DOI: 10.1038/s41467-022-31392-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
Genetic diseases have been historically segregated into rare Mendelian disorders and common complex conditions. Large-scale studies using genome sequencing are eroding this distinction and are gradually unmasking the underlying complexity of human traits. Here, we analysed data from the Genomics England 100,000 Genomes Project and from a cohort of 1313 individuals with albinism aiming to gain insights into the genetic architecture of this archetypal rare disorder. We investigated the contribution of protein-coding and regulatory variants both rare and common. We focused on TYR, the gene encoding tyrosinase, and found that a high-frequency promoter variant, TYR c.-301C>T [rs4547091], modulates the penetrance of a prevalent, albinism-associated missense change, TYR c.1205G>A (p.Arg402Gln) [rs1126809]. We also found that homozygosity for a haplotype formed by three common, functionally-relevant variants, TYR c.[-301C;575C>A;1205G>A], is associated with a high probability of receiving an albinism diagnosis (OR>82). This genotype is also associated with reduced visual acuity and with increased central retinal thickness in UK Biobank participants. Finally, we report how the combined analysis of rare and common variants can increase diagnostic yield and can help inform genetic counselling in families with albinism.
Collapse
Affiliation(s)
- Vincent Michaud
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
- INSERM U1211, Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Eulalie Lasseaux
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
| | - David J Green
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Dave T Gerrard
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Claudio Plaisant
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
| | - Tomas Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL- EBI), Wellcome Genome Campus, Cambridge, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL- EBI), Wellcome Genome Campus, Cambridge, UK
| | - Benoît Arveiler
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France.
- INSERM U1211, Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France.
| | - Graeme C Black
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Panagiotis I Sergouniotis
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL- EBI), Wellcome Genome Campus, Cambridge, UK.
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
13
|
Li C, Chen Q, Wu J, Ren J, Zhang M, Wang H, Li J, Tang Y. Identification and characterization of two novel noncoding tyrosinase (TYR) gene variants leading to oculocutaneous albinism type 1. J Biol Chem 2022; 298:101922. [PMID: 35413289 PMCID: PMC9108984 DOI: 10.1016/j.jbc.2022.101922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/25/2022] Open
Abstract
Oculocutaneous albinism type 1 (OCA1), resulting from pathogenic variants in the tyrosinase (TYR) gene, refers to a group of phenotypically heterogeneous autosomal recessive disorders characterized by a partial or a complete absence of pigment in the skin/hair and is also associated with common developmental eye defects. In this study, we identified two novel compound heterozygous TYR variants from a Chinese hypopigmentary patient by whole-exome sequencing. Specifically, the two variants were c.-89T>G, located at the core of the initiator E-box (Inr E-box) of the TYR promoter, and p.S16Y (c.47C>A), located within the signal sequence. We performed both in silico analysis and experimental validation and verified these mutations as OCA1 variants that caused either impaired or complete loss of function of TYR. Mechanistically, the Inr E-box variant dampened TYR binding to microphthalmia-associated transcription factor, a master transcriptional regulator of the melanocyte development, whereas the S16Y variant contributed to endoplasmic reticulum retention, a common and principal cause of impaired TYR activity. Interestingly, we found that the Inr E-box variant creates novel protospacer adjacent motif sites, recognized by nucleases SpCas9 and SaCas9-KKH, respectively, without compromising the functional TYR coding sequence. We further used allele-specific genomic editing by CRISPR activation to specifically target the variant promoter and successfully activated its downstream gene expression, which could lead to potential therapeutic benefits. In conclusion, this study expands the spectrum of TYR variants, especially those within the promoter and noncoding regions, which can facilitate genetic counseling and clinical diagnosis of OCA1.
Collapse
Affiliation(s)
- Chaoyi Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Ren
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengfei Zhang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huakun Wang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinchen Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; The Biobank of Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
14
|
Dolinska MB, Woods T, Osuna I, Sergeev YV. Protein Biochemistry and Molecular Modeling of the Intra-Melanosomal Domain of Human Recombinant Tyrp2 Protein and OCA8-Related Mutant Variants. Int J Mol Sci 2022; 23:ijms23031305. [PMID: 35163231 PMCID: PMC8836267 DOI: 10.3390/ijms23031305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
Tyrosinase-related protein 2 (Tyrp2) is involved in the melanogenesis pathway, catalyzing the tautomerization of dopachrome to 5,6-dihydroxyindole-2-carboxylic acid (DHICA). Recently, a new type of albinism was discovered with disease-causing mutations in the TYRP2 gene. Here, for the first time, we characterized the intra-melanosomal protein domain of Tyrp2 (residues 1-474) and missense variants C40S and C61W, which mimic the alterations found in genetic studies. Recombinant proteins were produced in the Trichoplusia Ni (Ti. Ni) larvae, purified by a combination of immobilized metal affinity (IMAC) and gel-filtration (GF) chromatography, and biochemically characterized. The mutants showed the protein expression in the lysates such as the wild type; however, undetectable protein yield after two steps of purification exhibited their misfolding and instability. In addition, the misfolding effect of the mutations was confirmed computationally using homology modeling and molecular docking. Together, experiments in vitro and computer simulations indicated the critical role of the Cys-rich domain in the Tyrp2 protein stability. The results are consistent with molecular modeling, global computational mutagenesis, and clinical data, proving the significance of genetic alterations in cysteine residues, which could cause oculocutaneous albinism type 8.
