1
|
Chen NN, Zhou KF, Miao Z, Chen YX, Cui JX, Su SW. Exosomes regulate doxorubicin resistance in breast cancer via miR-34a-5p/NOTCH1. Mol Cell Probes 2024; 76:101964. [PMID: 38810840 DOI: 10.1016/j.mcp.2024.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/22/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Breast cancer (BRCA) is the most common cancer among women. Adriamycin (ADR), also known as doxorubicin (Dox), is a commonly used chemotherapeutic agent for BRCA patients, however, the susceptibility of tumor cells to develop resistance to Dox has severely limited its clinical use. One new promising therapeutic target for breast cancer patients is exosomes. The objective of this study was to investigate the role of exosomes in regulating Dox resistance in BRCA. In this study, the exosomes from both types of cells were extracted by differential centrifugation. The effect of exosomes on drug resistance was assessed by laser confocal microscopy, MTT assay, and qRT-PCR. The miRNA was transfected into cells using Lipofectamine 2000, which was then evaluated for downstream genes and changes in drug resistance. Exosomes from MCF-7 cells (MCF-7/exo) and MCF-7/ADR cells (ADR/exo) were effectively extracted in this study. The ADR/exo was able to endocytose MCF-7 cells and make them considerably more resistant to Dox. Moreover, we observed a significant difference in miR-34a-5p expression in MCF-7/ADR and ADR/exo compared to MCF-7 and MCF-7/exo. Among the miR-34a-5p target genes, NOTCH1 displayed a clear change with a negative correlation. In addition, when miR-34a-5p expression was elevated in MCF-7/ADR cells, the expression of miR-34a-5p in ADR/exo was also enhanced alongside NOTCH1, implying that exosomes may carry miRNA into and out of cells and perform their function. In conclusion, exosomes can influence Dox resistance in breast cancer cells by regulating miR-34a-5p/NOTCH1. These findings provide novel insights for research into the causes of tumor resistance and the enhancement of chemotherapy efficacy in breast cancer.
Collapse
Affiliation(s)
- Nan-Nan Chen
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Ke-Fan Zhou
- Key Laboratory of Innovative Drug Research and Safety Evaluation, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Zhuang Miao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yun-Xia Chen
- Key Laboratory of Innovative Drug Research and Safety Evaluation, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Jing-Xia Cui
- Key Laboratory of Innovative Drug Research and Safety Evaluation, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Su-Wen Su
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
2
|
Devitt L, Westphal D, Pieger K, Schneider N, Bosserhoff AK, Kuphal S. NRN1 interacts with Notch to increase oncogenic STAT3 signaling in melanoma. Cell Commun Signal 2024; 22:256. [PMID: 38705997 PMCID: PMC11071257 DOI: 10.1186/s12964-024-01632-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Melanoma is a highly heterogeneous cancer, in which frequent changes in activation of signaling pathways lead to a high adaptability to ever changing tumor microenvironments. The elucidation of cancer specific signaling pathways is of great importance, as demonstrated by the inhibitor of the common BrafV600E mutation PLX4032 in melanoma treatment. We therefore investigated signaling pathways that were influenced by neurotrophin NRN1, which has been shown to be upregulated in melanoma. METHODS Using a cell culture model system with an NRN1 overexpression, we investigated the influence of NRN1 on melanoma cells' functionality and signaling. We employed real time cell analysis and spheroid formation assays, while for investigation of molecular mechanisms we used a kinase phosphorylation kit as well as promotor activity analysis followed by mRNA and protein analysis. RESULTS We revealed that NRN1 interacts directly with the cleaved intracellular domain (NICD) of Notch1 and Notch3, causing a potential retention of NICD in the cytoplasm and thereby reducing the expression of its direct downstream target Hes1. This leads to decreased sequestration of JAK and STAT3 in a Hes1-driven phosphorylation complex. Consequently, our data shows less phosphorylation of STAT3 while presenting an accumulation of total protein levels of STAT3 in association with NRN1 overexpression. The potential of the STAT3 signaling pathway to act in both a tumor suppressive and oncogenic manner led us to investigate specific downstream targets - namely Vegf A, Mdr1, cMet - which were found to be upregulated under oncogenic levels of NRN1. CONCLUSIONS In summary, we were able to show that NRN1 links oncogenic signaling events between Notch and STAT3 in melanoma. We also suggest that in future research more attention should be payed to cellular regulation of signaling molecules outside of the classically known phosphorylation events.
