1
|
Yap S, Gasperini S, Matsumoto S, Feillet F. Role of carglumic acid in the long-term management of propionic and methylmalonic acidurias. Orphanet J Rare Dis 2024; 19:464. [PMID: 39695809 DOI: 10.1186/s13023-024-03468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
Propionic aciduria (PA) and methylmalonic aciduria (MMA) are rare inherited disorders caused by defects in the propionate metabolic pathway. PA due to propionyl coenzyme A carboxylase deficiency results in accumulation of propionic acid, while in MMA, deficiency in methylmalonyl coenzyme A mutase leads to accumulation of methylmalonic acid. Hyperammonemia is related to a secondary deficiency of N-acetylglutamate (NAG), the activator of carbamoyl phosphate synthetase 1, which is an irreversible rate-limiting enzyme in the urea cycle. Carglumic acid (CGA) is a synthetic structural analog of human NAG and is approved for the treatment of patients with hyperammonemia due to PA or MMA. CGA is well tolerated and its use in normalizing ammonia levels during acute hyperammonemic episodes in patients with PA and MMA is well established. This expert opinion analyzed clinical evidence for CGA and discussed its place, along with other management strategies, in the long-term management of PA or MMA. A literature search of PubMed was undertaken to identify publications related to the chronic use of CGA, transplantation, dietary management, ammonia scavengers, and gene therapy for treatment of patients with PA or MMA. The authors selected the most relevant studies for inclusion. Four clinical studies, one single center case series, and three case reports show that CGA is safe and effective in the chronic treatment of PA and MMA. In particular, the addition of CGA is associated with a reduction in hyperammonemic decompensation episodes and admission to hospital, compared with conventional dietary treatment alone. Current treatment guidelines and recommendations include the use of CGA mainly in acute decompensation, however, lag in considering the benefits of long-term CGA treatment on clinical and biochemical outcomes in patients with PA or MMA. CGA is safe and effective in the chronic treatment of PA and MMA and may help to resolve some of the issues associated with other strategies used to treat these disorders. Thus, CGA appears to have potential for the chronic management of patients with PA and MMA and should be recommended for inclusion in the chronic treatment of these disorders.
Collapse
Affiliation(s)
- Sufin Yap
- Department of Inherited Metabolic Diseases, Sheffield Children's Hospital, Sheffield Children's NHS Foundation Trust, Western Bank, Sheffield, S10 2TH, UK.
| | - Serena Gasperini
- Metabolic Rare Disease Unit "Fondazione Mariani", Pediatric Department, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Shirou Matsumoto
- Department of Neonatology, Kumamoto University, Honjo 1-1-1, Chu-oh-ku, Kumamoto, Japan
| | - François Feillet
- Pediatric Unit, Reference Center for Inborn Errors of Metabolism, University Hospital of Nancy, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
| |
Collapse
|
2
|
Minnee RC, Sakamoto S, Fukuda A, Uchida H, Hirukawa K, Honda M, Okumura S, Ito T, Yilmaz TU, Fang Y, Ikegami T, Lee KW, Kasahara M. Long-Term Outcomes of Living Donor Liver Transplantation for Methylmalonic Acidemia. Pediatr Transplant 2024; 28:e14834. [PMID: 39099301 DOI: 10.1111/petr.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/28/2024] [Accepted: 07/14/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Despite early diagnosis and medical interventions, patients with methylmalonic acidemia (MMA) suffer from multi-organ damage and recurrent metabolic decompensations. METHODS We conducted the largest retrospective multi-center cohort study so far, involving five transplant centers (NCCHD, KUH, KUHP, ATAK, and EMC), and identified all MMA patients (n = 38) undergoing LDLT in the past two decades. Our primary outcome was patient survival, and secondary outcomes included death-censored graft survival and posttransplant complications. RESULTS The overall 10-year patient survival and death-censored graft survival rates were 92% and 97%, respectively. Patients who underwent LDLT within 2 years of MMA onset showed significantly higher 10-year patient survival compared to those with an interval more than 2 years (100% vs. 81%, p = 0.038), although the death-censored graft survival were not statistically different (100% vs. 93%, p = 0.22). Over the long-term follow-up, 14 patients (37%) experienced intellectual disability, while two patients developed neurological complications, three patients experienced renal dysfunction, and one patient had biliary anastomotic stricture. The MMA level significantly decreased from 2218.5 mmol/L preoperative to 307.5 mmol/L postoperative (p = 0.038). CONCLUSIONS LDLT achieves favorable long-term patient and graft survival outcomes for MMA patients. While not resulting in complete cure, our findings support the consideration of early LDLT within 2 years of disease onset. This approach holds the potential to mitigate recurrent metabolic decompensations, and preserve the long-term renal function.
Collapse
Affiliation(s)
- Robert C Minnee
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus Medical Center, Erasmus MC Transplant Institute, Rotterdam, The Netherlands
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Hajime Uchida
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kazuya Hirukawa
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Masaki Honda
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Shinya Okumura
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Ito
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tonguç U Yilmaz
- Department of Organ Transplantation, Atakent Hospital, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | - Yitian Fang
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus Medical Center, Erasmus MC Transplant Institute, Rotterdam, The Netherlands
| | - Toru Ikegami
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kwang W Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
3
|
Paessler A, Cortes-Cerisuelo M, Jassem W, Vilca-Melendez H, Deep A, Jain V, Pool A, Grunewald S, Kessaris N, Stojanovic J. Transplantation in paediatric patients with MMA requires multidisciplinary approach for achievement of good clinical outcomes. Pediatr Nephrol 2023; 38:2887-2896. [PMID: 36840752 PMCID: PMC10393894 DOI: 10.1007/s00467-023-05906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND As modern medicine is advancing, younger, small, and more complex children are becoming multi-organ transplant candidates. This brings up new challenges in all aspects of their care. METHODS We describe the first report of a small child receiving a simultaneous liver and kidney transplant and abdominal rectus sheath fascia transplant on the background of Williams syndrome and methylmalonic acidaemia. At the time of transplantation, the child was 3 years old, weighed 14.0 kg, had chronic kidney disease stage V, and had not yet started any other form of kidney replacement therapy. RESULTS There were many anaesthetic, medical, metabolic, and surgical challenges to consider in this case. A long general anaesthetic time increased the risk of cardiac complications and metabolic decompensation. Additionally, the small size of the patient and the organ size mis-match meant that primary abdominal closure was not possible. The patient's recovery was further complicated by sepsis, transient CNI toxicity, and de novo DSAs. CONCLUSIONS Through a multidisciplinary approach between 9 specialties in 4 hospitals across England and Wales, and detailed pre-operative planning, a good outcome was achieved for this child. An hour by hour management protocol was drafted to facilitate transplant and included five domains: 1. management at the time of organ offer; 2. before the admission; 3. at admission and before theatre time; 4. intra-operative management; and 5. post-operative management in the first 24 h. Importantly, gaining a clear and in depth understanding of the metabolic state of the patient pre- and peri-operatively was crucial in avoiding metabolic decompensation. Furthermore, an abdominal rectus sheath fascia transplant was required to achieve abdominal closure, which to our knowledge, had never been done before for this indication. Using our experience of this complex case, as well as our experience in transplanting other children with MMA, and through a literature review, we propose a new perioperative management pathway for this complex cohort of transplant recipients.