Collapse
|
15
|
Lin S, Sanchez-Bretaño A, Leslie JS, Williams KB, Lee H, Thomas NS, Callaway J, Deline J, Ratnayaka JA, Baralle D, Schmitt MA, Norman CS, Hammond S, Harlalka GV, Ennis S, Cross HE, Wenger O, Crosby AH, Baple EL, Self JE. Evidence that the Ser192Tyr/Arg402Gln in cis Tyrosinase gene haplotype is a disease-causing allele in oculocutaneous albinism type 1B (OCA1B). NPJ Genom Med 2022; 7:2. [PMID: 35027574 PMCID: PMC8758782 DOI: 10.1038/s41525-021-00275-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/19/2021] [Indexed: 01/09/2023] Open
Abstract
Oculocutaneous albinism type 1 (OCA1) is caused by pathogenic variants in the TYR (tyrosinase) gene which encodes the critical and rate-limiting enzyme in melanin synthesis. It is the most common OCA subtype found in Caucasians, accounting for ~50% of cases worldwide. The apparent 'missing heritability' in OCA is well described, with ~25-30% of clinically diagnosed individuals lacking two clearly pathogenic variants. Here we undertook empowered genetic studies in an extensive multigenerational Amish family, alongside a review of previously published literature, a retrospective analysis of in-house datasets, and tyrosinase activity studies. Together this provides irrefutable evidence of the pathogenicity of two common TYR variants, p.(Ser192Tyr) and p.(Arg402Gln) when inherited in cis alongside a pathogenic TYR variant in trans. We also show that homozygosity for the p.(Ser192Tyr)/p.(Arg402Gln) TYR haplotype results in a very mild, but fully penetrant, albinism phenotype. Together these data underscore the importance of including the TYR p.(Ser192Tyr)/p.(Arg402Gln) in cis haplotype as a pathogenic allele causative of OCA, which would likely increase molecular diagnoses in this missing heritability albinism cohort by 25-50%.
Collapse
Affiliation(s)
- Siying Lin
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Aida Sanchez-Bretaño
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Joseph S Leslie
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Katie B Williams
- Center for Special Children, Vernon Memorial Healthcare, La Farge, WI, USA
| | - Helena Lee
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - N Simon Thomas
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | - Jonathan Callaway
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | - James Deline
- Center for Special Children, Vernon Memorial Healthcare, La Farge, WI, USA
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Diana Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Melanie A Schmitt
- University of Wisconsin School of Medicine and Public Health, Department of Ophthalmology & Visual Sciences, Madison, WI, USA
| | - Chelsea S Norman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- The Rosalind Franklin Institute, Rutherford Appleton Laboratories, Harwell Science and Innovation Campus, Didcot, UK
| | - Sheri Hammond
- Center for Special Children, Vernon Memorial Healthcare, La Farge, WI, USA
| | - Gaurav V Harlalka
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
- Rajarshi Shahu College of Pharmacy, Malvihir, Buldana, India
| | - Sarah Ennis
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - Harold E Cross
- Department of Ophthalmology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Olivia Wenger
- New Leaf Clinic, PO Box 336, 16014 East Chestnut Street, Mount Eaton, OH, 44691, USA
- Department of Pediatrics, Akron Children's Hospital, 214 West Bowery Street, Akron, OH, 44308, USA
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK.
| | - Emma L Baple
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK.
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Gladstone Road, Exeter, UK.
| | - Jay E Self
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
16
|
Ayala GD, Linderman RE, Valenzuela RK, Woertz EN, Brilliant M, Tarima S, Carroll J. Assessing Foveal Structure in Individuals with TYR R402Q and S192Y Hypomorphic Alleles. OPHTHALMOLOGY SCIENCE 2021; 1:100077. [PMID: 36246950 PMCID: PMC9560529 DOI: 10.1016/j.xops.2021.100077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 10/31/2022]
Abstract
Purpose To assess the impact of two TYR hypomorphic alleles (R402Q and S192Y) on foveal pit and foveal avascular zone (FAZ) morphology. Design Prospective, cross-sectional study. Participants A total of 164 participants with normal vision (67 male and 97 female; mean ± standard deviation [SD] age = 30.5 ± 12.8 years) were recruited. Methods Sequencing of more than 100 pigmentation-related genes was performed, and results were reviewed for the presence or absence of the TYR polymorphisms R402Q (rs1126809) and S192Y (rs1042602). Volumetric scans of the macula were obtained for each participant using OCT, and retinal thickness maps were analyzed using custom software. OCT angiography was used to image the FAZ, which was manually segmented and measured. Linear mixed model analysis was used to assess associations between genotype and foveal pit morphology. Main Outcome Measures Foveal pit depth, diameter, volume, and FAZ area in relation to the presence of hypomorphic alleles R402Q and S192Y on the TYR gene. Results Heterozygosity for the TYR R402Q allele was associated with decreased pit diameter (P = 0.0094) and decreased FAZ area (P = 0.025). Homozygosity for the TYR R402Q allele was associated with reduced pit volume (P = 0.0005), decreased pit depth (P = 0.007), reduced pit diameter (P = 0.0052), and reduced FAZ area (P = 0.0012). Homozygosity for TYR S192Y was associated with reduced FAZ area (P = 0.016). Heterozygosity for the TYR S192Y allele was not associated with differences in foveal pit depth, diameter, volume, or FAZ area (P > 0.05). Conclusions Although the role of the TYR R402Q and S192Y hypomorphic alleles in albinism remains controversial, our data suggest that these variants contribute to the extensive inter-individual variability in foveal morphology in the normal population. Our results contribute to the evolving picture of the relationship between ocular pigmentation and foveal morphology.
