1
|
Campbell JM, Gosnell M, Agha A, Handley S, Knab A, Anwer AG, Bhargava A, Goldys EM. Label-Free Assessment of Key Biological Autofluorophores: Material Characteristics and Opportunities for Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403761. [PMID: 38775184 DOI: 10.1002/adma.202403761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/04/2024] [Indexed: 06/13/2024]
Abstract
Autofluorophores are endogenous fluorescent compounds that naturally occur in the intra and extracellular spaces of all tissues and organs. Most have vital biological functions - like the metabolic cofactors NAD(P)H and FAD+, as well as the structural protein collagen. Others are considered to be waste products - like lipofuscin and advanced glycation end products - which accumulate with age and are associated with cellular dysfunction. Due to their natural fluorescence, these materials have great utility for enabling non-invasive, label-free assays with direct ties to biological function. Numerous technologies, with different advantages and drawbacks, are applied to their assessment, including fluorescence lifetime imaging microscopy, hyperspectral microscopy, and flow cytometry. Here, the applications of label-free autofluorophore assessment are reviewed for clinical and health-research applications, with specific attention to biomaterials, disease detection, surgical guidance, treatment monitoring, and tissue assessment - fields that greatly benefit from non-invasive methodologies capable of continuous, in vivo characterization.
Collapse
Affiliation(s)
- Jared M Campbell
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | | | - Adnan Agha
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Shannon Handley
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Aline Knab
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ayad G Anwer
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Akanksha Bhargava
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ewa M Goldys
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| |
Collapse
|
2
|
Knab A, Anwer AG, Pedersen B, Handley S, Marupally AG, Habibalahi A, Goldys EM. Towards label-free non-invasive autofluorescence multispectral imaging for melanoma diagnosis. JOURNAL OF BIOPHOTONICS 2024; 17:e202300402. [PMID: 38247053 DOI: 10.1002/jbio.202300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/11/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
This study focuses on the use of cellular autofluorescence which visualizes the cell metabolism by monitoring endogenous fluorophores including NAD(P)H and flavins. It explores the potential of multispectral imaging of native fluorophores in melanoma diagnostics using excitation wavelengths ranging from 340 nm to 510 nm and emission wavelengths above 391 nm. Cultured immortalized cells are utilized to compare the autofluorescent signatures of two melanoma cell lines to one fibroblast cell line. Feature analysis identifies the most significant and least correlated features for differentiating the cells. The investigation successfully applies this analysis to pre-processed, noise-removed images and original background-corrupted data. Furthermore, the applicability of distinguishing melanomas and healthy fibroblasts based on their autofluorescent characteristics is validated using the same evaluation technique on patient cells. Additionally, the study tentatively maps the detected features to underlying biological processes. This research demonstrates the potential of cellular autofluorescence as a promising tool for melanoma diagnostics.
Collapse
Affiliation(s)
- Aline Knab
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, Australia
| | - Ayad G Anwer
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, Australia
| | - Bernadette Pedersen
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Shannon Handley
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, Australia
| | - Abhilash Goud Marupally
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, Australia
| | - Abbas Habibalahi
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, Australia
| |
Collapse
|
3
|
Hou H, Mitbander R, Tang Y, Azimuddin A, Carns J, Schwarz RA, Richards-Kortum RR. Optical imaging technologies for in vivo cancer detection in low-resource settings. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 28:100495. [PMID: 38406798 PMCID: PMC10883072 DOI: 10.1016/j.cobme.2023.100495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Cancer continues to affect underserved populations disproportionately. Novel optical imaging technologies, which can provide rapid, non-invasive, and accurate cancer detection at the point of care, have great potential to improve global cancer care. This article reviews the recent technical innovations and clinical translation of low-cost optical imaging technologies, highlighting the advances in both hardware and software, especially the integration of artificial intelligence, to improve in vivo cancer detection in low-resource settings. Additionally, this article provides an overview of existing challenges and future perspectives of adapting optical imaging technologies into clinical practice, which can potentially contribute to novel insights and programs that effectively improve cancer detection in low-resource settings.