Collapse
Affiliation(s)
- Alicia Paessler
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1N 3JH, London, UK
- University College London Great Ormond Street Institute of Child Health, London, UK
| | | | - Wayel Jassem
- King's College Hospital NHS Foundation Trust, London, UK
| | | | - Akash Deep
- King's College Hospital NHS Foundation Trust, London, UK
| | - Vandana Jain
- King's College Hospital NHS Foundation Trust, London, UK
| | - Andrew Pool
- King's College Hospital NHS Foundation Trust, London, UK
| | - Stephanie Grunewald
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1N 3JH, London, UK
| | | | - Jelena Stojanovic
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1N 3JH, London, UK.
| |
Collapse
|
4
|
Sen K, Burrage LC, Chapman KA, Ginevic I, Mazariegos GV, Graham BH. Solid organ transplantation in methylmalonic acidemia and propionic acidemia: A points to consider statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2023; 25:100337. [PMID: 36534118 DOI: 10.1016/j.gim.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Washington, DC
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Kimberly A Chapman
- Rare Disease Institute, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Ilona Ginevic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - George V Mazariegos
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Brett H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | -
- American College of Medical Genetics and Genomics, Bethesda, MD
| |
Collapse
|
5
|
Dello Strologo L, Spada M, Vici CD, Atti MCD, Rheault M, Bjerre AK, Boyer O, Calvo PL, D'Antiga L, Harshman LA, Hörster F, Kölker S, Jahnukainen T, Knops N, Krug P, Krupka K, Lee A, Levtchenko E, Marks SD, Stojanovic J, Martelli L, Mazariegos G, Montini G, Shenoy M, Sidhu S, Spada M, Tangeras T, Testa S, Vijay S, Wac K, Wennberg L, Concepcion W, Garbade SF, Tönshoff B. Renal outcome and plasma methylmalonic acid levels after isolated or combined liver or kidney transplantation in patients with methylmalonic acidemia: A multicenter analysis. Mol Genet Metab 2022; 137:265-272. [PMID: 36240580 DOI: 10.1016/j.ymgme.2022.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Methylmalonic acidemia (MMAemia) is characterized by accumulation of methylmalonic acid (MMA) in all body tissues. To minimize disease-related complications, isolated kidney (KTx), liver (LTx) or combined liver-kidney transplantation (LKTx) have been suggested. However, the impact of these different transplant strategies on outcome are unclear. METHODS In this multicenter retrospective observational study, we compared plasma MMA levels and estimated glomerular filtration rate (eGFR) data of 83 patients. Sixty-eight patients (82%) had a mut0-type MMAemia, one patient had a mut--type MMAemia, and seven (7.3%) had an inherited defect in cobalamin metabolism (cblA- or cblB-type MMAemia). Median observation period was 3.7 years (0-15.1 years). RESULTS Twenty-six (31%) patients underwent KTx, 24 (29%) LTx and 33 (40%) LKTx. Posttransplant, mean plasma MMA concentration significantly decreased in all three cohorts; but at month 12, plasma MMA in KTx (1372 ± 1101 μmol/L) was 7.8-fold higher than in LTx (176 ± 103 μmol/L; P < 0.001) and 6.4-fold higher than in LKTx (215 ± 110 μmol/L; P < 0.001). Comparable data were observed at month 24. At time of transplantation, mean eGFR in KTx was 18.1 ± 24.3 mL/min/1.73 m2, in LTx 99.8 ± 29.9 mL/min/1.73 m2, and in LKTx 31.5 ± 21.2 mL/min/1.73 m2. At month 12 posttransplant, mean eGFR in KTx (62.3 ± 30.3 mL/min/1.73 m2) was 33.4% lower than in LTx (93.5 ± 18.3 mL/min/1.73 m2; P = 0.0053) and 25.4% lower than in LKTx (83.5 ± 26.9 mL/min/1.73 m2; P = 0.0403). CONCLUSIONS In patients with isolated MMAemia, LTx and LKTx lead to markedly lower plasma MMA levels during the first 2 years posttransplant than KTx and are associated with a better preservation of kidney function. LTx should therefore be part of the transplant strategy in MMAemia.
Collapse
Affiliation(s)
| | - Marco Spada
- Surgery, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | | | | | - Anna Kristina Bjerre
- Department of Paediatric and Adolescent Medicine, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Olivia Boyer
- Hopital Necker - Enfant Malades, MARHEA, Institut Imagine, Université Paris Cité, Paris, France
| | | | - Lorenzo D'Antiga
- Paediatric Hepatology, Gastroenterology and Transplantation Hospital Papa Giovanni XXIII, Bergamo, Italy
| | | | - Friederike Hörster
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Stefan Kölker
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Timo Jahnukainen
- Department of Pediatric Nephrology and Transplantation, New Children's Hospital Helsinki, Finland
| | - Noël Knops
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven & University of Leuven, Belgium
| | - Pauline Krug
- Hopital Necker - Enfant Malades, MARHEA, Institut Imagine, Université Paris Cité, Paris, France
| | - Kai Krupka
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Angela Lee
- Division of Transplantation, Stanford University School of Medicine, USA
| | - Elena Levtchenko
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven & University of Leuven, Belgium
| | - Stephen D Marks
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Jelena Stojanovic
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Laura Martelli
- Paediatric Hepatology, Gastroenterology and Transplantation Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - George Mazariegos
- Pediatric Transplant Surgery, UPMC Children's Hospital of Pittsburgh, USA
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis and Transplantation Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico Milan, Italy
| | - Mohan Shenoy
- Pediatric Nephrology, Royal Manchester Children's Hospital, UK
| | - Sangeet Sidhu
- Pediatric Nephrology, Royal Manchester Children's Hospital, UK
| | - Marco Spada
- Department of Pediatrics, University of Torino, Turin, Italy
| | - Trine Tangeras
- Department of Paediatric and Adolescent Medicine, Oslo University Hospital, Norway
| | - Sara Testa
- Pediatric Nephrology, Dialysis and Transplantation Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico Milan, Italy
| | - Suresh Vijay
- Pediatrics, Birmingham Children's Hospital NHS Foundation Trust, UK
| | - Katarzyna Wac
- Division of Transplantation, Stanford University School of Medicine, USA
| | - Lars Wennberg
- Department of Transplantation Surgery, Karolinska University Hospital Stockholm, Sweden
| | - Waldo Concepcion
- Division of Transplantation, Stanford University School of Medicine, USA
| | - Sven F Garbade
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany.
| |
Collapse
|
6
|
Venturoni LE, Chandler RJ, Liao J, Hoffmann V, Ramesh N, Gordo S, Chau N, Venditti CP. Growth advantage of corrected hepatocytes in a juvenile model of methylmalonic acidemia following liver directed adeno-associated viral mediated nuclease-free genome editing. Mol Genet Metab 2022; 137:1-8. [PMID: 35868241 PMCID: PMC9872049 DOI: 10.1016/j.ymgme.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 01/26/2023]
Abstract
Methylmalonic acidemia (MMA) is a rare and severe inherited metabolic disease typically caused by mutations of the methylmalonyl-CoA mutase (MMUT) gene. Despite medical management, patients with MMA experience frequent episodes of metabolic instability, severe morbidity, and early mortality. In several preclinical studies, systemic gene therapy has demonstrated impressive improvement in biochemical and clinical phenotypes of MMA murine models. One approach uses a promoterless adeno-associated viral (AAV) vector that relies upon homologous recombination to achieve site-specific in vivo gene addition of MMUT into the last coding exon of albumin (Alb), generating a fused Alb-MMUT transcript after successful editing. We have previously demonstrated that nuclease-free AAV mediated Alb editing could effectively treat MMA mice in the neonatal period and noted that hepatocytes had a growth advantage after correction. Here, we use a transgenic knock-out mouse model of MMA that recapitulates severe clinical and biochemical symptoms to assess the benefits of Alb editing in juvenile animals. As was first noted in the neonatal gene therapy studies, we observe that gene edited hepatocytes in the MMA mice treated as juveniles exhibit a growth advantage, which allows them to repopulate the liver slowly but dramatically by 8-10 months post treatment, and subsequently manifest a biochemical and enzymatic response. In conclusion, our results suggest that the benefit of AAV mediated nuclease-free gene editing of the Alb locus to treat MMA could potentially be therapeutic for older patients.