Collapse
Affiliation(s)
- Gelique D. Ayala
- School of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rachel E. Linderman
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert K. Valenzuela
- Center for Precision Medicine, Marshfield Clinic Research Institute, Marshfield, Wisconsin
| | - Erica N. Woertz
- School of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Murray Brilliant
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sergey Tarima
- Division of Biostatistics, Institute of Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joseph Carroll
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
17
|
Tyrp1 Mutant Variants Associated with OCA3: Computational Characterization of Protein Stability and Ligand Binding. Int J Mol Sci 2021; 22:ijms221910203. [PMID: 34638544 PMCID: PMC8508144 DOI: 10.3390/ijms221910203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Oculocutaneous albinism type 3 (OCA3) is an autosomal recessive disorder caused by mutations in the TYRP1 gene. Tyrosinase-related protein 1 (Tyrp1) is involved in eumelanin synthesis, catalyzing the oxidation of 5,6-dihydroxyindole-2-carboxylic acid oxidase (DHICA) to 5,6-indolequinone-2-carboxylic acid (IQCA). Here, for the first time, four OCA3-causing mutations of Tyrp1, C30R, H215Y, D308N, and R326H, were investigated computationally to understand Tyrp1 protein stability and catalytic activity. Using the Tyrp1 crystal structure (PDB:5M8L), global mutagenesis was conducted to evaluate mutant protein stability. Consistent with the foldability parameter, C30R and H215Y should exhibit greater instability, and two other mutants, D308N and R326H, are expected to keep a native conformation. SDS-PAGE and Western blot analysis of the purified recombinant proteins confirmed that the foldability parameter correctly predicted the effect of mutations critical for protein stability. Further, the mutant variant structures were built and simulated for 100 ns to generate free energy landscapes and perform docking experiments. Free energy landscapes formed by Y362, N378, and T391 indicate that the binding clefts of C30R and H215Y mutants are larger than the wild-type Tyrp1. In docking simulations, the hydrogen bond and salt bridge interactions that stabilize DHICA in the active site remain similar among Tyrp1, D308N, and R326H. However, the strengths of these interactions and stability of the docked ligand may decrease proportionally to mutation severity due to the larger and less well-defined natures of the binding clefts in mutants. Mutational perturbations in mutants that are not unfolded may result in allosteric alterations to the active site, reducing the stability of protein-ligand interactions.
Collapse
|
18
|
Characterization of Temperature-Dependent Kinetics of Oculocutaneous Albinism-Causing Mutants of Tyrosinase. Int J Mol Sci 2021; 22:ijms22157771. [PMID: 34360537 PMCID: PMC8346126 DOI: 10.3390/ijms22157771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 01/06/2023] Open
Abstract
Human tyrosinase (Tyr) is a glycoenzyme that catalyzes the first and rate-limiting step in melanin production, and its gene (TYR) is mutated in many cases of oculocutaneous albinism type 1 (OCA1). The mechanisms by which individual mutations contribute to the diverse pigmentation phenotype in patients with OCA1 have only began to be examined and remain to be delineated. Here, we analyze the temperature-dependent kinetics of wild-type Tyr (WT) and two OCA1B mutant variants (R422Q and P406L) using Michaelis–Menten and Van’t Hoff analyses. Recombinant truncated human Tyr proteins (residues 19–469) were produced in the whole insect Trichoplusia Ni larvae. Proteins were purified by a combination of affinity and size-exclusion chromatography. The temperature dependence of diphenol oxidase protein activities and kinetic parameters were measured by dopachrome absorption. Using the same experimental conditions, computational simulations were performed to assess the temperature-dependent association of L-DOPA and Tyr. Our results revealed, for the first time, that the association of L-DOPA with R422Q and P406L followed by dopachrome formation is a complex reaction supported by enthalpy and entropy forces. We show that the WT has a higher turnover number as compared with both R422Q and P406L. Elucidating the kinetics and thermodynamics of mutant variants of Tyr in OCA1B helps to understand the mechanisms by which they lower Tyr catalytic activity and to discover novel therapies for patients.
Collapse
|
19
|
Kampatsikas I, Rompel A. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes? Chembiochem 2021; 22:1161-1175. [PMID: 33108057 PMCID: PMC8049008 DOI: 10.1002/cbic.202000647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/25/2020] [Indexed: 12/23/2022]
Abstract
Type-III copper enzymes like polyphenol oxidases (PPOs) are ubiquitous among organisms and play a significant role in the formation of pigments. PPOs comprise different enzyme groups, including tyrosinases (TYRs) and catechol oxidases (COs). TYRs catalyze the o-hydroxylation of monophenols and the oxidation of o-diphenols to the corresponding o-quinones (EC 1.14.18.1). In contrast, COs only catalyze the oxidation of o-diphenols to the corresponding o-quinones (EC 1.10.3.1). To date (August 2020), 102 PDB entries encompassing 18 different proteins from 16 organisms and several mutants have been reported, identifying key residues for tyrosinase activity. The structural similarity between TYRs and COs, especially within and around the active center, complicates the elucidation of their modes of action on a structural basis. However, mutagenesis studies illuminate residues that influence the two activities and show that crystallography on its own cannot elucidate the enzymatic activity mode. Several amino acid residues around the dicopper active center have been proposed to play an essential role in the two different activities. Herein, we critically review the role of all residues identified so far that putatively affect the two activities of PPOs.