Collapse
Affiliation(s)
- Huayu Hou
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Ruchika Mitbander
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Yubo Tang
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Ahad Azimuddin
- School of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Jennifer Carns
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Richard A Schwarz
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
4
|
Fractal Dimension Analysis of Melanocytic Nevi and Melanomas in Normal and Polarized Light-A Preliminary Report. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071008. [PMID: 35888097 PMCID: PMC9318244 DOI: 10.3390/life12071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022]
Abstract
Clinical diagnosis of pigmented lesions can be a challenge in everyday practice. Benign and dysplastic nevi and melanomas may have similar clinical presentations, but completely different prognoses. Fractal dimensions of shape and texture can describe the complexity of the pigmented lesion structure. This study aims to apply fractal dimension analysis to differentiate melanomas, dysplastic nevi, and benign nevi in polarized and non-polarized light. A total of 87 Eighty-four patients with 97 lesions were included in this study. All examined lesions were photographed under polarized and non-polarized light, surgically removed, and examined by a histopathologist to establish the correct diagnosis. The obtained images were then processed and analyzed. Area, perimeter, and fractal dimensions of shape and texture were calculated for all the lesions under polarized and non-polarized light. The fractal dimension of shape in polarized light enables differentiating melanomas, dysplastic nevi, and benign nevi. It also makes it possible to distinguish melanomas from benign and dysplastic nevi under non-polarized light. The fractal dimension of texture allows distinguishing melanomas from benign and dysplastic nevi under polarized light. All examined parameters of shape and texture can be used for developing an automatic computer-aided diagnosis system. Polarized light is superior to non-polarized light for imaging texture details.
Collapse
|
5
|
Shiu J, Zhang L, Lentsch G, Flesher JL, Jin S, Polleys CM, Jo SJ, Mizzoni C, Mobasher P, Kwan J, Rius-Diaz F, Tromberg BJ, Georgakoudi I, Nie Q, Balu M, Ganesan AK. Multimodal analyses of vitiligo skin identifies tissue characteristics of stable disease. JCI Insight 2022; 7:154585. [PMID: 35653192 PMCID: PMC9310536 DOI: 10.1172/jci.insight.154585] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Vitiligo is an autoimmune skin disease characterized by the destruction of melanocytes by autoreactive CD8+ T cells. Melanocyte destruction in active vitiligo is mediated by CD8+ T cells, but the persistence of white patches in stable disease is poorly understood. The interaction between immune cells, melanocytes, and keratinocytes in situ in human skin has been difficult to study due to the lack of proper tools. We combine noninvasive multiphoton microscopy (MPM) imaging and single-cell RNA-Seq (scRNA-Seq) to identify subpopulations of keratinocytes in stable vitiligo patients. We show that, compared with nonlesional skin, some keratinocyte subpopulations are enriched in lesional vitiligo skin and shift their energy utilization toward oxidative phosphorylation. Systematic investigation of cell-to-cell communication networks show that this small population of keratinocyte secrete CXCL9 and CXCL10 to potentially drive vitiligo persistence. Pseudotemporal dynamics analyses predict an alternative differentiation trajectory that generates this new population of keratinocytes in vitiligo skin. Further MPM imaging of patients undergoing punch grafting treatment showed that keratinocytes favoring oxidative phosphorylation persist in nonresponders but normalize in responders. In summary, we couple advanced imaging with transcriptomics and bioinformatics to discover cell-to-cell communication networks and keratinocyte cell states that can perpetuate inflammation and prevent repigmentation.
