1
|
Singh PR, Gupta A, Singh AP, Jaiswal J, Sinha RP. Effects of ultraviolet radiation on cellular functions of the cyanobacterium Synechocystis sp. PCC 6803 and its recovery under photosynthetically active radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112866. [PMID: 38364711 DOI: 10.1016/j.jphotobiol.2024.112866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Cyanobacteria are photosynthetic organisms and challenged by large number of stresses, especially by ultraviolet radiation (UVR). UVR primarily impacts lipids, proteins, DNA, photosynthetic performance, which lowers the fitness and production of cyanobacteria. UVR has a catastrophic effect on cyanobacterial cells and eventually leads to cell death. UVR tolerance in the Synechocystis was poorly studied. Therefore, we irradiated Synechocystis sp. PCC 6803 to varying hours of photosynthetically active radiations (PAR), PAR + UV-A (PA), and PAR + UV-A + UV-B (PAB) for 48 h. To study the tolerance of Synechocystis sp. PCC 6803 against different UVR. The study shows that Chl a and total carotenoids content increased up to 36 h in PAR and PA, after 36 h a decrease was observed. PC increased up to 4-fold in 48 h of PA irradiation compared to 12 h. Maximum increase in ROS was observed under 48 h PAB i.e., 5.8-fold. Flowcytometry (FCM) based analysis shows that 25% of cells do not give fluorescence of Chl a and H2DCFH. In case of cell viability 10% cells were found to be non-viable in 48 h of PAB irradiance compared to 12 h. From the above study it was found that FCM-based approaches would provide a better understanding of the variations that occurred within the Synechocystis cells compared to fluorescence microscopy-based methods.
Collapse
Affiliation(s)
- Prashant R Singh
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Amit Gupta
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ashish P Singh
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Jyoti Jaiswal
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rajeshwar P Sinha
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Gichuki S, Arumanayagam AS, Tabatabai B, Yalcin YS, Wyatt L, Sitther V. Augmentation of the Photoreactivation Gene in Fremyella diplosiphon Confers UV-B Tolerance. ACS OMEGA 2022; 7:35092-35101. [PMID: 36211070 PMCID: PMC9535648 DOI: 10.1021/acsomega.2c03938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/12/2022] [Indexed: 06/08/2023]
Abstract
In spite of the enormous potential of cyanobacteria as a renewable energy source, elevated UV exposure is a major impediment to their commercial viability and productivity. Fremyella diplosiphon is a widely explored cyanobacterium with great biofuel capacity due to its high lipid content. To enhance UV stress tolerance in this species, we overexpressed the photoreactivation gene (phr A) that encodes for photolyase DNA repair enzyme in the wild type F. diplosiphon (B481-WT) by genetic transformation. Our efforts resulted in a transformant (B481-ViAnSa) with a 3808-fold increase in the phr A mRNA transcript level and enhanced growth under UV-B stress. Additionally, DNA strand breaks in the transformant were significantly lower after 12 and 16 h of UV radiation, with significantly higher dsDNA recovery in B481-ViAnSa (98.1%) compared to that in B481-WT (81.5%) at 48 h post irradiation. Photosystem II recovery time in the transformant was significantly reduced (48 h) compared to that in the wild type (72 h). Evaluation of high-value fatty acid methyl esters (FAMEs) revealed methyl palmitate, the methyl ester of hexadecenoic acid (C16:0), to be the most dominant component, accounting for 53.43% of the identified FAMEs in the transformant. Results of the study offer a promising approach to enhance UV tolerance in cyanobacteria, thus paving the way to large-scale open or closed pond cultivation for commercial biofuel production.