Collapse
Affiliation(s)
- Ioannis Kampatsikas
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| |
Collapse
|
20
|
Chan HW, Schiff ER, Tailor VK, Malka S, Neveu MM, Theodorou M, Moosajee M. Prospective Study of the Phenotypic and Mutational Spectrum of Ocular Albinism and Oculocutaneous Albinism. Genes (Basel) 2021; 12:508. [PMID: 33808351 PMCID: PMC8065601 DOI: 10.3390/genes12040508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Albinism encompasses a group of hereditary disorders characterized by reduced or absent ocular pigment and variable skin and/or hair involvement, with syndromic forms such as Hermansky-Pudlak syndrome and Chédiak-Higashi syndrome. Autosomal recessive oculocutaneous albinism (OCA) is phenotypically and genetically heterogenous (associated with seven genes). X-linked ocular albinism (OA) is associated with only one gene, GPR143. We report the clinical and genetic outcomes of 44 patients, from 40 unrelated families of diverse ethnicities, with query albinism presenting to the ocular genetics service at Moorfields Eye Hospital NHS Foundation Trust between November 2017 and October 2019. Thirty-six were children (≤ 16 years) with a median age of 31 months (range 2-186), and eight adults with a median age of 33 years (range 17-39); 52.3% (n = 23) were male. Genetic testing using whole genome sequencing (WGS, n = 9) or a targeted gene panel (n = 31) gave an overall diagnostic rate of 42.5% (44.4% (4/9) with WGS and 41.9% (13/31) with panel testing). Seventeen families had confirmed mutations in TYR (n = 9), OCA2, (n = 4), HPS1 (n = 1), HPS3 (n = 1), HPS6 (n = 1), and GPR143 (n = 1). Molecular diagnosis of albinism remains challenging due to factors such as missing heritability. Differential diagnoses must include SLC38A8-associated foveal hypoplasia and syndromic forms of albinism.
Collapse
Affiliation(s)
- Hwei Wuen Chan
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (H.W.C.); (E.R.S.); (V.K.T.); (S.M.); (M.M.N.); (M.T.)
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Department of Ophthalmology, National University Singapore, Singapore S118177, Singapore
| | - Elena R. Schiff
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (H.W.C.); (E.R.S.); (V.K.T.); (S.M.); (M.M.N.); (M.T.)
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Vijay K. Tailor
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (H.W.C.); (E.R.S.); (V.K.T.); (S.M.); (M.M.N.); (M.T.)
- Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Samantha Malka
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (H.W.C.); (E.R.S.); (V.K.T.); (S.M.); (M.M.N.); (M.T.)
| | - Magella M. Neveu
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (H.W.C.); (E.R.S.); (V.K.T.); (S.M.); (M.M.N.); (M.T.)
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Maria Theodorou
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (H.W.C.); (E.R.S.); (V.K.T.); (S.M.); (M.M.N.); (M.T.)
| | - Mariya Moosajee
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (H.W.C.); (E.R.S.); (V.K.T.); (S.M.); (M.M.N.); (M.T.)
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
21
|
Abstract
Usher syndrome type 1B (USH1B) is a genetic disorder caused by mutations in the unconventional Myosin VIIa (MYO7A) protein. USH1B is characterized by hearing loss due to abnormalities in the inner ear and vision loss due to retinitis pigmentosa. Here, we present the model of human MYO7A homodimer, built using homology modeling, and refined using 5 ns molecular dynamics in water. Global computational mutagenesis was applied to evaluate the effect of missense mutations that are critical for maintaining protein structure and stability of MYO7A in inherited eye disease. We found that 43.26% (77 out of 178 in HGMD) and 41.9% (221 out of 528 in ClinVar) of the disease-related missense mutations were associated with higher protein structure destabilizing effects. Overall, most mutations destabilizing the MYO7A protein were found to associate with USH1 and USH1B. Particularly, motor domain and MyTH4 domains were found to be most susceptible to mutations causing the USH1B phenotype. Our work contributes to the understanding of inherited disease from the atomic level of protein structure and analysis of the impact of genetic mutations on protein stability and genotype-to-phenotype relationships in human disease.
Collapse
Affiliation(s)
- Annapurna Kuppa
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Yuri V Sergeev
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
22
|
Varghese PK, Abu-Asab M, Dimitriadis EK, Dolinska MB, Morcos GP, Sergeev YV. Tyrosinase Nanoparticles: Understanding the Melanogenesis Pathway by Isolating the Products of Tyrosinase Enzymatic Reaction. Int J Mol Sci 2021; 22:E734. [PMID: 33450959 PMCID: PMC7828394 DOI: 10.3390/ijms22020734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
Human Tyrosinase (Tyr) is the rate-limiting enzyme of the melanogenesis pathway. Tyr catalyzes the oxidation of the substrate L-DOPA into dopachrome and melanin. Currently, the characterization of dopachrome-related products is difficult due to the absence of a simple way to partition dopachrome from protein fraction. Here, we immobilize catalytically pure recombinant human Tyr domain (residues 19-469) containing 6xHis tag to Ni-loaded magnetic beads (MB). Transmission electron microscopy revealed Tyr-MB were within limits of 168.2 ± 24.4 nm while the dark-brown melanin images showed single and polymerized melanin with a diameter of 121.4 ± 18.1 nm. Using Hill kinetics, we show that Tyr-MB has a catalytic activity similar to that of intact Tyr. The diphenol oxidase reactions of L-DOPA show an increase of dopachrome formation with the number of MB and with temperature. At 50 °C, Tyr-MB shows some residual catalytic activity suggesting that the immobilized Tyr has increased protein stability. In contrast, under 37 °C, the dopachrome product, which is isolated from Tyr-MB particles, shows that dopachrome has an orange-brown color that is different from the color of the mixture of L-DOPA, Tyr, and dopachrome. In the future, Tyr-MB could be used for large-scale productions of dopachrome and melanin-related products and finding a treatment for oculocutaneous albinism-inherited diseases.