Collapse
Affiliation(s)
- Leah E Venturoni
- National Human Genome Research Institute, NIH, Bethesda, MD, United States of America
| | - Randy J Chandler
- National Human Genome Research Institute, NIH, Bethesda, MD, United States of America
| | - Jing Liao
- LogicBio Therapeutics, Lexington, MA, United States of America
| | - Victoria Hoffmann
- Office of Research Services, NIH, Bethesda, MD, United States of America
| | - Nikhil Ramesh
- LogicBio Therapeutics, Lexington, MA, United States of America
| | - Susana Gordo
- LogicBio Therapeutics, Lexington, MA, United States of America
| | - Nelson Chau
- LogicBio Therapeutics, Lexington, MA, United States of America
| | - Charles P Venditti
- National Human Genome Research Institute, NIH, Bethesda, MD, United States of America.
| |
Collapse
|
7
|
Venturoni LE, Venditti CP. Treatment of metabolic disorders using genomic technologies: Lessons from methylmalonic acidemia. J Inherit Metab Dis 2022; 45:872-888. [PMID: 35766386 DOI: 10.1002/jimd.12534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022]
Abstract
Hereditary methylmalonic acidemia (MMA) caused by deficiency of the enzyme methylmalonyl-CoA mutase (MMUT) is a relatively common and severe organic acidemia. The recalcitrant nature of the condition to conventional dietary and medical management has led to the use of elective liver and combined liver-kidney transplantation in some patients. However, liver transplantation is intrinsically limited by organ availability, the risks of surgery, procedural and life-long management costs, transplant comorbidities, and a remaining underlying risk of complications related to MMA despite transplantation. Here, we review pre-clinical studies that present alternative approaches to solid organ transplantation as a treatment for MMUT MMA, including adeno-associated viral gene addition therapy, mRNA therapy, and genome editing, with and without nuclease enhancement.
Collapse
Affiliation(s)
- Leah E Venturoni
- Metabolic Medicine Branch, Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles P Venditti
- Metabolic Medicine Branch, Organic Acid Research Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Waisbren SE. Review of neuropsychological outcomes in isolated methylmalonic acidemia: recommendations for assessing impact of treatments. Metab Brain Dis 2022; 37:1317-1335. [PMID: 35348993 DOI: 10.1007/s11011-022-00954-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/09/2022] [Indexed: 11/29/2022]
Abstract
Methylmalonic acidemia (MMA) due to methylmalonyl-CoA mutase deficiency (OMIM #251,000) is an autosomal recessive disorder of organic acid metabolism associated with life-threatening acute metabolic decompensations and significant neuropsychological deficits. "Isolated" MMA refers to the presence of excess methylmalonic acid without homocysteine elevation. Belonging to this class of disorders are those that involve complete deficiency (mut0) and partial deficiency (mut-) of the methylmalonyl-CoA mutase enzyme and other disorders causing excess methylmalonic acid excretion. These other disorders include enzymatic subtypes related to cobalamin A defect (cblA) (OMIM #25,110), cobalamin B defect (cblB) (OMIM #251,110) and related conditions. Neuropsychological attributes associated with isolated MMA have become more relevant as survival rates increased following improved diagnostic and treatment strategies. Children with this disorder still are at risk for developmental delay, cognitive difficulties and progressive declines in functioning. Mean IQ for all types apart from cblA defect enzymatic subtype is rarely above 85 and much lower for mut0 enzymatic subtype. Identifying psychological domains responsive to improvements in biochemical status is important. This review suggests that processing speed, working memory, language, attention, and quality of life may be sensitive to fluctuations in metabolite levels while IQ and motor skills may be less amenable to change. Due to slower developmental trajectories, Growth Scale Values, Projected Retained Ability Scores and other indices of change need to be incorporated into clinical trial study protocols. Neuropsychologists are uniquely qualified to provide a differentiated picture of cognitive, behavioral and emotional consequences of MMA and analyze benefits or shortcomings of novel treatments.
Collapse
Affiliation(s)
- Susan E Waisbren
- Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Head PE, Myung S, Chen Y, Schneller JL, Wang C, Duncan N, Hoffman P, Chang D, Gebremariam A, Gucek M, Manoli I, Venditti CP. Aberrant methylmalonylation underlies methylmalonic acidemia and is attenuated by an engineered sirtuin. Sci Transl Med 2022; 14:eabn4772. [PMID: 35613279 PMCID: PMC10468269 DOI: 10.1126/scitranslmed.abn4772] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organic acidemias such as methylmalonic acidemia (MMA) are a group of inborn errors of metabolism that typically arise from defects in the catabolism of amino and fatty acids. Accretion of acyl-CoA species is postulated to underlie disease pathophysiology, but the mechanism(s) remain unknown. Here, we surveyed hepatic explants from patients with MMA and unaffected donors, in parallel with samples from various mouse models of methylmalonyl-CoA mutase deficiency. We found a widespread posttranslational modification, methylmalonylation, that inhibited enzymes in the urea cycle and glycine cleavage pathway in MMA. Biochemical studies and mouse genetics established that sirtuin 5 (SIRT5) controlled the metabolism of MMA-related posttranslational modifications. SIRT5 was engineered to resist acylation-driven inhibition via lysine to arginine mutagenesis. The modified SIRT5 was used to create an adeno-associated viral 8 (AAV8) vector and systemically delivered to mutant and control mice. Gene therapy ameliorated hyperammonemia and reduced global methylmalonylation in the MMA mice.
