1
|
Ricardi MM, Tribelli PM, Costa CS, Pezzoni M. Global transcriptional response of Pseudomonas aeruginosa to UVA radiation. Photochem Photobiol Sci 2024; 23:2029-2044. [PMID: 39470974 DOI: 10.1007/s43630-024-00649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/04/2024] [Indexed: 11/01/2024]
Abstract
Ultraviolet A (UVA) radiation is the major fraction of UV radiation reaching the Earth's surface. Its harmful effects on microorganisms, due mainly to oxidative damage, have been exploited for development of natural solar and commercial UVA-based disinfection methods. In this work, the global transcriptional response of Pseudomonas aeruginosa exposed to ultraviolet A (UVA) radiation was analyzed. To conduct this study, we analyzed the whole transcriptome of the PAO1 strain grown to logarithmic phase under sublethal doses of UVA or in the dark. We found that a total of 298 genes responded to UVA with a change of at least two-fold (5.36% of the total P. aeruginosa genome), and showed equal amount of induced and repressed genes. An important fraction of the induced genes were involved in the response to DNA damage and included induction of SOS, prophage and pyocins genes. The results presented in this study suggest that one of the main UVA targets are proteins carrying [Fe-S] clusters since several genes involved in the processes of synthesis, trafficking and assembly of these structures were upregulated. The management of intracellular iron levels also seems to be a robust response to this stress factor. The strong induction of genes involved in denitrification suggest that this pathway and/or reactive nitrogen species such as nitric oxide could have a role in the response to this radiation. Regarding the down-regulated genes, we found many involved in the biosynthesis of PQS, a quorum-sensing signal molecule with a possible role as endogenous photosensitizer.
Collapse
Affiliation(s)
- Martiniano M Ricardi
- IFIByNE (CONICET), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula M Tribelli
- IQUIBICEN (CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cristina S Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499B1650KNA, General San Martín, Prov. de Buenos Aires, Argentina
| | - Magdalena Pezzoni
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499B1650KNA, General San Martín, Prov. de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Roncero-Ramos B, Savaglia V, Durieu B, Van de Vreken I, Richel A, Wilmotte A. Ecophysiological and genomic approaches to cyanobacterial hardening for restoration. JOURNAL OF PHYCOLOGY 2024; 60:465-482. [PMID: 38373045 DOI: 10.1111/jpy.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 02/20/2024]
Abstract
Cyanobacteria inhabit extreme environments, including drylands, providing multiple benefits to the ecosystem. Soil degradation in warm drylands is increasing due to land use intensification. Restoration methods adapted to the extreme stress in drylands are being developed, such as cyanobacteria inoculation to recover biocrusts. For this type of restoration method to be a success, it is crucial to optimize the survival of inoculated cyanobacteria in the field. One strategy is to harden them to be acclimated to stressful conditions after laboratory culturing. Here, we analyzed the genome and ecophysiological response to osmotic desiccation and UVR stresses of an Antarctic cyanobacterium, Stenomitos frigidus ULC029, which is closely related to other cyanobacteria from warm and cold dryland soils. Chlorophyll a concentrations showed that preculturing ULC029 under moderate osmotic stress improved its survival during an assay of desiccation plus rehydration under UVR. Additionally, its sequential exposure to these stress factors increased the production of exopolysaccharides, carotenoids, and scytonemin. Desiccation, but not osmotic stress, increased the concentrations of the osmoprotectants trehalose and sucrose. However, osmotic stress might induce the production of other osmoprotectants, for which the complete pathways were observed in the ULC029 genome. In total, 140 genes known to be involved in stress resistance were annotated. Here, we confirm that the sequential application of moderate osmotic stress and dehydration could improve cyanobacterial hardening for soil restoration by inducing several resistance mechanisms. We provide a high-quality genome of ULC029 and a description of the main resistance mechanisms (i.e., production of exopolysaccharides, osmoprotectants, chlorophyll, and carotenoids; DNA repair; and oxidative stress protection).