Collapse
Affiliation(s)
- Paul K. Varghese
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (P.K.V.); (M.A.-A.); (M.B.D.); (G.P.M.)
| | - Mones Abu-Asab
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (P.K.V.); (M.A.-A.); (M.B.D.); (G.P.M.)
| | - Emilios K. Dimitriadis
- NIH Shared Resources on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Monika B. Dolinska
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (P.K.V.); (M.A.-A.); (M.B.D.); (G.P.M.)
| | - George P. Morcos
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (P.K.V.); (M.A.-A.); (M.B.D.); (G.P.M.)
| | - Yuri V. Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (P.K.V.); (M.A.-A.); (M.B.D.); (G.P.M.)
| |
Collapse
|
23
|
Kampatsikas I, Pretzler M, Rompel A. Die Erzeugung von Tyrosinaseaktivität in einer Catecholoxidase erlaubt die Identifizierung der für die C‐H‐Aktivierung in Typ‐III‐Kupferenzymen verantwortlichen Aminosäurereste. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ioannis Kampatsikas
- Universität Wien Fakultät für Chemie Institut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| | - Matthias Pretzler
- Universität Wien Fakultät für Chemie Institut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| | - Annette Rompel
- Universität Wien Fakultät für Chemie Institut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| |
Collapse
|
24
|
Kampatsikas I, Pretzler M, Rompel A. Identification of Amino Acid Residues Responsible for C-H Activation in Type-III Copper Enzymes by Generating Tyrosinase Activity in a Catechol Oxidase. Angew Chem Int Ed Engl 2020; 59:20940-20945. [PMID: 32701181 PMCID: PMC7693034 DOI: 10.1002/anie.202008859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Tyrosinases (TYRs) catalyze the hydroxylation of phenols and the oxidation of the resulting o-diphenols to o-quinones, while catechol oxidases (COs) exhibit only the latter activity. Aurone synthase (AUS) is not able to react with classical tyrosinase substrates, such as tyramine and l-tyrosine, while it can hydroxylate its natural substrate isoliquiritigenin. The structural difference of TYRs, COs, and AUS at the heart of their divergent catalytic activities is still a puzzle. Therefore, a library of 39 mutants of AUS from Coreopsis grandiflora (CgAUS) was generated and the activity studies showed that the reactivity of the three conserved histidines (HisA2 , HisB1 , and HisB2 ) is tuned by their adjacent residues (HisB1 +1, HisB2 +1, and waterkeeper residue) either to react as stronger bases or / and to stabilize a position permissive for substrate proton shuffling. This provides the understanding for C-H activation based on the type-III copper center to be used in future biotechnological processes.
Collapse
Affiliation(s)
- Ioannis Kampatsikas
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Matthias Pretzler
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| |
Collapse
|
25
|
Patel M, Sergeev Y. Functional in silico analysis of human tyrosinase and OCA1 associated mutations. JOURNAL OF ANALYTICAL & PHARMACEUTICAL RESEARCH 2020; 9:81-89. [PMID: 33458560 PMCID: PMC7808255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oculocutaneous albinism type 1 (OCA1) is an autosomal recessive disorder caused by mutations in the tyrosinase gene. OCA1 exists in two forms: OCA1A and OCA1B. OCA1A is caused by a full loss of the human tyrosinase protein (Tyr), leading to an absence of pigment in skin, hair, and eyes, while OCA1B has reduced Tyr catalytic activity and pigment. The current understanding of the disease is hampered by the absence of information regarding the alterations of protein structure and the effects leading to either form of OCA1. Here, we used computational methods to find a general mechanism for establishing this link. Tyr and mutant variants were built through homology modeling, glycosylated in silico, minimized, and simulated using 100 ns molecular dynamics in water. For OCA1B mutants, cavity size is linked to ΔΔG values for mutants, suggesting that partial loss of Tyr is associated with the destabilizing effect of the EGF-like domain movement. In OCA1A, active site mutation simulations indicate that the absence of O2 leads to protein instability. OCA1B mutants are described in severity by the size of the cavity within the EGF-Tyr interface, while active site OCA1A mutants are unable to fully coordinate copper, leading to an absence of O2 and Tyr instability. In patients with known genotypes, free energy changes may help identify the severity of the disease by assessing either the allosteric effect of the EGF-Tyr cavity in OCA1B or the active site instability in OCA1A.
Collapse
Affiliation(s)
- Milan Patel
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuri Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Mahmood MS, Irshad S, Butt TA, Batool H, Batool S, Ashraf NM. In-silico analysis of deleterious missense SNPs of human TYR gene associated with oculocutaneous albinism type 1 (OCA1). Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
27
|
Young KL, Kassouf C, Dolinska MB, Anderson DE, Sergeev YV. Human Tyrosinase: Temperature-Dependent Kinetics of Oxidase Activity. Int J Mol Sci 2020; 21:ijms21030895. [PMID: 32019134 PMCID: PMC7037427 DOI: 10.3390/ijms21030895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
Human tyrosinase (Tyr) is involved in pigment biosynthesis, where mutations in its corresponding gene TYR have been linked to oculocutaneous albinism 1, an autosomal recessive disorder. Although the enzymatic capabilities of Tyr have been well-characterized, the thermodynamic driving forces underlying melanogenesis remain unknown. Here, we analyze protein binding using the diphenol oxidase behavior of Tyr and van ’t Hoff temperature-dependent analysis. Recombinant Tyr was expressed and purified using a combination of affinity and size-exclusion chromatography. Michaelis-Menten constants were measured spectrophotometrically from diphenol oxidase reactions of Tyr, using L-3,4-dihydroxyphenylalanine (L-DOPA) as a substrate, at temperatures: 25, 31, 37, and 43 °C. Under the same conditions, the Tyr structure and the L-DOPA binding activity were simulated using 3 ns molecular dynamics and docking. The thermal Michaelis-Menten kinetics data were subjected to the van ‘t Hoff analysis and fitted with the computational model. The temperature-dependent analysis suggests that the association of L-DOPA with Tyr is a spontaneous enthalpy-driven reaction, which becomes unfavorable at the final step of dopachrome formation.