Collapse
Affiliation(s)
- Lucia Devitt
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstrasse 17, Erlangen, 91054, Germany
| | - Dana Westphal
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Katharina Pieger
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstrasse 17, Erlangen, 91054, Germany
| | - Nadja Schneider
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstrasse 17, Erlangen, 91054, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstrasse 17, Erlangen, 91054, Germany
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstrasse 17, Erlangen, 91054, Germany.
| |
Collapse
|
3
|
Dang W, Ren Y, Chen Q, He M, Kebreab E, Wang D, Lyu L. Notch2 Regulates the Function of Bovine Follicular Granulosa Cells via the Wnt2/β-Catenin Signaling Pathway. Animals (Basel) 2024; 14:1001. [PMID: 38612240 PMCID: PMC11010942 DOI: 10.3390/ani14071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Ovarian follicular GCs are strongly implicated in the growth, development, and atresia of ovarian follicles. The Wnt/β-catenin and Notch signaling pathways participate in GC proliferation, differentiation, apoptosis, and steroid hormone production during follicular development. However, the crosstalk between Wnt and Notch signaling in GCs remains unclear. This study investigated this crosstalk and the roles of these pathways in apoptosis, cell cycle progression, cell proliferation, and steroid hormone secretion in bovine follicular GCs. The interaction between β-catenin and Notch2 in GCs was assessed by overexpressing CTNNB1, which encodes β-catenin. The results showed that inhibiting the Notch pathway by Notch2 silencing in GCs arrested the cell cycle, promoted apoptosis, reduced progesterone (P4) production, and inhibited the Wnt2-mediated Wnt/β-catenin pathway in GCs. IWR-1 inhibited Wnt2/β-catenin and Notch signaling, reduced GC proliferation, stimulated apoptosis, induced G1 cell cycle arrest, and reduced P4 production. CTNNB1 overexpression had the opposite effect and increased 17β-estradiol (E2) production and Notch2 protein expression. Co-immunoprecipitation assays revealed that Notch2 interacted with β-catenin. These results elucidate the crosstalk between the Wnt/β-catenin and Notch pathways and the role of these pathways in bovine follicular GC development.
Collapse
Affiliation(s)
- Wenqing Dang
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.D.); (Y.R.); (Q.C.); (M.H.)
| | - Yongping Ren
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.D.); (Y.R.); (Q.C.); (M.H.)
| | - Qingqing Chen
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.D.); (Y.R.); (Q.C.); (M.H.)
| | - Min He
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.D.); (Y.R.); (Q.C.); (M.H.)
| | - Ermias Kebreab
- College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, USA;
| | - Dong Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lihua Lyu
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.D.); (Y.R.); (Q.C.); (M.H.)