Collapse
Affiliation(s)
- PamelaSara E. Head
- National Institute of General Medical Sciences, NIH, 45 Center Drive MSC 6200 Bethesda, MD, 20892-6200 USA
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| | - Sangho Myung
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| | - Yong Chen
- National Heart Lung and Blood Institute, NIH, Building 31, 31 Center Drive Bethesda, MD 20892, USA
| | - Jessica L. Schneller
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| | - Cindy Wang
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| | - Nicholas Duncan
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| | - Pauline Hoffman
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| | - David Chang
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| | - Abigael Gebremariam
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| | - Marjan Gucek
- National Heart Lung and Blood Institute, NIH, Building 31, 31 Center Drive Bethesda, MD 20892, USA
| | - Irini Manoli
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| | - Charles P. Venditti
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Chandler RJ, Venturoni LE, Liao J, Hubbard BT, Schneller JL, Hoffmann V, Gordo S, Zang S, Ko C, Chau N, Chiang K, Kay MA, Barzel A, Venditti CP. Promoterless, Nuclease-Free Genome Editing Confers a Growth Advantage for Corrected Hepatocytes in Mice With Methylmalonic Acidemia. Hepatology 2021; 73:2223-2237. [PMID: 32976669 PMCID: PMC8252383 DOI: 10.1002/hep.31570] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Adeno-associated viral (AAV) gene therapy has shown great promise as an alternative treatment for metabolic disorders managed using liver transplantation, but remains limited by transgene loss and genotoxicity. Our study aims to test an AAV vector with a promoterless integrating cassette, designed to provide sustained hepatic transgene expression and reduced toxicity in comparison to canonical AAV therapy. APPROACH AND RESULTS Our AAV vector was designed to insert a methylmalonyl-CoA mutase (MMUT) transgene into the 3' end of the albumin locus and tested in mouse models of methylmalonic acidemia (MMA). After neonatal delivery, we longitudinally evaluated hepatic transgene expression, plasma levels of methylmalonate, and the MMA biomarker, fibroblast growth factor 21 (Fgf21), as well as integration of MMUT in the albumin locus. At necropsy, we surveyed for AAV-related hepatocellular carcinoma (HCC) in all treated MMA mice and control littermates. AAV-mediated genome editing of MMUT into the albumin locus resulted in permanent hepatic correction in MMA mouse models, which was accompanied by decreased levels of methylmalonate and Fgf21, and improved survival without HCC. With time, levels of transgene expression increased and methylmalonate progressively decreased, whereas the number of albumin-MMUT integrations and corrected hepatocytes in MMA mice increased, but not in similarly treated wild-type animals. Additionally, expression of MMUT in the setting of MMA conferred a selective growth advantage upon edited cells, which potentiates the therapeutic response. CONCLUSIONS In conclusion, our findings demonstrate that AAV-mediated, promoterless, nuclease-free genome editing at the albumin locus provides safe and durable therapeutic benefit in neonatally treated MMA mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Mark A. Kay
- Departments of Pediatrics and GeneticsStanford UniversityStanfordCA
| | - Adi Barzel
- Departments of Pediatrics and GeneticsStanford UniversityStanfordCA
- Department of Biochemistry and Molecular BiologyTel Aviv UniversityTel AvivIsrael
| | | |
Collapse
|
11
|
Forny P, Hörster F, Ballhausen D, Chakrapani A, Chapman KA, Dionisi‐Vici C, Dixon M, Grünert SC, Grunewald S, Haliloglu G, Hochuli M, Honzik T, Karall D, Martinelli D, Molema F, Sass JO, Scholl‐Bürgi S, Tal G, Williams M, Huemer M, Baumgartner MR. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: First revision. J Inherit Metab Dis 2021; 44:566-592. [PMID: 33595124 PMCID: PMC8252715 DOI: 10.1002/jimd.12370] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
Isolated methylmalonic acidaemia (MMA) and propionic acidaemia (PA) are rare inherited metabolic diseases. Six years ago, a detailed evaluation of the available evidence on diagnosis and management of these disorders has been published for the first time. The article received considerable attention, illustrating the importance of an expert panel to evaluate and compile recommendations to guide rare disease patient care. Since that time, a growing body of evidence on transplant outcomes in MMA and PA patients and use of precursor free amino acid mixtures allows for updates of the guidelines. In this article, we aim to incorporate this newly published knowledge and provide a revised version of the guidelines. The analysis was performed by a panel of multidisciplinary health care experts, who followed an updated guideline development methodology (GRADE). Hence, the full body of evidence up until autumn 2019 was re-evaluated, analysed and graded. As a result, 21 updated recommendations were compiled in a more concise paper with a focus on the existing evidence to enable well-informed decisions in the context of MMA and PA patient care.
Collapse
Affiliation(s)
- Patrick Forny
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
| | - Friederike Hörster
- Division of Neuropediatrics and Metabolic MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Diana Ballhausen
- Paediatric Unit for Metabolic Diseases, Department of Woman‐Mother‐ChildUniversity Hospital LausanneLausanneSwitzerland
| | - Anupam Chakrapani
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust and Institute for Child HealthNIHR Biomedical Research Center (BRC), University College LondonLondonUK
| | - Kimberly A. Chapman
- Rare Disease Institute, Children's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Carlo Dionisi‐Vici
- Division of Metabolism, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Sarah C. Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre‐University of FreiburgFaculty of MedicineFreiburgGermany
| | - Stephanie Grunewald
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust and Institute for Child HealthNIHR Biomedical Research Center (BRC), University College LondonLondonUK
| | - Goknur Haliloglu
- Department of Pediatrics, Division of Pediatric NeurologyHacettepe University Children's HospitalAnkaraTurkey
| | - Michel Hochuli
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, InselspitalBern University Hospital and University of BernBernSwitzerland
| | - Tomas Honzik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Daniela Karall
- Department of Paediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Diego Martinelli
- Division of Metabolism, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Femke Molema
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Jörn Oliver Sass
- Department of Natural Sciences & Institute for Functional Gene Analytics (IFGA)Bonn‐Rhein Sieg University of Applied SciencesRheinbachGermany
| | - Sabine Scholl‐Bürgi
- Department of Paediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Galit Tal
- Metabolic Unit, Ruth Rappaport Children's HospitalRambam Health Care CampusHaifaIsrael
| | - Monique Williams
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Martina Huemer
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
- Department of PaediatricsLandeskrankenhaus BregenzBregenzAustria
| | - Matthias R. Baumgartner
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
| |
Collapse
|
12
|
Sood V, Squires JE, Mazariegos GV, Vockley J, McKiernan PJ. Living Related Liver Transplantation for Metabolic Liver Diseases in Children. J Pediatr Gastroenterol Nutr 2021; 72:11-17. [PMID: 32969959 PMCID: PMC10657650 DOI: 10.1097/mpg.0000000000002952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT Metabolic liver diseases (MLDs) are a heterogeneous group of inherited conditions for which liver transplantation can provide definitive treatment. The limited availability of deceased donor organs means some who could benefit from transplant do not have this option. Living related liver transplant (LrLT) using relatives as donors has emerged as one solution to this problem. This technique is established worldwide, especially in Asian countries, with shorter waiting times and patient and graft survival rates equivalent to deceased donor liver transplantation. However, living donors are underutilized for MLDs in many western countries, possibly due to the fear of limited efficacy using heterozygous donors. We have reviewed the published literature and shown that the use of heterozygous donors for liver transplantation is safe for the majority of MLDs with excellent metabolic correction. The use of LrLT should be encouraged to complement deceased donor liver transplantation (DDLT) for treatment of MLDs.
Collapse
Affiliation(s)
- Vikrant Sood
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | | | - George V. Mazariegos
- Division of Pediatric Transplantation, Hillman Center for Pediatric Transplantation
| | - Jerry Vockley
- Center for Rare Disease Therapy, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | | |
Collapse
|
13
|
Yap S, Vara R, Morais A. Post-transplantation Outcomes in Patients with PA or MMA: A Review of the Literature. Adv Ther 2020; 37:1866-1896. [PMID: 32270363 PMCID: PMC7141097 DOI: 10.1007/s12325-020-01305-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Indexed: 12/25/2022]
Abstract
Introduction Liver transplantation is recognised as a treatment option for patients with propionic acidemia (PA) and those with methylmalonic acidemia (MMA) without renal impairment. In patients with MMA and moderate-to-severe renal impairment, combined liver–kidney transplantation is indicated. However, clinical experience of these transplantation options in patients with PA and MMA remains limited and fragmented. We undertook an overview of post-transplantation outcomes in patients with PA and MMA using the current available evidence. Methods A literature search identified publications on the use of transplantation in patients with PA and MMA. Publications were considered if they presented adequate demographic and outcome data from patients with PA or MMA. Publications that did not report any specific outcomes for patients or provided insufficient data were excluded. Results Seventy publications were identified of which 38 were full papers. A total of 373 patients underwent liver/kidney/combined liver–kidney transplantation for PA or MMA. The most typical reason for transplantation was recurrent metabolic decompensation. A total of 27 post-transplant deaths were reported in patients with PA [14.0% (27/194)]. For patients with MMA, 18 post-transplant deaths were reported [11% (18/167)]. A total of 62 complications were reported in 115 patients with PA (54%) with cardiomyopathy (n = 12), hepatic arterial thrombosis (HAT; n = 14) and viral infections (n = 12) being the most commonly reported. A total of 52 complications were reported in 106 patients with MMA (49%) with viral infections (n = 14) and renal failure/impairment (n = 10) being the most commonly reported. Conclusions Liver transplantation and combined liver–kidney transplantation appears to benefit some patients with PA or MMA, respectively, but this approach does not provide complete correction of the metabolic defect and some patients remain at risk from disease-related and transplantation-related complications, including death. Thus, all treatment avenues should be exhausted before consideration of organ transplantation and the benefits of this approach must be weighed against the risk of perioperative complications on an individual basis.