Collapse
Affiliation(s)
- Samson
M. Gichuki
- Department
of Biology, Morgan State University, Baltimore, Maryland 21251, United States
| | - Anithachristy S. Arumanayagam
- Department
of Pathology and Genomic Medicine, Houston
Methodist Hospital Research Institute, Houston, Texas 77030, United States
| | - Behnam Tabatabai
- Department
of Biology, Morgan State University, Baltimore, Maryland 21251, United States
| | - Yavuz S. Yalcin
- Department
of Biology, Morgan State University, Baltimore, Maryland 21251, United States
| | - LaDonna Wyatt
- Department
of Biology, Morgan State University, Baltimore, Maryland 21251, United States
| | - Viji Sitther
- Department
of Biology, Morgan State University, Baltimore, Maryland 21251, United States
| |
Collapse
|
3
|
Bishoyi AK, Sahoo CR, Padhy RN. Recent progression of cyanobacteria and their pharmaceutical utility: an update. J Biomol Struct Dyn 2022; 41:4219-4252. [PMID: 35412441 DOI: 10.1080/07391102.2022.2062051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyanobacteria (blue-green algae) are Gram-negative photosynthetic eubacteria that are found everywhere. This largest group of photosynthetic prokaryotes is rich in structurally novel and biologically active compounds; several of which have been utilized as prospective drugs against cancer and other ailments, as well. Consequently, the integument of nanoparticles-synthetic approaches in cyanobacterial extracts should increase pharmacological activity. Moreover, silver nanoparticles (AgNPs) are small materials with diameters below 100 nm that are classified into different classes based on their forms, sizes, and characteristics. Indeed, the biosynthesized AgNPs are generated with a variety of organisms, algae, plants, bacteria, and a few others, for the medicinal purposes, as the bioactive compounds of curio and some proteins from cyanobacteria have the potentiality in the treatment of a wide range of infectious diseases. The critical focus of this review is on the antimicrobial, antioxidant, and anticancer properties of cyanobacteria. This would be useful in the pharmaceutical industries in the future drug development cascades.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Saad MH, El-Fakharany EM, Salem MS, Sidkey NM. The use of cyanobacterial metabolites as natural medical and biotechnological tools: review article. J Biomol Struct Dyn 2022; 40:2828-2850. [PMID: 33164673 DOI: 10.1080/07391102.2020.1838948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Cyanobacteria are photosynthetic, Gram-negative bacteria that are considered one of the most morphologically diverse groups of prokaryotes with a chief role in the global nutrient cycle as they fixed gaseous carbon dioxide and nitrogen to organic materials. Cyanobacteria have significant adaptability to survive in harsh conditions due to they have different metabolic pathways with unique compounds, effective defensive mechanisms, and wide distribution in different habitats. Besides, they are successfully used to face different challenges in several fields, including industry, aquaculture, agriculture, food, dairy products, pollution control, bioenergy, and pharmaceutics. Analysis of 680 publications revealed that nearly 1630 cyanobacterial molecules belong to different families have a wide range of applications in several fields, including cosmetology, agriculture, pharmacology (immunosuppressant, anticancer, antibacterial, antiprotozoal, antifungal, anti-inflammatory, antimalarial, anticoagulant, anti-tuberculosis, antitumor, and antiviral activities) and food industry. In this review, we nearly mentioned 92 examples of cyanobacterial molecules that are considered the most relevant effects related to anti-inflammatory, antioxidant, antimicrobial, antiviral, and anticancer activities as well as their roles that can be used in various biotechnological fields. These cyanobacterial products might be promising candidates for fighting various diseases and can be used in managing viral and microbial infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt
| | - Marwa S Salem
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| |
Collapse
|
5
|
Lhee D, Lee J, Ettahi K, Cho CH, Ha JS, Chan YF, Zelzion U, Stephens TG, Price DC, Gabr A, Nowack ECM, Bhattacharya D, Yoon HS. Amoeba Genome Reveals Dominant Host Contribution to Plastid Endosymbiosis. Mol Biol Evol 2021; 38:344-357. [PMID: 32790833 PMCID: PMC7826189 DOI: 10.1093/molbev/msaa206] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Eukaryotic photosynthetic organelles, plastids, are the powerhouses of many aquatic and terrestrial ecosystems. The canonical plastid in algae and plants originated >1 Ga and therefore offers limited insights into the initial stages of organelle evolution. To address this issue, we focus here on the photosynthetic amoeba Paulinella micropora strain KR01 (hereafter, KR01) that underwent a more recent (∼124 Ma) primary endosymbiosis, resulting in a photosynthetic organelle termed the chromatophore. Analysis of genomic and transcriptomic data resulted in a high-quality draft assembly of size 707 Mb and 32,361 predicted gene models. A total of 291 chromatophore-targeted proteins were predicted in silico, 208 of which comprise the ancestral organelle proteome in photosynthetic Paulinella species with functions, among others, in nucleotide metabolism and oxidative stress response. Gene coexpression analysis identified networks containing known high light stress response genes as well as a variety of genes of unknown function (“dark” genes). We characterized diurnally rhythmic genes in this species and found that over 49% are dark. It was recently hypothesized that large double-stranded DNA viruses may have driven gene transfer to the nucleus in Paulinella and facilitated endosymbiosis. Our analyses do not support this idea, but rather suggest that these viruses in the KR01 and closely related P. micropora MYN1 genomes resulted from a more recent invasion.