| |
Collapse
|
4
|
Zhou R, Wang Q, Zeng S, Liang Y, Wang D. METTL14-mediated N6-methyladenosine modification of Col17a1/Itgα6/Itgβ4 governs epidermal homeostasis. J Dermatol Sci 2023; 112:138-147. [PMID: 37951776 DOI: 10.1016/j.jdermsci.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/30/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND N6-methyladenosine (m6A) is the most abundant and reversible modification occurring in eukaryotic mRNAs, however, its functions in mammalian epidermal development are still not fully elucidated. OBJECTIVE To explore the role of METTL14 (Methyltransferase like 14), one of the m6A methyltransferases, in maintaining epidermal homeostasis. METHODS We constructed mice with Mettl14-inactivation in the epidermal basal cells. The phenotype was explored by H&E staining and immunofluorescence staining. To explore the underlying mechanisms, we performed RNA-seq, Ribosome profiling and MeRIP-seq on wild-type and Mettl14-inactivation epidermal keratinocytes. Moreover, HaCaT cells were used for in vitro validation. RESULTS Inactivation of Mettl14 in murine epidermis led to transient thicker epidermis and exhaustion of the epidermal stem cell pool. Interestingly, we found that the mRNA of type XVII collagen (Col17a1), integrin β4 (Itgβ4) and α6 (Itgα6) had m6A modifications, and the proteins expression were decreased in Mettl14-inactivated epidermis. Furthermore, in epidermis-specific Mettl4-inactivated mice, the epidermis was detached from the dermis and presented a phenotype similar to junctional epidermolysis bullosa (JEB), which may result from hemidesmosomes damage (decrease of COL17A1, ITGB4 and ITGA6). Knockdown of Mettl14 in HaCaT cells impaired the self-renewal and decreased the protein level of COL17A1, ITGB4 and ITGA6 and Itgβ4 knockdown inhibited colony formation. CONCLUSION Our study highlighted the role of METTL14 in the maintenance of epidermal homeostasis and identified its critical role through m6A-mediated translational inhibition of Col17a1, Itgβ4 and Itgα6. Our study suggested that METTL14 may be a potential therapeutic target for the treatment of hemidesmosomes-deficient diseases, such as JEB.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qirui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyi Zeng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Mikheil D, Prabhakar K, Ng TL, Teertam S, Longley BJ, Newton MA, Setaluri V. Notch Signaling Suppresses Melanoma Tumor Development in BRAF/Pten Mice. Cancers (Basel) 2023; 15:cancers15020519. [PMID: 36672468 PMCID: PMC9857214 DOI: 10.3390/cancers15020519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Both oncogenic and tumor suppressor roles have been assigned to Notch signaling in melanoma. In clinical trials, Notch inhibitors proved to be ineffective for melanoma treatment. Notch signaling has also been implicated in melanoma transdifferentiation, a prognostic feature in primary melanoma. In this study, we investigated the role of Notch signaling in melanoma tumor development and growth using the genetic model of mouse melanoma by crossing BRAFCA/+/Pten+/+/Tyr-CreER+ (B) and BRAFCA/+/Pten-/-/Tyr-CreER + (BP) mice with Notch1 or Notch2 floxed allele mice. The topical application of tamoxifen induced tumors in BP mice but not in B mice with or without the deletion of either Notch1 or Notch2. These data show that the loss of either Notch1 nor Notch2 can substitute the tumor suppressor function of Pten in BRAFV600E-induced melanomagenesis. However, in Pten-null background, the loss of either Notch1 or Notch2 appeared to accelerate BRAFV600E-induced tumor development, suggesting a tumor suppressor role for Notch1 and Notch2 in BRAFV600E/Pten-null driven melanomagenesis. Quantitative immunochemical analysis of a human cutaneous melanoma tissue microarray that consists of >100 primary tumors with complete clinical history showed a weak to moderate correlation between NOTCH protein levels and clinical and pathological parameters. Our data show that Notch signaling is involved during melanomagenesis and suggest that the identification of genes and signaling pathways downstream of Notch could help devise strategies for melanoma prevention.
Collapse
Affiliation(s)
- Dareen Mikheil
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kirthana Prabhakar
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tun Lee Ng
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sireesh Teertam
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - B. Jack Longley
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael A. Newton
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vijayasaradhi Setaluri
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans’ Hospital, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
6
|
Zhang ZY, Ding Y, Ezhilarasan R, Lhakhang T, Wang Q, Yang J, Modrek AS, Zhang H, Tsirigos A, Futreal A, Draetta GF, Verhaak RGW, Sulman EP. Lineage-coupled clonal capture identifies clonal evolution mechanisms and vulnerabilities of BRAF V600E inhibition resistance in melanoma. Cell Discov 2022; 8:102. [PMID: 36202798 PMCID: PMC9537441 DOI: 10.1038/s41421-022-00462-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
Targeted cancer therapies have revolutionized treatment but their efficacies are limited by the development of resistance driven by clonal evolution within tumors. We developed "CAPTURE", a single-cell barcoding approach to comprehensively trace clonal dynamics and capture live lineage-coupled resistant cells for in-depth multi-omics analysis and functional exploration. We demonstrate that heterogeneous clones, either preexisting or emerging from drug-tolerant persister cells, dominated resistance to vemurafenib in BRAFV600E melanoma. Further integrative studies uncovered diverse resistance mechanisms. This includes a previously unrecognized and clinically relevant mechanism, chromosome 18q21 gain, which leads to vulnerability of the cells to BCL2 inhibitor. We also identified targetable common dependencies of captured resistant clones, such as oxidative phosphorylation and E2F pathways. Our study provides new therapeutic insights into overcoming therapy resistance in BRAFV600E melanoma and presents a platform for exploring clonal evolution dynamics and vulnerabilities that can be applied to study treatment resistance in other cancers.