Collapse
Affiliation(s)
- Jessica Shiu
- Department of Dermatology, University of California, Irvine, Irvine, United States of America
| | - Lihua Zhang
- Department of Mathematics, University of California, Irvine, Irvine, United States of America
| | - Griffin Lentsch
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, United States of America
| | - Jessica L Flesher
- Department of Dermatology, Massachusetts General Hospital, Boston, United States of America
| | - Suoqin Jin
- Department of Mathematics, University of California, Irvine, Irvine, United States of America
| | - Christopher M Polleys
- Department of Biomedical Engineering, Tufts University, Medford, United States of America
| | - Seong Jin Jo
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Craig Mizzoni
- Department of Biomedical Engineering, Tufts University, Medford, United States of America
| | - Pezhman Mobasher
- Department of Dermatology, University of California, Irvine, Irvine, United States of America
| | - Jasmine Kwan
- Department of Biomedical Engineering, Tufts University, Medford, United States of America
| | - Francisca Rius-Diaz
- Department of Preventive Medicine and Public Health, University of Malaga, Malaga, Spain
| | - Bruce J Tromberg
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, United States of America
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, United States of America
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, United States of America
| | - Mihaela Balu
- Department of Surgery, Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, United States of America
| | - Anand K Ganesan
- Department of Dermatology, University of California, Irvine, Irvine, United States of America
| |
Collapse
|
6
|
Lentsch G, Baugh EG, Lee B, Aszterbaum M, Zachary CB, Kelly KM, Balu M. Research Techniques Made Simple: Emerging Imaging Technologies for Noninvasive Optical Biopsy of Human Skin. J Invest Dermatol 2022; 142:1243-1252.e1. [PMID: 35461534 PMCID: PMC9802025 DOI: 10.1016/j.jid.2022.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 01/03/2023]
Abstract
Over the past few years, high-resolution optical imaging technologies such as optical coherence tomography (OCT), reflectance confocal microscopy (RCM), and multiphoton microscopy (MPM) have advanced significantly as new methodologies for clinical research and for real-time detection, diagnosis, and therapy monitoring of skin diseases. Implementation of these technologies into clinical research and practice requires clinicians to have an understanding of their capabilities, benefits, and limitations. This concise review provides insights on the application of OCT, RCM, and MPM for clinical skin imaging through images acquired in vivo from the same lesions. The presented data are limited to pigmented lesions and basal cell carcinoma.
Collapse
Affiliation(s)
- Griffin Lentsch
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California, USA
| | - Erica G. Baugh
- Department of Dermatology, University of California, Irvine, California, USA
| | - Bonnie Lee
- Department of Dermatology, University of California, Irvine, California, USA
| | - Michelle Aszterbaum
- Department of Dermatology, University of California, Irvine, California, USA
| | | | - Kristen M. Kelly
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California, USA,Department of Dermatology, University of California, Irvine, California, USA
| | - Mihaela Balu
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California, USA
| |
Collapse
|
7
|
Bishop KW, Maitland KC, Rajadhyaksha M, Liu JTC. In vivo microscopy as an adjunctive tool to guide detection, diagnosis, and treatment. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220032-PER. [PMID: 35478042 PMCID: PMC9043840 DOI: 10.1117/1.jbo.27.4.040601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 05/05/2023]
Abstract
SIGNIFICANCE There have been numerous academic and commercial efforts to develop high-resolution in vivo microscopes for a variety of clinical use cases, including early disease detection and surgical guidance. While many high-profile studies, commercialized products, and publications have resulted from these efforts, mainstream clinical adoption has been relatively slow other than for a few clinical applications (e.g., dermatology). AIM Here, our goals are threefold: (1) to introduce and motivate the need for in vivo microscopy (IVM) as an adjunctive tool for clinical detection, diagnosis, and treatment, (2) to discuss the key translational challenges facing the field, and (3) to propose best practices and recommendations to facilitate clinical adoption. APPROACH We will provide concrete examples from various clinical domains, such as dermatology, oral/gastrointestinal oncology, and neurosurgery, to reinforce our observations and recommendations. RESULTS While the incremental improvement and optimization of IVM technologies should and will continue to occur, future translational efforts would benefit from the following: (1) integrating clinical and industry partners upfront to define and maintain a compelling value proposition, (2) identifying multimodal/multiscale imaging workflows, which are necessary for success in most clinical scenarios, and (3) developing effective artificial intelligence tools for clinical decision support, tempered by a realization that complete adoption of such tools will be slow. CONCLUSIONS The convergence of imaging modalities, academic-industry-clinician partnerships, and new computational capabilities has the potential to catalyze rapid progress and adoption of IVM in the next few decades.