Collapse
Affiliation(s)
- Duckhyun Lhee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu, Korea
| | - Khaoula Ettahi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ji-San Ha
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ya-Fan Chan
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ
| | - Udi Zelzion
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ
| | - Dana C Price
- Department of Entomology, Center for Vector Biology, Rutgers University, New Brunswick, NJ
| | - Arwa Gabr
- Microbiology and Molecular Genetics Graduate Program, Rutgers University, New Brunswick, NJ
| | - Eva C M Nowack
- Institut für Mikrobielle Zellbiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
6
|
Amador-Castro F, Rodriguez-Martinez V, Carrillo-Nieves D. Robust natural ultraviolet filters from marine ecosystems for the formulation of environmental friendlier bio-sunscreens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141576. [PMID: 33370909 DOI: 10.1016/j.scitotenv.2020.141576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 05/20/2023]
Abstract
Ultraviolet radiation (UVR) has detrimental effects on human health. It induces oxidative stress, deregulates signaling mechanisms, and produces DNA mutations, factors that ultimately can lead to the development of skin cancer. Therefore, reducing exposure to UVR is of major importance. Among available measures to diminish exposure is the use of sunscreens. However, recent studies indicate that several of the currently used filters have adverse effects on marine ecosystems and human health. This situation leads to the search for new photoprotective compounds that, apart from offering protection, are environmentally friendly. The answer may lie in the same marine ecosystems since molecules such as mycosporine-like amino acids (MAAs) and scytonemin can serve as the defense system of some marine organisms against UVR. This review will discuss the harmful effects of UVR and the mechanisms that microalgae have developed to cope with it. Then it will focus on the biological distribution, characteristics, extraction, and purification methods of MAAs and scytonemin molecules to finally assess its potential as new filters for sunscreen formulation.
Collapse
Affiliation(s)
- Fernando Amador-Castro
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico
| | - Veronica Rodriguez-Martinez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico.
| |
Collapse
|
7
|
Mahdavi S, Razeghi J, Pazhouhandeh M, Movafeghi A, Kosari-Nasab M, Kianianmomeni A. Characterization of two predicted DASH-related proteins from the green alga Volvox carteri provides new insights into their light-mediated transcript regulation and DNA repair activity. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Resilience and self-regulation processes of microalgae under UV radiation stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2019.100322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Transcription in cyanobacteria: a distinctive machinery and putative mechanisms. Biochem Soc Trans 2019; 47:679-689. [DOI: 10.1042/bst20180508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/11/2019] [Accepted: 02/04/2019] [Indexed: 02/03/2023]
Abstract
Abstract
Transcription in cyanobacteria involves several fascinating features. Cyanobacteria comprise one of the very few groups in which no proofreading factors (Gre homologues) have been identified. Gre factors increase the efficiency of RNA cleavage, therefore helping to maintain the fidelity of the RNA transcript and assist in the resolution of stalled RNAPs to prevent genome damage. The vast majority of bacterial species encode at least one of these highly conserved factors and so their absence in cyanobacteria is intriguing. Additionally, the largest subunit of bacterial RNAP has undergone a split in cyanobacteria to form two subunits and the SI3 insertion within the integral trigger loop element is roughly 3.5 times larger than in Escherichia coli. The Rho termination factor also appears to be absent, leaving cyanobacteria to rely solely on an intrinsic termination mechanism. Furthermore, cyanobacteria must be able to respond to environment signals such as light intensity and tightly synchronise gene expression and other cell activities to a circadian rhythm.