Collapse
Affiliation(s)
- Ze-Yan Zhang
- Department of Radiation Oncology, New York University (NYU) Grossman School of Medicine, New York, NY, USA.
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| | - Yingwen Ding
- Department of Radiation Oncology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Ravesanker Ezhilarasan
- Department of Radiation Oncology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Tenzin Lhakhang
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY, USA
| | - Qianghu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing, Jiangsu, China
| | - Jie Yang
- Department of Radiation Oncology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Aram S Modrek
- Department of Radiation Oncology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Hua Zhang
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giulio F Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roel G W Verhaak
- Department of Computational Biology, The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Erik P Sulman
- Department of Radiation Oncology, New York University (NYU) Grossman School of Medicine, New York, NY, USA.
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
7
|
Fang Y, Che X, You M, Xu Y, Wang Y. Perinatal exposure to nonylphenol promotes proliferation of granule cell precursors in offspring cerebellum: Involvement of the activation of Notch2 signaling. Neurochem Int 2020; 140:104843. [PMID: 32866557 DOI: 10.1016/j.neuint.2020.104843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 10/23/2022]
Abstract
Nonylphenol (NP), a widely diffused persistent organic pollutant (POP), has been shown to impair cerebellar development and cause cerebellum-dependent behavioral and motor deficits. The precise proliferation of granule cell precursors (GCPs), the source of granular cells (GCs), is required for normal development of cerebellum. Thus, we established an animal model of perinatal exposure to NP, investigated the effect of NP exposure on the cerebellar GCPs proliferation, and explored the potential mechanism involved. Our results showed that perinatal exposure to NP increased cerebellar weight, area, and internal granular cell layer (IGL) thickness in offspring rats. Perinatal exposure to NP also resulted in the GCPs hyperproliferation in the external granular layer (EGL) of the developing cerebellum, which may underlie the above-mentioned cerebellar alterations. However, our results suggested that perinatal exposure to NP had no effects on the length of GCPs proliferation. Meanwhile, perinatal exposure to NP also increased the activation of Notch2 signaling, the regulator of GCPs proliferation. In conclusion, our results supported the idea that exposure to NP caused the hyperproliferation of GCPs in the developing cerebellum. Furthermore, our study also provided the evidence that the activation of Notch2 signaling may be involved in the GCPs hyperproliferation.
Collapse
Affiliation(s)
- Yawen Fang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Xiaoyu Che
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
8
|
Sangiuliano LDC, de Oliveira Filho RS, de Oliveira DA, Gomes HC, Ferreira LM. Identification and quantification of notch receptors in human cutaneous melanoma using molecular biology techniques: literature review. SURGICAL AND EXPERIMENTAL PATHOLOGY 2020. [DOI: 10.1186/s42047-020-00069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The Notch signaling pathway and its modulators are directly related to growth, verticalization and metastasis in melanoma, being a possible therapeutic target for the treatment of this type of cancer. There are several methods of molecular biology to identify and quantify Notch receptors and it is essential to study them for understanding the different results, advantages and disadvantages of each.
Main body
The present study brings a bibliographic review on the molecular biology methods used in the identification and quantification of these molecules, aiming to facilitate research involving Notch receptors in human melanoma. We identified as main methods of molecular biology Western Blotting, Quantitative real-time polymerase chain reaction and DNA microarrays. A brief description of these methodologies is made and the advantages and disadvantages of each are discussed. Results concerning the function of this pathway are also discussed.