Collapse
Affiliation(s)
- Kevin W. Bishop
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Kristen C. Maitland
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Milind Rajadhyaksha
- Memorial Sloan Kettering Cancer Center, Dermatology Service, New York, New York, United States
| | - Jonathan T. C. Liu
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
- University of Washington, Department of Laboratory Medicine and Pathology, Seattle, Washington, United States
- Address all correspondence to Jonathan T.C. Liu,
| |
Collapse
|
8
|
Fast A, Lal A, Durkin AF, Lentsch G, Harris RM, Zachary CB, Ganesan AK, Balu M. Fast, large area multiphoton exoscope (FLAME) for macroscopic imaging with microscopic resolution of human skin. Sci Rep 2020; 10:18093. [PMID: 33093610 PMCID: PMC7582965 DOI: 10.1038/s41598-020-75172-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
We introduce a compact, fast large area multiphoton exoscope (FLAME) system with enhanced molecular contrast for macroscopic imaging of human skin with microscopic resolution. A versatile imaging platform, FLAME combines optical and mechanical scanning mechanisms with deep learning image restoration to produce depth-resolved images that encompass sub-mm2 to cm2 scale areas of tissue within minutes and provide means for a comprehensive analysis of live or resected thick human skin tissue. The FLAME imaging platform, which expands on a design recently introduced by our group, also features time-resolved single photon counting detection to uniquely allow fast discrimination and 3D virtual staining of melanin. We demonstrate its performance and utility by fast ex vivo and in vivo imaging of human skin. With the ability to provide rapid access to depth resolved images of skin over cm2 area and to generate 3D distribution maps of key sub-cellular skin components such as melanocytic dendrites and melanin, FLAME is ready to be translated into a clinical imaging tool for enhancing diagnosis accuracy, guiding therapy and understanding skin biology.
Collapse
Affiliation(s)
- Alexander Fast
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92612, USA
| | - Akarsh Lal
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92612, USA
| | - Amanda F Durkin
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92612, USA
| | - Griffin Lentsch
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92612, USA
| | - Ronald M Harris
- Department of Dermatology, University of California, Irvine, 1 Medical Plaza Dr., Irvine, CA, 92697, USA
| | - Christopher B Zachary
- Department of Dermatology, University of California, Irvine, 1 Medical Plaza Dr., Irvine, CA, 92697, USA
| | - Anand K Ganesan
- Department of Dermatology, University of California, Irvine, 1 Medical Plaza Dr., Irvine, CA, 92697, USA
| | - Mihaela Balu
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92612, USA.
| |
Collapse
|
9
|
Lentsch G, Valdebran M, Saknite I, Smith J, Linden KG, König K, Barr RJ, Harris RM, Tromberg BJ, Ganesan AK, Zachary CB, Kelly KM, Balu M. Non-invasive optical biopsy by multiphoton microscopy identifies the live morphology of common melanocytic nevi. Pigment Cell Melanoma Res 2020; 33:869-877. [PMID: 32485062 PMCID: PMC7687135 DOI: 10.1111/pcmr.12902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/24/2020] [Accepted: 05/21/2020] [Indexed: 11/30/2022]
Abstract
Multiphoton microscopy (MPM) is a promising non-invasive imaging tool for discriminating benign nevi from melanoma. In this study, we establish a MPM morphologic catalogue of common nevi, information that will be critical in devising strategies to distinguish them from nevi that are evolving to melanoma that may present with more subtle signs of malignancy. Thirty common melanocytic nevi were imaged in vivo using MPM. Quantitative parameters that can distinguish between different types of nevi were developed and confirmed by examining the histology of eleven of the imaged nevi. MPM features of nevi examined included cytologic morphology of melanocytes in the epidermis and dermis, the size and distribution of nevomelanocytes both within and around nests, the size of rete ridges, and the presence of immune cells in the dermis. Distinguishing features include cytological morphology, the size of nevomelanocytes, the size of nevomelanocyte nests, and the distribution of nevomelanocytes. Notably, these distinguishing characteristics were not easily appreciated in fixed tissues, highlighting essential differences in the morphology of live skin. Taken together, this work provides a morphologic compendium of normal nevi, information that will be critical in future studies directed at identifying melanocytic nevi that are evolving to melanoma.
Collapse
Affiliation(s)
- Griffin Lentsch
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
| | - Manuel Valdebran
- Department of Dermatology, University of California, Irvine, CA, USA
| | - Inga Saknite
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
| | - Janellen Smith
- Department of Dermatology, University of California, Irvine, CA, USA
| | - Kenneth G Linden
- Department of Dermatology, University of California, Irvine, CA, USA
| | - Karsten König
- Department of Biophotonics and Laser Technology, Saarland University, Saarbrucken, Germany.,JenLab GmbH, Jena, Germany
| | - Ronald J Barr
- Department of Dermatology, University of California, Irvine, CA, USA
| | - Ronald M Harris
- Department of Dermatology, University of California, Irvine, CA, USA
| | - Bruce J Tromberg
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
| | - Anand K Ganesan
- Department of Dermatology, University of California, Irvine, CA, USA
| | | | - Kristen M Kelly
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA.,Department of Dermatology, University of California, Irvine, CA, USA
| | - Mihaela Balu
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
| |
Collapse
|