Collapse
|
10
|
Aigner S, Holzinger A, Karsten U, Kranner I. The freshwater red alga Batrachospermum turfosum (Florideophyceae) can acclimate to a wide range of light and temperature conditions. PHYCOLOGIA 2017; 52:238-249. [PMID: 28413232 PMCID: PMC5390863 DOI: 10.1080/09670262.2016.1274430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/11/2016] [Accepted: 12/03/2016] [Indexed: 05/22/2023]
Abstract
Batrachospermum turfosum Bory is one of the generalists among the few red algae that have adapted to freshwater habitats, occurring in a variety of primarily shaded, nutrient-poor micro-habitats with lotic (running) or lentic (standing) waters. Seasonal variations in water level and canopy cover can expose this sessile alga to widely fluctuating temperatures, solar irradiation and nutrient availability. Here we report on the ecophysiology of B. turfosum collected from an ultra-oligotrophic bog pool in the Austrian Alps. Photosynthesis as a function of photon fluence density (PFD) and temperature was studied by measuring oxygen evolution in combination with chlorophyll fluorescence. In addition, the effects of ultraviolet radiation (UVR) on photosynthetic pigments were analysed using HPLC and spectrophotometric methods, and cellular ultrastructure was studied using transmission electron microscopy. We found that B. turfosum is adapted to low light, with a light compensation point (Ic) and a light saturation point (Ik) of 8.4 and 29.7 μmol photons m- 2 s-1, respectively, but also tolerates higher PFDs of ~1000 μmol photons m-2 s-1, and is capable of net photosynthesis at temperatures between 5°C and 35°C. Exposure to either UV-A or UV-AB for 102 h led to a strong transient drop in effective quantum yield (ΔF/FM'), followed by an acclimation to about 70% of initial ΔF/FM' values. Ultrastructural changes included the accumulation of plastoglobules and dilated membranes after UVR treatment. Although all photosynthetic pigments strongly decreased upon UVR exposure and no UV-photoprotectants (e.g. mycosporine-like amino acids) could be detected, the alga was capable of recovering ΔF/FM' and phycobiliproteins after UVR treatment. In summary, B. turfosum tolerates a wide range of irradiation and temperature regimes, and these traits may be the basis for its successful adaptation to challenging environments.
Collapse
Affiliation(s)
- Siegfried Aigner
- University of Innsbruck, Institute of Botany, Functional Plant Biology, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Andreas Holzinger
- University of Innsbruck, Institute of Botany, Functional Plant Biology, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Ulf Karsten
- University of Rostock, Institute of Biological Sciences, Applied Ecology, Albert-Einstein-Straße 3, D-18057 Rostock, Germany
| | - Ilse Kranner
- University of Innsbruck, Institute of Botany, Functional Plant Biology, Sternwartestraße 15, 6020 Innsbruck, Austria
- Corresponding author: Ilse Kranner, Fax: +43-0512-507-2715,
| |
Collapse
|
11
|
Molina V, Hernández K, Dorador C, Eissler Y, Hengst M, Pérez V, Harrod C. Bacterial Active Community Cycling in Response to Solar Radiation and Their Influence on Nutrient Changes in a High-Altitude Wetland. Front Microbiol 2016; 7:1823. [PMID: 27909430 PMCID: PMC5112256 DOI: 10.3389/fmicb.2016.01823] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023] Open
Abstract
Microbial communities inhabiting high-altitude spring ecosystems are subjected to extreme changes in solar irradiance and temperature throughout the diel cycle. Here, using 16S rRNA gene tag pyrosequencing (cDNA) we determined the composition of actively transcribing bacteria from spring waters experimentally exposed through the day (morning, noon, and afternoon) to variable levels of solar radiation and light quality, and evaluated their influence on nutrient recycling. Solar irradiance, temperature, and changes in nutrient dynamics were associated with changes in the active bacterial community structure, predominantly by Cyanobacteria, Verrucomicrobia, Proteobacteria, and 35 other Phyla, including the recently described Candidate Phyla Radiation (e.g., Parcubacteria, Gracilibacteria, OP3, TM6, SR1). Diversity increased at noon, when the highest irradiances were measured (3.3-3.9 H', 1125 W m-2) compared to morning and afternoon (0.6-2.8 H'). This shift was associated with a decrease