Collapse
Affiliation(s)
- Beatriz Roncero-Ramos
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Valentina Savaglia
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Benoit Durieu
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
| | | | - Aurore Richel
- TERRA-Biomass and Green Technologies, University of Liège, Gembloux, Belgium
| | - Annick Wilmotte
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
| |
Collapse
|
3
|
UVA as environmental signal for alginate production in Pseudomonas aeruginosa: role of this polysaccharide in the protection of planktonic cells and biofilms against lethal UVA doses. Photochem Photobiol Sci 2022; 21:1459-1472. [PMID: 35551642 DOI: 10.1007/s43630-022-00236-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Pseudomonas aeruginosa is an extremely versatile microorganism that survives in a wide variety of niches. It is capable to respond rapidly to changes in the environment by producing secondary metabolites and virulence factors, including alginate. Alginate is an extracellular polysaccharide that protects the bacteria from antibiotics and oxidative agents, and enhances cell adhesion to solid surfaces in the process of biofilm formation. In the present study, we analyzed the role of alginate in the response of P. aeruginosa to lethal doses of ultraviolet-A (UVA) radiation, the major fraction of solar UV radiation reaching the Earth's surface. We also studied the role of alginate in the context of the adaptive responses generated when P. aeruginosa is exposed to sublethal doses of UVA radiation. The survival studies demonstrated that alginate has a key role in the resistance of P. aeruginosa to the oxidative stress generated by lethal UVA doses, both in planktonic cells and in static biofilms. In addition, the presence of alginate proved to be essential in the occurrence of adaptive responses such as induction of biofilm formation and cross-protection against hydrogen peroxide and sodium hypochlorite, both generated by exposure to low UVA doses. Finally, we demonstrated that the increase of biofilm formation is accompanied by an increase in alginate concentration in the biofilm matrix, possibly through the ppGpp-dependent induction of genes related to alginate regulation (algR and algU) and biosynthesis (algD operon). Given the importance of alginate in biofilm formation and its protective roles, better understanding of the mechanisms associated to its functions and synthesis is relevant, given the normal exposure of P. aeruginosa to UVA radiation and other types of oxidative stresses.
Collapse
|
4
|
Klicki K, Ferreira D, Risser D, Garcia-Pichel F. A Regulatory Linkage Between Scytonemin Production and Hormogonia Differentiation in Nostoc punctiforme. iScience 2022; 25:104361. [PMID: 35620423 PMCID: PMC9127174 DOI: 10.1016/j.isci.2022.104361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/17/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteria sometimes hedge their survival bets by concurrently activating response circuits leading to different phenotypes in isogenic populations. We show that the cyanobacterium Nostoc punctiforme responds to UV-A by concurrently producing the sunscreen scytonemin and differentiating into motile hormogonia but segregating the responses at the filament level. Mutational studies show that a four-gene partner-switching regulatory system (hcyA-D) orchestrates the cross-talk between the respective regulatory circuitries. Transcription of hormogonium genes and hcyA-D is upregulated by UVA through the scytonemin two-component regulator (scyTCR), hcyA-D being directly involved in signal transduction into the hormogonium response and its modulation by visible light. The sigma factor cascade that regulates developmental commitment to hormogonia also upregulates hcyA-D transcription and strongly suppresses scytonemin synthesis through downregulation of the scyTCR itself. Through this complex bidirectional mechanism, Nostoc can concurrently deploy two fundamentally different UV stress mitigation strategies, either hunker down or flee, in a single population. Nostoc responds to UV-A by both producing sunscreen and differentiating hormogonia The responses are, however, mutually exclusive at the single filament level A novel 4-gene system (hcyA-D) orchestrates the regulation between the two responses This affords Nostoc a bet-hedging means to both hunker down and flee UV-A stress
Collapse
Affiliation(s)
- Kevin Klicki
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, AZ 95281, USA
| | - Daniela Ferreira
- School of Life Sciences, Arizona State University, AZ 95281, USA