Collapse
|
14
|
Brassier A, Krug P, Lacaille F, Pontoizeau C, Krid S, Sissaoui S, Servais A, Arnoux JB, Legendre C, Charbit M, Scemla A, Francoz C, Benoist JF, Schiff M, Mochel F, Touati G, Broué P, Cano A, Tardieu M, Querciagrossa S, Grévent D, Boyer O, Dupic L, Oualha M, Girard M, Aigrain Y, Debray D, Capito C, Ottolenghi C, Salomon R, Chardot C, de Lonlay P. Long-term outcome of methylmalonic aciduria after kidney, liver, or combined liver-kidney transplantation: The French experience. J Inherit Metab Dis 2020; 43:234-243. [PMID: 31525265 DOI: 10.1002/jimd.12174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022]
Abstract
Organ transplantation is discussed in methylmalonic aciduria (MMA) for renal failure, and poor quality of life and neurological outcome. We retrospectively evaluated 23 French MMA patients after kidney (KT), liver-kidney (LKT), and liver transplantation (LT). Two patients died, one after LKT, one of hepatoblastoma after KT. One graft was lost early after KT. Of 18 evaluable patients, 12 previously on dialysis, 8 underwent KT (mean 12.5 years), 8 LKT (mean 7 years), and 2 LT (7 and 2.5 years). At a median follow-up of 7.3 (KT), 2.3 (LKT), and 1.0 years (LT), no metabolic decompensation occurred except in 1 KT. Plasma and urine MMA levels dramatically decreased, more after LKT. Protein intake was increased more significantly after LKT than KT. Enteral nutrition was stopped in 7/8 LKT, 1/8 KT. Early complications were frequent after LKT. Neurological disorders occurred in four LKT, reversible in one. Five years after KT, four patients had renal failure. The metabolic outcomes were much better after LKT than KT. LKT in MMA is difficult but improves the quality of life. KT will be rarely indicated. We need more long-term data to indicate early LT, in the hope to delay renal failure and prevent neurodevelopmental complications.
Collapse
Affiliation(s)
- Anaïs Brassier
- Reference Center of Inherited Metabolic Diseases, Hôpital Universitaire Necker-Enfants Malades, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Pauline Krug
- Reference Center of Pediatric Nephrology, Hôpital Universitaire Necker-Enfants Malades, APHP, Filière ORKID, ERKnet, University Paris Descartes, Paris, France
| | - Florence Lacaille
- Pediatric Hepatology Unit, Reference Center for rare pediatric liver diseases, Department of Gastroenterology-Hepatology-Nutrition, Hôpital Universitaire Necker-Enfants Malades, APHP, Filière Filfoie, ERN Transplantchild, Paris, France
| | - Clément Pontoizeau
- Reference Center of Inherited Metabolic Diseases, Hôpital Universitaire Necker-Enfants Malades, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
- Metabolic Biochemistry, Hôpital Universitaire Necker-Enfants Malades, APHP, Imagine Institute, Filière G2M, MetabERN, University Paris Descartes, Paris, France
| | - Saoussen Krid
- Reference Center of Pediatric Nephrology, Hôpital Universitaire Necker-Enfants Malades, APHP, Filière ORKID, ERKnet, University Paris Descartes, Paris, France
| | - Samira Sissaoui
- Pediatric Hepatology Unit, Reference Center for rare pediatric liver diseases, Department of Gastroenterology-Hepatology-Nutrition, Hôpital Universitaire Necker-Enfants Malades, APHP, Filière Filfoie, ERN Transplantchild, Paris, France
| | - Aude Servais
- Reference Center of Inherited Metabolic Diseases, Hôpital Universitaire Necker-Enfants Malades, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
- Unit of Adult Nephrology and Transplantation, Hôpital Universitaire Necker-Enfants Malades, APHP, Filière G2M, MetabERN, University Paris Descartes, Paris, France
| | - Jean-Baptiste Arnoux
- Reference Center of Inherited Metabolic Diseases, Hôpital Universitaire Necker-Enfants Malades, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| | - Christophe Legendre
- Unit of Adult Nephrology and Transplantation, Hôpital Universitaire Necker-Enfants Malades, APHP, Filière G2M, MetabERN, University Paris Descartes, Paris, France
| | - Marina Charbit
- Reference Center of Pediatric Nephrology, Hôpital Universitaire Necker-Enfants Malades, APHP, Filière ORKID, ERKnet, University Paris Descartes, Paris, France
| | - Anne Scemla
- Reference Center of Inherited Metabolic Diseases, Hôpital Universitaire Necker-Enfants Malades, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
- Unit of Adult Nephrology and Transplantation, Hôpital Universitaire Necker-Enfants Malades, APHP, Filière G2M, MetabERN, University Paris Descartes, Paris, France
| | - Claire Francoz
- Unit of Adult Hepatology and Transplantation, Hôpital Beaujon, Paris, France
| | - Jean-François Benoist
- Metabolic Biochemistry, Hôpital Universitaire Robert-Debré, APHP, Filière G2M, MetabERN, University Paris Sud, Paris, France
| | - Manuel Schiff
- Reference Center of Inherited Metabolic Diseases, Hôpital Universitaire Robert-Debré, APHP, Filière G2M, MetabERN, Paris, France
| | - Fanny Mochel
- Reference Center of Inherited Metabolic Diseases, Hôpital La Pitié Salpêtrière, APHP, Filière G2M, Paris, France
| | - Guy Touati
- Reference Center of Inherited Metabolic Diseases, Hôpital Universitaire Necker-Enfants Malades, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
- Reference Center of Inherited Metabolic Diseases, Hôpital Purpan, Filière G2M, Toulouse, France
| | - Pierre Broué
- Reference Center of Inherited Metabolic Diseases, Hôpital Purpan, Filière G2M, Toulouse, France
| | - Aline Cano
- Reference Center of Inherited Metabolic Diseases, Hôpital La Timone, Filière G2M, MetabERN, Marseille, France
| | - Marine Tardieu
- Reference Center of Inherited Metabolic Diseases, CHRU, Filière G2M, Tours, France
| | - Stefania Querciagrossa
- Department of Anesthesia, Hôpital Universitaire Necker-Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - David Grévent
- Department of Radiology, Hôpital Universitaire Necker-Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Olivia Boyer
- Reference Center of Pediatric Nephrology, Hôpital Universitaire Necker-Enfants Malades, APHP, Filière ORKID, ERKnet, University Paris Descartes, Paris, France
| | - Laurent Dupic
- Intensive Care Unit, Hôpital Universitaire Necker-Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Mehdi Oualha
- Intensive Care Unit, Hôpital Universitaire Necker-Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Muriel Girard
- Pediatric Hepatology Unit, Reference Center for rare pediatric liver diseases, Department of Gastroenterology-Hepatology-Nutrition, Hôpital Universitaire Necker-Enfants Malades, APHP, Filière Filfoie, ERN Transplantchild, Paris, France
| | - Yves Aigrain
- Unit of Pediatric Surgery and Transplantation, Hôpital Universitaire Necker-Enfants Malades, APHP, Filière Filfoie, ERN Transplantchild, University Paris Descartes, Paris, France
| | - Dominique Debray
- Pediatric Hepatology Unit, Reference Center for rare pediatric liver diseases, Department of Gastroenterology-Hepatology-Nutrition, Hôpital Universitaire Necker-Enfants Malades, APHP, Filière Filfoie, ERN Transplantchild, Paris, France
| | - Carmen Capito
- Unit of Pediatric Surgery and Transplantation, Hôpital Universitaire Necker-Enfants Malades, APHP, Filière Filfoie, ERN Transplantchild, University Paris Descartes, Paris, France