in the contribution to pyrolibraries by Cyanobacteria and an increase of Proteobacteria and other initially low frequently and rare bacteria phyla (< 0.5%) in the pyrolibraries. A potential increase in the activity of Cyanobacteria and other phototrophic groups, e.g., Rhodobacterales, was observed and associated with UVR, suggesting the presence of photo-activated repair mechanisms to resist high levels of solar radiation. In addition, the percentage contribution of cyanobacterial sequences in the afternoon was similar to those recorded in the morning. The shifts in the contribution by Cyanobacteria also influenced the rate of change in nitrate, nitrite, and phosphate, highlighted by a high level of nitrate accumulation during hours of high radiation and temperature associated with nitrifying bacteria activity. We did not detect ammonia or nitrite oxidizing bacteria in situ, but both functional groups (Nitrosomona and Nitrospira) appeared mainly in pyrolibraries generated from dark incubations. In total, our results reveal that both the structure and the diversity of the active bacteria community was extremely dynamic through the day, and showed marked shifts in composition that influenced nutrient recycling, highlighting how abiotic variation affects potential ecosystem functioning.
Collapse
Affiliation(s)
- Verónica Molina
- Programa de Biodiversidad and Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Observatorio de Ecología Microbiana, Universidad de Playa AnchaValparaíso, Chile
| | - Klaudia Hernández
- Centro de Investigación Marina Quintay, Facultad de Ecología y Recursos Naturales, Universidad Andres BelloValparaíso, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional and Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, AntofagastaChile
- Centre for Biotechnology and BioengineeringSantiago, Chile
| | - Yoanna Eissler
- Centro de Investigación y Gestión de Recursos Naturales, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Martha Hengst
- Centre for Biotechnology and BioengineeringSantiago, Chile
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del NorteAntofagasta, Chile
| | - Vilma Pérez
- Laboratorio de Complejidad Microbiana y Ecología Funcional and Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, AntofagastaChile
- Centre for Biotechnology and BioengineeringSantiago, Chile
| | - Chris Harrod
- Fish and Stable Isotope Ecology Laboratory, Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de AntofagastaAntofagasta, Chile
| |
Collapse
|
12
|
Badri H, Monsieurs P, Coninx I, Wattiez R, Leys N. Molecular investigation of the radiation resistance of edible cyanobacterium Arthrospira sp. PCC 8005. Microbiologyopen 2015; 4:187-207. [PMID: 25678338 PMCID: PMC4398503 DOI: 10.1002/mbo3.229] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/28/2014] [Accepted: 11/10/2014] [Indexed: 01/28/2023] Open
Abstract
The aim of this work was to characterize in detail the response of Arthrospira to ionizing radiation, to better understand its radiation resistance capacity. Live cells of Arthrospira sp. PCC 8005 were irradiated with 60Co gamma rays. This study is the first, showing that Arthrospira is highly tolerant to gamma rays, and can survive at least 6400 Gy (dose rate of 527 Gy h−1), which identified Arthrospira sp. PCC 8005 as a radiation resistant bacterium. Biochemical, including proteomic and transcriptomic, analysis after irradiation with 3200 or 5000 Gy showed a decline in photosystem II quantum yield, reduced carbon fixation, and reduced pigment, lipid, and secondary metabolite synthesis. Transcription of photo-sensing and signaling pathways, and thiol-based antioxidant systems was induced. Transcriptomics did show significant activation of ssDNA repair systems and mobile genetic elements (MGEs) at the RNA level. Surprisingly, the cells did not induce the classical antioxidant or DNA repair systems, such superoxide dismutase (SOD) enzyme and the RecA protein. Arthrospira cells lack the catalase gene and the LexA repressor. Irradiated Arthrospira cells did induce strongly a group of conserved proteins, of which the function in radiation resistance remains to be elucidated, but which are a promising novel routes to be explored. This study revealed the radiation resistance of Arthrospira, and the molecular systems involved, paving the way for its further and better exploitation.