Collapse
Affiliation(s)
- Kenneth L. Young
- National Eye Institute, National Institutes of Health, 31 Center Drive MSC 2510, Bethesda, MD 20892, USA
| | - Claudia Kassouf
- National Eye Institute, National Institutes of Health, 31 Center Drive MSC 2510, Bethesda, MD 20892, USA
| | - Monika B. Dolinska
- National Eye Institute, National Institutes of Health, 31 Center Drive MSC 2510, Bethesda, MD 20892, USA
| | - David Eric Anderson
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6 Center Dr. MSC2775, Bethesda, MD 20892, USA
| | - Yuri V. Sergeev
- National Eye Institute, National Institutes of Health, 31 Center Drive MSC 2510, Bethesda, MD 20892, USA
- Correspondence: ; Tel.: +1-301-594-7053; Fax: +1-301-402-1214
| |
Collapse
|
28
|
Protein Stability and Functional Characterization of Intra-Melanosomal Domain of Human Recombinant Tyrosinase-Related Protein 1. Int J Mol Sci 2020; 21:ijms21010331. [PMID: 31947795 PMCID: PMC6981619 DOI: 10.3390/ijms21010331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
Pigmentation is the result of a complex process by which the biopolymer melanin is synthesized and packed into melanosomes of melanocytes. Various types of oculocutaneous albinism (OCA), a series of autosomal recessive disorders, are associated with reduced pigmentation in the skin, eyes, and hair due to genetic mutations of proteins involved in melanogenesis. Human tyrosinase (Tyr) and tyrosinase-related protein 1 (Tyrp1) drives the enzymatic process of pigment bio-polymerization. However, within the melanogenic pathway, Tyrp1 has catalytic functions not clearly defined and distinct from Tyr. Here, we characterize the biochemical and biophysical properties of recombinant human Tyrp1. For this purpose, we purified and analyzed the intra-melanosomal domain (Tyrp1tr) for protein stability and enzymatic function in conditions mimicking the environment within melanosomes and the endoplasmic reticulum. The study suggests that Tyrp1tr is a monomeric molecule at ambient temperatures and below (<25 °C). At higher temperatures, >31 °C, higher protein aggregates form with a concurrent decrease of monomers in solution. Also, Tyrp1tr diphenol oxidase activity at pH 5.5 rises as both the pre-incubation temperature and the higher molecular weight protein aggregates formation increases. The enhanced protein activity is consistent with the volume exclusion change caused by protein aggregates.
Collapse
|
29
|
Dolinska MB, Wingfield PT, Young KL, Sergeev YV. The TYRP1-mediated protection of human tyrosinase activity does not involve stable interactions of tyrosinase domains. Pigment Cell Melanoma Res 2019; 32:753-765. [PMID: 31077632 PMCID: PMC6777992 DOI: 10.1111/pcmr.12791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/15/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022]
Abstract
Tyrosinases are melanocyte-specific enzymes involved in melanin biosynthesis. Mutations in their genes cause oculocutaneous albinism associated with reduced or altered pigmentation of skin, hair, and eyes. Here, the recombinant human intra-melanosomal domains of tyrosinase, TYRtr (19-469), and tyrosinase-related protein 1, TYRP1tr (25-472), were studied in vitro to define their functional relationship. Proteins were expressed or coexpressed in whole Trichoplusia ni larvae and purified. Their associations were studied using gel filtration and sedimentation equilibrium methods. Protection of TYRtr was studied by measuring the kinetics of tyrosinase diphenol oxidase activity in the presence (1:1 and 1:20 molar ratios) or the absence of TYRP1tr for 10 hr under conditions mimicking melanosomal and ER pH values. Our data indicate that TYRtr incubation with excess TYRP1tr protects TYR, increasing its stability over time. However, this mechanism does not appear to involve the formation of stable hetero-oligomeric complexes to maintain the protective function.
Collapse
Affiliation(s)
- Monika B Dolinska
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul T Wingfield
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kenneth L Young
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Yuri V Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
30
|
Zhong Z, Gu L, Zheng X, Ma N, Wu Z, Duan J, Zhang J, Chen J. Comprehensive analysis of spectral distribution of a large cohort of Chinese patients with non-syndromic oculocutaneous albinism facilitates genetic diagnosis. Pigment Cell Melanoma Res 2019; 32:672-686. [PMID: 31077556 PMCID: PMC6852118 DOI: 10.1111/pcmr.12790] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/31/2019] [Accepted: 05/05/2019] [Indexed: 12/25/2022]
Abstract
Non-syndromic oculocutaneous albinism (nsOCA) is a group of genetically heterogeneous autosomal recessive disorders with complete lack or decrease pigmentation in skin, hair, and eyes. TYR, OCA2, TYRP1, SLC45A2, SLC24A5, and LRMDA were reported to cause OCA1-4 and OCA6-7, respectively. By sequencing all the known nsOCA genes in 114 unrelated Chinese nsOCA patients combined with In silico analyses, splicing assay, and classification of variants according to the standards and guidelines of American College of Medical Genetics and Genomics, we detected seventy-one different OCA-causing variants separately in TYR, OCA2, SLC45A2, and SLC24A5, including thirty-one novel variants (13 in TYR, 11 in OCA2, and 7 in SLC45A2). This study shows that OCA1 is the most common (75/114) and OCA2 ranks the second most common (16/114) in Chinese. 99 patients of our cohort were caused by variants of all the known nsOCA genes. Cutaneous phenotypes of OCA1, OCA2, and OCA4 patients were shown in this study. The second OCA6 case in China was identified here. These data expand the spectrum of OCA variants as well phenotype and facilitate clinical implement of Chinese OCA patients.