| | - Chris Ottolenghi
- Reference Center of Inherited Metabolic Diseases, Hôpital Universitaire Necker-Enfants Malades, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
- Metabolic Biochemistry, Hôpital Universitaire Necker-Enfants Malades, APHP, Imagine Institute, Filière G2M, MetabERN, University Paris Descartes, Paris, France
| | - Rémi Salomon
- Reference Center of Pediatric Nephrology, Hôpital Universitaire Necker-Enfants Malades, APHP, Filière ORKID, ERKnet, University Paris Descartes, Paris, France
| | - Christophe Chardot
- Unit of Pediatric Surgery and Transplantation, Hôpital Universitaire Necker-Enfants Malades, APHP, Filière Filfoie, ERN Transplantchild, University Paris Descartes, Paris, France
| | - Pascale de Lonlay
- Reference Center of Inherited Metabolic Diseases, Hôpital Universitaire Necker-Enfants Malades, APHP, Imagine Institute, Filière G2M, MetabERN, INEM, University Paris Descartes, Paris, France
| |
Collapse
|
15
|
Jiang YZ, Shi Y, Shi Y, Gan LX, Kong YY, Zhu ZJ, Wang HB, Sun LY. Methylmalonic and propionic acidemia among hospitalized pediatric patients: a nationwide report. Orphanet J Rare Dis 2019; 14:292. [PMID: 31842933 PMCID: PMC6915987 DOI: 10.1186/s13023-019-1268-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Methylmalonic acidemia (MMA) and propionic acidemia (PA) are two kinds of diseases caused by inborn errors of metabolism. So far, the epidemiological data on them are limited in China. The aim of our study is to investigate the proportion and characteristics of hospitalized pediatric patients with MMA and PA in China. METHODS The data in this study were obtained from the Hospital Quality Monitoring System, a national inpatient database in China, with information on the patients hospitalized during the period from 2013 to 2017. We identified the data related to the patients who were under 18 years old and were diagnosed with MMA/PA, and extracted the information on demographic characteristics, hospital location, total cost and other related clinical presentations from the data. RESULTS Among all hospitalized pediatric patients with liver diseases, there were increasing trends in the proportion of individuals diagnosed with MMA or PA during the period from 2013 (0.76% for MMA; 0.13% for PA) to 2017 (1.61% for MMA; 0.32% for PA). For both MMA and PA, children under 2-year-old accounted for the highest proportion. The median of total cost per hospitalization was relatively high (RMB 7388.53 for MMA; RMB 4999.66 for PA). Moreover, most patients hospitalized in tertiary class A hospitals (MMA: 80.96%, PA: 76.21%); and a majority of pediatric patients admitted in the hospitals in Shanghai and Beijing are from outside districts. Manifestations of nervous system-related symptoms, and metabolic acidosis or anemia in laboratory findings were more common during hospitalization. CONCLUSIONS The study is the first nationwide one in providing epidemiological and clinical information on hospitalized pediatric patients with MMA/PA. An increasing hospitalization with various presentations and a heavy financial burden were observed. In addition, geographically, the medical resources in China have been unevenly distributed.
Collapse
Affiliation(s)
- Yi-Zhou Jiang
- National Clinical Research Centre for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, 95# Yong-an Road, Xi Cheng District, Beijing, 100050, China
| | - Yu Shi
- National Clinical Research Centre for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, 95# Yong-an Road, Xi Cheng District, Beijing, 100050, China
| | - Ying Shi
- China Standard Medical Information Research Centre, Shenzhen, Guangdong, China
| | - Lan-Xia Gan
- China Standard Medical Information Research Centre, Shenzhen, Guangdong, China
| | - Yuan-Yuan Kong
- National Clinical Research Centre for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, 95# Yong-an Road, Xi Cheng District, Beijing, 100050, China
| | - Zhi-Jun Zhu
- National Clinical Research Centre for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, 95# Yong-an Road, Xi Cheng District, Beijing, 100050, China.
| | - Hai-Bo Wang
- Clinical Trial Unit, Precision Medicine Institute, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, No.58, Zhong Shan Er Lu, Guangzhou, 510080, China.
| | - Li-Ying Sun
- National Clinical Research Centre for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, 95# Yong-an Road, Xi Cheng District, Beijing, 100050, China.
| |
Collapse
|
16
|
Pillai NR, Stroup BM, Poliner A, Rossetti L, Rawls B, Shayota BJ, Soler-Alfonso C, Tunuguntala HP, Goss J, Craigen W, Scaglia F, Sutton VR, Himes RW, Burrage LC. Liver transplantation in propionic and methylmalonic acidemia: A single center study with literature review. Mol Genet Metab 2019; 128:431-443. [PMID: 31757659 PMCID: PMC6898966 DOI: 10.1016/j.ymgme.2019.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Organic acidemias, especially propionic acidemia (PA) and methylmalonic acidemia (MMA), may manifest clinically within the first few hours to days of life. The classic presentation in the newborn period includes metabolic acidosis, hyperlactatemia, and hyperammonemia that is precipitated by unrestricted protein intake. Implementation of newborn screening to diagnose and initiate early treatment has facilitated a reduction in neonatal mortality and improved survival. Despite early diagnosis and appropriate management, these individuals are prone to have recurrent episodes of metabolic acidosis and hyperammonemia resulting in frequent hospitalizations. Liver transplantation (LT) has been proposed as a treatment modality to reduce metabolic decompensations which are not controlled by medical management. Published reports on the outcome of LT show heterogeneous results regarding clinical and biochemical features in the post transplantation period. As a result, we evaluated the outcomes of LT in our institution and compared it to the previously published data. STUDY DESIGN/METHODS We performed a retrospective chart review of nine individuals with PA or MMA who underwent LT and two individuals with MMA who underwent LT and kidney transplantation (KT). Data including number of hospitalizations, laboratory measures, cardiac and neurological outcomes, dietary protein intake, and growth parameters were collected. RESULTS The median age of transplantation for subjects with MMA was 7.2 years with a median follow up of 4.3 years. The median age of transplantation for subjects with PA was 1.9 years with a median follow up of 5.4 years. The survival rate at 1 year and 5 years post-LT was 100%. Most of our subjects did not have any episodes of hyperammonemia or pancreatitis post-LT. There was significant reduction in plasma glycine post-LT. One subject developed mild elevation in ammonia post-LT on an unrestricted protein diet, suggesting that protein restriction may be indicated even after LT. CONCLUSION In a large single center study of LT in MMA and PA, we show that LT may reduce the incidence of metabolic decompensation. Moreover, our data suggest that LT may be associated with reduced number of hospitalizations and improved linear growth in individuals with PA and MMA.