Collapse
Affiliation(s)
- Hanène Badri
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium.,Proteomics and Microbiology Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Pieter Monsieurs
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium
| | - Ilse Coninx
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Natalie Leys
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium
| |
Collapse
|
13
|
Fortunato AE, Annunziata R, Jaubert M, Bouly JP, Falciatore A. Dealing with light: the widespread and multitasking cryptochrome/photolyase family in photosynthetic organisms. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:42-54. [PMID: 25087009 DOI: 10.1016/j.jplph.2014.06.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 05/19/2023]
Abstract
Light is essential for the life of photosynthetic organisms as it is a source of energy and information from the environment. Light excess or limitation can be a cause of stress however. Photosynthetic organisms exhibit sophisticated mechanisms to adjust their physiology and growth to the local environmental light conditions. The cryptochrome/photolyase family (CPF) is composed of flavoproteins with similar structures that display a variety of light-dependent functions. This family encompasses photolyases, blue-light activated enzymes that repair ultraviolet-light induced DNA damage, and cryptochromes, known for their photoreceptor functions in terrestrial plants. For this review, we searched extensively for CPFs in the available genome databases to trace the distribution and evolution of this protein family in photosynthetic organisms. By merging molecular data with current knowledge from the functional characterization of CPFs from terrestrial and aquatic organisms, we discuss their roles in (i) photoperception, (ii) biological rhythm regulation and (iii) light-induced stress responses. We also explore their possible implication in light-related physiological acclimation and their distribution in phototrophs living in different environments. The outcome of this structure-function analysis reconstructs the complex scenarios in which CPFs have evolved, as highlighted by the novel functions and biochemical properties of the most recently described family members in algae.
Collapse
Affiliation(s)
- Antonio Emidio Fortunato
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Rossella Annunziata
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Marianne Jaubert
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Jean-Pierre Bouly
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France.
| | - Angela Falciatore
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France.
| |
Collapse
|
14
|
Karentz D. Beyond xeroderma pigmentosum: DNA damage and repair in an ecological context. A tribute to James E. Cleaver. Photochem Photobiol 2014; 91:460-74. [PMID: 25395165 DOI: 10.1111/php.12388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022]
Abstract
The ability to repair DNA is a ubiquitous characteristic of life on Earth and all organisms possess similar mechanisms for dealing with DNA damage, an indication of a very early evolutionary origin for repair processes. James E. Cleaver's career (initiated in the early 1960s) has been devoted to the study of mammalian ultraviolet radiation (UVR) photobiology, specifically the molecular genetics of xeroderma pigmentosum and other human diseases caused by defects in DNA damage recognition and repair. This work by Jim and others has influenced the study of DNA damage and repair in a variety of taxa. Today, the field of DNA repair is enhancing our understanding of not only how to treat and prevent human disease, but is providing insights on the evolutionary history of life on Earth and how natural populations are coping with UVR-induced DNA damage from anthropogenic changes in the environment such as ozone depletion.
Collapse
Affiliation(s)
- Deneb Karentz
- Department of Biology, University of San Francisco, San Francisco, CA
| |
Collapse
|
15
|
Vass IZ, Kós PB, Knoppová J, Komenda J, Vass I. The cry-DASH cryptochrome encoded by the sll1629 gene in the cyanobacterium Synechocystis PCC 6803 is required for Photosystem II repair. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 130:318-26. [DOI: 10.1016/j.jphotobiol.2013.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/26/2013] [Accepted: 12/09/2013] [Indexed: 12/16/2022]
|