Short conclusion
It is known that the activation of Notch receptors is tumorigenic in most cases, however, depending on the microenvironment, it can provide tumor suppression. The adequate choice and use of the methodology for identification and quantification of Notch receptors is essential for the progress of knowledge of this important signaling pathway, which, certainly, will allow advances in the treatment of cutaneous melanoma.
Collapse
|
9
|
Osella-Abate S, Vignale C, Annaratone L, Nocifora A, Bertero L, Castellano I, Avallone G, Conti L, Quaglino P, Picciotto F, Senetta R, Papotti MG, Cassoni P, Ribero S. Microenvironment in cutaneous melanomas: a gene expression profile study may explain the role of histological regression. J Eur Acad Dermatol Venereol 2020; 35:e35-e38. [PMID: 32580236 DOI: 10.1111/jdv.16784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Affiliation(s)
- S Osella-Abate
- Department of Medical Sciences, Pathology Unit, University of Turin, Turin, Italy
| | - C Vignale
- Department of Oncology, Pathology Unit, University of Turin, Turin, Italy
| | - L Annaratone
- Pathology Division, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - A Nocifora
- Department of Oncology, Pathology Unit, University of Turin, Turin, Italy
| | - L Bertero
- Department of Medical Sciences, Pathology Unit, University of Turin, Turin, Italy
| | - I Castellano
- Department of Medical Sciences, Pathology Unit, University of Turin, Turin, Italy
| | - G Avallone
- Pathology Unit, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - L Conti
- Pathology Unit, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - P Quaglino
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - F Picciotto
- Dermatologic Surgery Section, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - R Senetta
- Department of Oncology, Pathology Unit, University of Turin, Turin, Italy
| | - M G Papotti
- Department of Oncology, Pathology Unit, University of Turin, Turin, Italy
| | - P Cassoni
- Department of Medical Sciences, Pathology Unit, University of Turin, Turin, Italy
| | - S Ribero
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| |
Collapse
|
10
|
Dang NN, Jiao J, Meng X, An Y, Han C, Huang S. Abnormal overexpression of G9a in melanoma cells promotes cancer progression via upregulation of the Notch1 signaling pathway. Aging (Albany NY) 2020; 12:2393-2407. [PMID: 32015216 PMCID: PMC7041736 DOI: 10.18632/aging.102750] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Malignant melanoma is a type of very dangerous skin cancer. Histone modifiers usually become dysregulated during the process of carcinoma development, thus there is potential for a histone modifier inhibitor as a useful drug for cancer therapy. There is a multitude of evidence regarding the role of G9a, a histone methyltransferase (HMTase), in tumorigenesis. In this study, we first showed that G9a was significantly upregulated in melanoma patients. Using the TCGA database, we found a significantly higher expression of G9a in primary melanoma samples (n = 461) compared to normal skin samples (n = 551). Next, we knocked down G9a in human M14 and A375 melanoma cell lines in vitro via small interfering RNA (siRNA). This resulted in a significant decrease in cell viability, migration and invasion, and an increase in cell apoptosis. UNC0642 is a small molecule inhibitor of G9a that demonstrates minimal cell toxicity and good in vivo pharmacokinetic characteristics. We investigated the role of UNC0642 in melanoma cells, and detected its anti-cancer effects in vitro and in vivo. Next, we treated cells with UNC0642, and observed a significant decrease in cell viability in M14 and A375 cell lines. Furthermore, treatment with UNC0642 resulted in increased apoptosis. In immunocompetent mice bearing A375 engrafts, treatment with UNC0642 inhibited tumor growth. Results of Western blot analysis revealed that administration of UNC0642 or silencing of G9a expression by siRNA reduced Notch1 expression significantly and decreased the level of Hes1 in A375. All in all, the data from our study demonstrates potential of G9a as a therapeutic target in the treatment of melanoma.
Collapse
Affiliation(s)
- Ning-Ning Dang
- Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Jing Jiao
- Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Xianguang Meng
- Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Yunhe An
- Beijing Center for Physical and Chemical Analysis, Beijing, China
| | - Chen Han
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Shuhong Huang
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|