Collapse
Affiliation(s)
- Nishitha R Pillai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Bridget M Stroup
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Anna Poliner
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Linda Rossetti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | | | - Brian J Shayota
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Hari Priya Tunuguntala
- Texas Children's Hospital, Houston, TX, USA; Section of Pediatric Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - John Goss
- Texas Children's Hospital, Houston, TX, USA; Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Houston, TX, USA
| | - William Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong Kong Special Administrative Region
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Ryan Wallace Himes
- Texas Children's Hospital, Houston, TX, USA; Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Houston, TX, USA.
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
17
|
Martini PGV, Guey LT. A New Era for Rare Genetic Diseases: Messenger RNA Therapy. Hum Gene Ther 2019; 30:1180-1189. [PMID: 31179759 DOI: 10.1089/hum.2019.090] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Exogenous delivery of messenger RNA (mRNA) is emerging as a new class of medicine with broad applicability including the potential to treat rare monogenic disorders. Recent advances in mRNA technology, including modifications to the mRNA itself along with improvements to the delivery vehicle, have transformed the utility of mRNA as a potential therapy to restore or replace different types of therapeutic proteins. Preclinical proof-of-concept has been demonstrated for mRNA therapy for three different rare metabolic disorders: methylmalonic acidemia, acute intermittent porphyria, and Fabry disease. Herein, we review those preclinical efficacy and safety studies in multiple animal models. For all three disorders, mRNA therapy restored functional protein to therapeutically relevant levels in target organs, led to sustained and reproducible pharmacology following each dose administration of mRNA, and was well tolerated as supported by liver function tests evaluated in animal models including nonhuman primates. These data provide compelling support for the clinical development of mRNA therapy as a treatment for various rare metabolic disorders.
Collapse
Affiliation(s)
| | - Lin T Guey
- Rare Diseases, Moderna, Inc., Cambridge, Massachusetts
| |
Collapse
|
18
|
Berraondo P, Martini PGV, Avila MA, Fontanellas A. Messenger RNA therapy for rare genetic metabolic diseases. Gut 2019; 68:1323-1330. [PMID: 30796097 DOI: 10.1136/gutjnl-2019-318269] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
Abstract
Decades of intense research in molecular biology and biochemistry are fructifying in the emergence of therapeutic messenger RNAs (mRNA) as a new class of drugs. Synthetic mRNAs can be sequence optimised to improve translatability into proteins, as well as chemically modified to reduce immunogenicity and increase chemical stability using naturally occurring uridine modifications. These structural improvements, together with the development of safe and efficient vehicles that preserve mRNA integrity in circulation and allow targeted intracellular delivery, have paved the way for mRNA-based therapeutics. Indeed, mRNAs formulated into biodegradable lipid nanoparticles are currently being tested in preclinical and clinical studies for multiple diseases including cancer immunotherapy and vaccination for infectious diseases. An emerging application of mRNAs is the supplementation of proteins that are not expressed or are not functional in a regulated and tissue-specific manner. This so-called 'protein replacement therapy' could represent a solution for genetic metabolic diseases currently lacking effective treatments. Here we summarise this new class of drugs and discuss the preclinical evidence supporting the potential of liver-mediated mRNA therapy for three rare genetic conditions: methylmalonic acidaemia, acute intermittent porphyria and ornithine transcarbamylase deficiency.
Collapse
Affiliation(s)
- Pedro Berraondo
- Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (Cima), University of Navarra, Pamplona, Navarra, Spain.,Centro de Investigación Biomédica en Red de Cáncer, CIBERonc, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria de Navarra IdiSNA, Pamplona, Spain
| | | | - Matias A Avila
- Instituto de Investigación Sanitaria de Navarra IdiSNA, Pamplona, Spain.,Hepatology Program, CIMA, University of Navarra, Pamplona, Navarra, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Fontanellas
- Instituto de Investigación Sanitaria de Navarra IdiSNA, Pamplona, Spain.,Hepatology Program, CIMA, University of Navarra, Pamplona, Navarra, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
19
|
Noone D, Riedl M, Atkison P, Avitzur Y, Sharma AP, Filler G, Siriwardena K, Prasad C. Kidney disease and organ transplantation in methylmalonic acidaemia. Pediatr Transplant 2019; 23:e13407. [PMID: 30973671 DOI: 10.1111/petr.13407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/24/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES MMA is associated with chronic tubulointerstitial nephritis and a progressive decline in GFR. Optimal management of these children is uncertain. Our objectives were to document the pre-, peri-, and post-transplant course of all children with MMA who underwent liver or combined liver-kidney transplant in our centers. DESIGN AND METHODS Retrospective chart review of all cases of MMA who underwent organ transplantation over the last 10 years. RESULTS Five children with MMA underwent liver transplant (4/5) and combined liver-kidney transplant (1/5). Three were Mut0 and two had a cobalamin B disorder. Four of five were transplanted between ages 3 and 5 years. Renal dysfunction prior to transplant was seen in 2/5 patients. Post-transplant (one liver transplant and one combined transplant) renal function improved slightly when using creatinine-based GFR formula. We noticed in 2 patients a big discrepancy between creatinine- and cystatin C-based GFR calculations. One patient with no renal disease developed renal failure post-liver transplantation. Serum MMA levels have decreased in all to <300 μmol/L. Four patients remain on low protein diet, carnitine, coenzyme Q, and vitamin E post-transplant. CONCLUSIONS MMA is a complex metabolic disorder. Renal disease can continue to progress post-liver transplant and close follow-up is warranted. More research is needed to clarify best screening GFR method in patients with MMA. Whether liver transplant alone, continued protein restriction, or the addition of antioxidants post-transplant can halt the progression of renal disease remains unclear.
Collapse
Affiliation(s)
- Damien Noone
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Magdalena Riedl
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Paul Atkison
- Department of Paediatrics, Western University, London, Ontario, Canada
| | - Yaron Avitzur
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Division of Gastroenterology, Hepatology and Nutrition, University of Alberta/Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Ajay P Sharma
- Department of Paediatrics, Western University, London, Ontario, Canada
| | - Guido Filler
- Department of Paediatrics, Western University, London, Ontario, Canada
| | - Komudi Siriwardena
- Department of Medical Genetics, University of Alberta/Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Chitra Prasad
- Department of Paediatrics, Western University, London, Ontario, Canada
| |
Collapse
|
20
|
Chu TH, Chien YH, Lin HY, Liao HC, Ho HJ, Lai CJ, Chiang CC, Lin NC, Yang CF, Hwu WL, Lee NC, Lin SP, Liu CS, Hu RH, Ho MC, Niu DM. Methylmalonic acidemia/propionic acidemia - the biochemical presentation and comparing the outcome between liver transplantation versus non-liver transplantation groups. Orphanet J Rare Dis 2019; 14:73. [PMID: 30940196 PMCID: PMC6444613 DOI: 10.1186/s13023-019-1045-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/12/2019] [Indexed: 01/13/2023] Open
Abstract
Background Most patients with isolated methylmalonic acidemia (MMA) /propionic acidemia (PA) presenting during the neonatal period with acute metabolic distress are at risk for death and significant neurodevelopmental disability. The nationwide newborn screening for MMA/PA has been in place in Taiwan from January, 2000 and data was collected until December, 2016. Results During the study period, 3,155,263 newborns were screened. The overall incidence of MMA mutase type cases was 1/121,356 (n = 26), 1 cobalamin B was detected and that for PA cases (n = 4) was 1/788,816. The time of referral is 8.8 days for MMA patients, and 7.5 days for PA patients. The MMA mutase type patients have higher AST, ALT, and NH3 values as well as a lower pH value (p < 0.05). The mean age for liver transplantation (LT) is 402 days (range from 0.6–6.7 yr) with 16 out of 20 cases (80.0%) using living donors. The mean admission length shortened from 90.6 days/year (pre-LT) to 5.3 days/year (at 3rd year post-LT) (p < 0.0005). Similarly, the tube feeding ratio decreased from 67.8 to 0.50% (p < 0.00005). The anxiety level of the caregiver was reduced from 33.4 to 27.2 after LT (p = 0.001) and the DQ/IQ performance of the patients was improved after LT from 50 to 60.1 (p = 0.07). Conclusion MMA/PA patients with LT do survive and have reduced admission time, reduced tube feeding and the caregiver is less anxious.