Collapse
Affiliation(s)
- Zilin Zhong
- Department of Pediatrics of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China.,Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Li Gu
- Department of Pediatrics of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiujie Zheng
- Department of Pediatrics of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Nengjun Ma
- Department of Pediatrics of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Zehua Wu
- Department of Pediatrics of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Juan Duan
- Department of Auxiliary Reproductive, Jiujiang Maternal and Child Health Hospital, Jiujiang, China
| | - Jun Zhang
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Chen
- Department of Pediatrics of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China.,Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Farney SK, Dolinska MB, Sergeev YV. Dynamic analysis of human tyrosinase intra-melanosomal domain and mutant variants to further understand oculocutaneous albinism type 1. ACTA ACUST UNITED AC 2018; 7:621-632. [PMID: 30868138 PMCID: PMC6411056 DOI: 10.15406/japlr.2018.07.00293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human tyrosinase (Tyr) is a Type I membrane glycoprotein that is the rate-limiting enzyme for controlling the production of melanin pigment in melanosomes. Currently, ~300 Tyr mutations are known to be involved in the genetic disease oculocutaneous albinism type 1 (OCA1), which exists in two forms, OCA1A and OCA1B. OCA1A is caused by a full loss of Tyr enzymatic activity, resulting in the absence of pigment in the skin, hair, and eyes, while OCA1B has reduced Tyr activity and pigment. Here, we used molecular modeling to try to understand the role of genetic changes at the protein level in inherited disease. The significant part of Tyr intra-melanosomal domain and five OCA1 mutant variants were built by homology modeling, glycosylated in silico, and refined using molecular dynamics in water. The modeling confirmed experimental results that N347 and N371 glycosylation is vital for protein stability. The changes caused by the T373K mutation indicate a significant impact on protein structure, as expected for OCA1A. In addition, evaluation of free energy changes in OCA1B mutants showed a strong association with the changes observed in our unfolding/refolding experiments in vitro. In conclusion, our results could be useful for understanding the role of OCA1 mutant variants in melanin pigment production, in silico searching for inhibitors and activators of tyrosinase activity, and genotype-to- phenotype analysis in OCA1.
Collapse
Affiliation(s)
- S Katie Farney
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, USA
| | - Monika B Dolinska
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, USA
| | - Yuri V Sergeev
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, USA
| |
Collapse
|
32
|
Membrane-associated human tyrosinase is an enzymatically active monomeric glycoprotein. PLoS One 2018; 13:e0198247. [PMID: 29870551 PMCID: PMC5988326 DOI: 10.1371/journal.pone.0198247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/16/2018] [Indexed: 11/19/2022] Open
Abstract
Human tyrosinase (hTyr) is a Type 1 membrane bound glycoenzyme that catalyzes the initial and rate-limiting steps of melanin production in the melanosome. Mutations in the Tyr gene are linked to oculocutaneous albinism type 1 (OCA1), an autosomal recessive disorder. Currently, the application of enzyme replacement therapy for a treatment of OCA1 is hampered by the absence of pure hTyr. Here, full-length hTyr (residues 1-529) was overexpressed in Trichoplusia ni larvae infected with a baculovirus, solubilized with detergent and purified using chromatography. Michaelis-Menten kinetics, enzymatic specific activity, and analytical ultracentrifugation were used to compare the hTyr in detergent with the soluble recombinant intra-melanosomal domain, hTyrCtr (residues 19-469). Active hTyr is monomeric in detergent micelles suggesting no stable interactions between protein molecules. Both, hTyr and hTyrCtr, exhibited similar enzymatic activity and ligand affinity in L-DOPA and L-Tyrosine reactions. In addition, expression in larvae is a scalable process that will allow high yield protein production. Thus, larval production of enzymatically active human tyrosinase potentially could be a useful tool in developing a cure for OCA1.
Collapse
|
33
|
Dolinska MB, Sergeev YV. The consequences of deglycosylation of recombinant intra-melanosomal domain of human tyrosinase. Biol Chem 2017; 399:73-77. [PMID: 28858842 PMCID: PMC6108172 DOI: 10.1515/hsz-2017-0178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/25/2017] [Indexed: 11/15/2022]
Abstract
Tyrosinase, a melanosomal glycoenzyme, catalyzes initial steps of the melanin biosynthesis. While glycosylation was previously studied in vivo, we present three recombinant mutant variants of human tyrosinase, which were obtained using multiple site-directed mutagenesis, expressed in insect larvae, purified and characterized biochemically. The mutagenesis demonstrated the reduced protein expression and enzymatic activity due to possible loss of protein stability and protein degradation. However, the complete deglycosylation of asparagine residues in vitro, including the residue in position 371, interrupts tyrosinase function, which is consistent with a melanin loss in oculocutaneous albinism type 1 (OCA1) patients.
Collapse
Affiliation(s)
- Monika B. Dolinska
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, 31 Center Drive MSC 2510, Bethesda, MD 20892, USA
| | - Yuri V. Sergeev
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, 10 Center Dr., 31 Center Drive MSC 2510, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Goldstein AM, Xiao Y, Sampson J, Zhu B, Rotunno M, Bennett H, Wen Y, Jones K, Vogt A, Burdette L, Luo W, Zhu B, Yeager M, Hicks B, Han J, De Vivo I, Koutros S, Andreotti G, Beane-Freeman L, Purdue M, Freedman ND, Chanock SJ, Tucker MA, Yang XR. Rare germline variants in known melanoma susceptibility genes in familial melanoma. Hum Mol Genet 2017; 26:4886-4895. [PMID: 29036293 PMCID: PMC5886297 DOI: 10.1093/hmg/ddx368] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 12/20/2022] Open
Abstract
Known high-risk cutaneous malignant melanoma (CMM) genes account for melanoma risk in <40% of melanoma-prone families, suggesting the existence of additional high-risk genes or perhaps a polygenic mechanism involving multiple genetic modifiers. The goal of this study was to systematically characterize rare germline variants in 42 established melanoma genes among 144 CMM patients in 76 American CMM families without known mutations using data from whole-exome sequencing. We identified 68 rare (<0.1% in public and in-house control datasets) nonsynonymous variants in 25 genes. We technically validated all loss-of-function, inframe insertion/deletion, and missense variants predicted as deleterious, and followed them up in 1, 559 population-based CMM cases and 1, 633 controls. Several of these variants showed disease co-segregation within families. Of particular interest, a stopgain variant in TYR was present in five of six CMM cases/obligate gene carriers in one family and a single population-based CMM case. A start gain variant in the 5'UTR region of PLA2G6 and a missense variant in ATM were each seen in all three affected people in a single family, respectively. Results from rare variant burden tests showed that familial and population-based CMM patients tended to have higher frequencies of rare germline variants in albinism genes such as TYR, TYRP1, and OCA2 (P < 0.05). Our results suggest that rare nonsynonymous variants in low- or intermediate-risk CMM genes may influence familial CMM predisposition, warranting further investigation of both common and rare variants in genes affecting functionally important pathways (such as melanogenesis) in melanoma risk assessment.
Collapse
Affiliation(s)
- Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Yanzi Xiao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Joshua Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Melissa Rotunno
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Hunter Bennett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Yixuan Wen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Aurelie Vogt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Laurie Burdette
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jiali Han
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Laura Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Mark Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
35
|
Marti A, Lasseaux E, Ezzedine K, Léauté-Labrèze C, Boralevi F, Paya C, Coste V, Deroissart V, Arveiler B, Taieb A, Morice-Picard F. Lessons of a day hospital: Comprehensive assessment of patients with albinism in a European setting. Pigment Cell Melanoma Res 2017; 31:318-329. [DOI: 10.1111/pcmr.12651] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/22/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Aurélie Marti
- Paediatric Dermatology Unit; National Reference Center for Rare Skin Disorders; Hôpital Pellegrin-Enfants; Bordeaux University Hospitals; Bordeaux France
| | | | - Khaled Ezzedine
- Department of Dermatology; AP-HP; Hôpital Henri-Mondor; Créteil France
| | - Christine Léauté-Labrèze
- Paediatric Dermatology Unit; National Reference Center for Rare Skin Disorders; Hôpital Pellegrin-Enfants; Bordeaux University Hospitals; Bordeaux France
| | - Franck Boralevi
- Paediatric Dermatology Unit; National Reference Center for Rare Skin Disorders; Hôpital Pellegrin-Enfants; Bordeaux University Hospitals; Bordeaux France
| | - Clément Paya
- Ophthalmology Department; CHU de Bordeaux; Bordeaux France
| | | | - Vincent Deroissart
- Institute of Public Health; Epidemiology and Development “ISPED”; Bordeaux University; Bordeaux France
| | - Benoit Arveiler
- Molecular Genetics Laboratory; CHU de Bordeaux; Bordeaux France
- Unité INSERM U1211; Maladies Rares: Génétique et Métabolisme; Bordeaux France
| | - Alain Taieb
- Paediatric Dermatology Unit; National Reference Center for Rare Skin Disorders; Hôpital Pellegrin-Enfants; Bordeaux University Hospitals; Bordeaux France
- Unité INSERM 1035; BMGIC; Immuno-dermatology ATIP-AVENIR; University of Bordeaux; Bordeaux France
| | - Fanny Morice-Picard
- Paediatric Dermatology Unit; National Reference Center for Rare Skin Disorders; Hôpital Pellegrin-Enfants; Bordeaux University Hospitals; Bordeaux France
- Molecular Genetics Laboratory; CHU de Bordeaux; Bordeaux France
| |
Collapse
|
36
|
Dolinska MB, Wingfield PT, Sergeev YV. Purification of Recombinant Human Tyrosinase from Insect Larvae Infected with the Baculovirus Vector. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2017; 89:6.15.1-6.15.12. [PMID: 28762492 DOI: 10.1002/cpps.37] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The purification of an enzyme from insect larvae infected with a baculovirus vector is described. The enzyme tyrosinase is of biomedical importance and catalyzes the first rate-limiting steps in melanin production. Tyrosinase mutations can result in oculocutaneous albinism type 1 (OCA1), an inherited eye disease associated with decreased melanin pigment production and vision defects. To simplify expression and subsequent purification, the extracellular domain is expressed in insect cells, produced in Trichoplusia ni larvae, and purified using affinity and size-exclusion chromatography. The purified recombinant human tyrosinase is a soluble monomeric glycoprotein with an activity that mirrors the tyrosinase in vivo function. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Monika B Dolinska
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul T Wingfield
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yuri V Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
37
|
Identification of a functionally significant tri-allelic genotype in the Tyrosinase gene (TYR) causing hypomorphic oculocutaneous albinism (OCA1B). Sci Rep 2017; 7:4415. [PMID: 28667292 PMCID: PMC5493628 DOI: 10.1038/s41598-017-04401-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/05/2017] [Indexed: 12/04/2022] Open
Abstract
Oculocutaneous albinism (OCA) and ocular albinism (OA) are inherited disorders of melanin biosynthesis, resulting in loss of pigment and severe visual deficits. OCA encompasses a range of subtypes with overlapping, often hypomorphic phenotypes. OCA1 is the most common cause of albinism in European populations and is inherited through autosomal recessive mutations in the Tyrosinase (TYR) gene. However, there is a high level of reported missing heritability, where only a single heterozygous mutation is found in TYR. This is also the case for other OCA subtypes including OCA2 caused by mutations in the OCA2 gene. Here we have interrogated the genetic cause of albinism in a well phenotyped, hypomorphic albinism population by sequencing a broad gene panel and performing segregation studies on phenotyped family members. Of eighteen probands we can confidently diagnose three with OA and OCA2, and one with a PAX6 mutation. Of six probands with only a single heterozygous mutation in TYR, all were found to have the two common variants S192Y and R402Q. Our results suggest that a combination of R402Q and S192Y with a deleterious mutation in a ‘tri-allelic genotype’ can account for missing heritability in some hypomorphic OCA1 albinism phenotypes.
Collapse
|