Collapse
Affiliation(s)
- Tzu-Hung Chu
- Division of Genetics and Metabolism, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,Taiwan Medican Mission in Eswatini, Taipei, Taiwan, Republic of China
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiang-Yu Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan.,Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Hsuan-Chieh Liao
- Newborn Screening Center, The Chinese Foundation of Health, Taipei, Taiwan
| | - Huey-Jane Ho
- Section of Newborn screening, Taipei Institute of Pathology, Taipei, Taiwan
| | - Chih-Jou Lai
- Division of Rehabilitation, Department of Medical Affairs, Taipei Municipal Gan-Dau Hospital (Managed by Taipei Veterans General Hospital), Taipei, Taiwan
| | - Chuan-Chi Chiang
- Newborn Screening Center, The Chinese Foundation of Health, Taipei, Taiwan
| | - Niang-Cheng Lin
- Division of Pediatric Surgery, Department of Surgery, Taipei Veterans General, Taipei, Taiwan
| | - Chia-Feng Yang
- Division of Genetics and Metabolism, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Environmental And Occupational Health Sciences, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuan-Pei Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chin-Su Liu
- Division of Pediatric Surgery, Department of Surgery, Taipei Veterans General, Taipei, Taiwan
| | - Rey-Heng Hu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Chih Ho
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Dau-Ming Niu
- Division of Genetics and Metabolism, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. .,The Medical Science & Techonology Building, (Room 8055) No. 201, Sec.2, Shih-Pai Road, Taipei, Taiwan, Republic of China.
| |
Collapse
|
21
|
|
22
|
Jiang YZ, Sun LY. The Value of Liver Transplantation for Methylmalonic Acidemia. Front Pediatr 2019; 7:87. [PMID: 30949461 PMCID: PMC6437036 DOI: 10.3389/fped.2019.00087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction: MMA is a rare autosomal recessive disorder with the manifestation of recurrent and severe episodes of acute metabolic decompensation or a variety of long-term complications that require timely treatment. While conventional long-term medical and dietary management cannot prevent rapid progression of conditions in patients with severe complications, LT, or CKLT has become an option. Methods: We reviewed the literature for MMA patients undergoing LT/CKLT published since 2006, and data on metabolic decompensation status, protein dietary, neurological damage, renal insufficiency, and developmental delay before and after transplantations were compared to evaluate the clinical value of the procedure in the treatment of MMA. Results: To date, some successful LTs/CKLT procedures have prolonged survival and resulted in better quality of life in patients (lowered urine/plasma MMA levels but still much higher than normal, reduced onset of metabolic stroke, occasional improved developmental delay, and relaxed protein diet), although these procedures cannot reverse neurological damage or thoroughly stop the progress of complications, such as renal dysfunction. Conclusion: LT is the only effective treatment for MMA patients with recurrent metabolic decompensation. However, it is still possible that neurological and renal damage remains irreversible. Metabolism-correcting medications should be administered even after surgery.
Collapse
Affiliation(s)
- Yi-Zhou Jiang
- Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Liver Transplantation Center, Clinical Center for Pediatric Liver Transplantation, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Li-Ying Sun
- Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Liver Transplantation Center, Clinical Center for Pediatric Liver Transplantation, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| |
Collapse
|
23
|
Critelli K, McKiernan P, Vockley J, Mazariegos G, Squires RH, Soltys K, Squires JE. Liver Transplantation for Propionic Acidemia and Methylmalonic Acidemia: Perioperative Management and Clinical Outcomes. Liver Transpl 2018; 24:1260-1270. [PMID: 30080956 DOI: 10.1002/lt.25304] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
Propionic acidemia (PA) and methylmalonic acidemia (MMA) comprise the most common organic acidemias and account for profound morbidity in affected individuals. Although liver transplantation (LT) has emerged as a bulk enzyme-replacement strategy to stabilize metabolically fragile patients, it is not a metabolic cure because patients remain at risk for disease-related complications. We retrospectively studied LT and/or liver-kidney transplant in 9 patients with PA or MMA with additional focus on the optimization of metabolic control and management in the perioperative period. Metabolic crises were common before transplant. By implementing a strategy of carbohydrate minimization with gradual but early lipid and protein introduction, lactate levels significantly improved over the perioperative period (P < 0.001). Posttransplant metabolic improvement is demonstrated by improvements in serum glycine levels (for PA; P < 0.001 × 10-14 ), methylmalonic acid levels (for MMA; P < 0.001), and ammonia levels (for PA and MMA; P < 0.001). Dietary restriction remained after transplant. However, no further metabolic crises have occurred. Other disease-specific comorbidities such as renal dysfunction and cardiomyopathy stabilized and improved. In conclusion, transplant can provide a strategy for altering the natural history of PA and MMA providing stability to a rare but metabolically brittle population. Nutritional management is critical to optimize patient outcomes.
Collapse
Affiliation(s)
- Kristen Critelli
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Patrick McKiernan
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA.,Center for Rare Disease Therapy, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Jerry Vockley
- Center for Rare Disease Therapy, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA.,Division of Medical Genetics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - George Mazariegos
- Center for Rare Disease Therapy, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA.,Thomas E. Starzl Transplantation Institute, Hillman Center for Pediatric Transplantation, Department of Transplant Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Robert H Squires
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA.,Center for Rare Disease Therapy, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Kyle Soltys
- Center for Rare Disease Therapy, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA.,Thomas E. Starzl Transplantation Institute, Hillman Center for Pediatric Transplantation, Department of Transplant Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - James E Squires
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA.,Center for Rare Disease Therapy, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
24
|
Systemic Messenger RNA Therapy as a Treatment for Methylmalonic Acidemia. Cell Rep 2017; 21:3548-3558. [PMID: 29262333 PMCID: PMC9667413 DOI: 10.1016/j.celrep.2017.11.081] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/23/2017] [Accepted: 11/22/2017] [Indexed: 01/11/2023] Open
Abstract
Isolated methylmalonic acidemia/aciduria (MMA) is a devastating metabolic disorder with poor outcomes despite current medical treatments. Like other mitochondrial enzymopathies, enzyme replacement therapy (ERT) is not available, and although promising, AAV gene therapy can be limited by pre-existing immunity and has been associated with genotoxicity in mice. To develop a new class of therapy for MMA, we generated a 5-methoxyU-modified codon-optimized mRNA encoding human methylmalonyl-CoA mutase (hMUT), the enzyme most frequently mutated in MMA, and encapsulated it into biodegradable lipid nanoparticles (LNPs). Intravenous (i.v.) administration of hMUT mRNA in two different mouse models of MMA resulted in a 75%–85% reduction in plasma methylmalonic acid and was associated with increased hMUT protein expression and activity in liver. Repeat dosing of hMUT mRNA reduced circulating metabolites and dramatically improved survival and weight gain. Additionally, repeat i.v. dosing did not increase markers of liver toxicity or inflammation in heterozygote MMA mice. An et al. find that systemically delivered LNP-encapsulated mRNA results in hepatic protein expression. hMUT mRNA expresses functional mitochondrial MUT enzyme, and MMA mouse models show a metabolic and clinical response after mRNA therapy.
Collapse
|