| | - Douglas Risser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, AZ 95281, USA
- Corresponding author
| |
Collapse
|
5
|
Bennett J, Soule T. Expression of Scytonemin Biosynthesis Genes under Alternative Stress Conditions in the Cyanobacterium Nostoc punctiforme. Microorganisms 2022; 10:microorganisms10020427. [PMID: 35208882 PMCID: PMC8879130 DOI: 10.3390/microorganisms10020427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
The indole-alkaloid scytonemin is a sunscreen pigment that is widely produced among cyanobacteria as an ultraviolet radiation (UVR) survival strategy. Scytonemin biosynthesis is encoded by two gene clusters that are known to be induced by long-wavelength radiation (UVA). Previous studies have characterized the transcriptome of cyanobacteria in response to a wide range of conditions, but the effect on the expression of scytonemin biosynthesis genes has not been specifically targeted. Therefore, the aim of this study is to determine the variable response of scytonemin biosynthesis genes to a variety of environmental conditions. Cells were acclimated to white light before supplementation with UVA, UVB, high light, or osmotic stress for 48 h. The presence of scytonemin was determined by absorbance spectroscopy and gene expression of representative scytonemin biosynthesis genes was measured using quantitative PCR. Scytonemin genes were up-regulated in UVA, UVB, and high light, although the scytonemin pigment was not detected under high light. There was no scytonemin or upregulation of these genes under osmotic stress. The lack of pigment production under high light, despite increased gene expression, suggests a time-dependent delay for pigment production or additional mechanisms or genes that may be involved in scytonemin production beyond those currently known.
Collapse
|
6
|
Pezzoni M, De Troch M, Pizarro RA, Costa CS. Homeophasic Adaptation in Response to UVA Radiation in Pseudomonas aeruginosa: Changes of Membrane Fatty Acid Composition and Induction of desA and desB Expression. Photochem Photobiol 2021; 98:886-893. [PMID: 34695237 DOI: 10.1111/php.13548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022]
Abstract
In bacteria, exposure to changes in environmental conditions can alter membrane fluidity, thereby affecting its essential functions in cell physiology. To adapt to these changes, bacteria maintain appropriate fluidity by varying the composition of the fatty acids of membrane phospholipids, a phenomenon known as homeophasic adaptation. In Pseudomonas aeruginosa, this response is achieved mainly by two mechanisms of fatty acid desaturation: the FabA-FabB and DesA-DesB systems. This study analyzed the effect of ultraviolet-A (UVA) radiation-the major fraction of solar UV radiation reaching the Earth's surface-on the homeophasic process. The prototypical strain PAO1 was grown under sublethal UVA doses or in the dark, and the profiles of membrane fatty acids were compared at early logarithmic, logarithmic and stationary growth phases. In the logarithmic growth phase, it was observed that growth under sublethal UVA doses induced the expression of the desaturase-encoding genes desA and desB and increased the proportion of unsaturated fatty acids; in addition, membrane fluidity could also increase, as suggested by the indices used as indicators of this parameter. The opposite effect was observed in the stationary growth phase. These results demonstrate the relevant role of UVA on the homeophasic response at transcriptional level.
Collapse
Affiliation(s)
- Magdalena Pezzoni
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, San Martin, Argentina
| | | | - Ramón A Pizarro
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, San Martin, Argentina
| | - Cristina S Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, San Martin, Argentina
| |
Collapse
|
7
|
Soule T, Ferreira D, Lothamer J, Garcia-Pichel F. The Independent and Shared Transcriptomic Response to UVA, UVB and Oxidative Stress in the Cyanobacterium Nostoc punctiforme ATCC 29133. Photochem Photobiol 2021; 97:1063-1071. [PMID: 33955032 DOI: 10.1111/php.13444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/01/2021] [Indexed: 11/27/2022]
Abstract
Research on the UVA, UVB and oxidative (as reactive oxygen species, ROS) stress response in cyanobacteria has typically focused on each individual stress condition, with limited studies addressing the intersection. Here, we evaluated the transcriptomic responses of the model cyanobacterium Nostoc punctiforme after exposure to each of these conditions. Overall, response to UVA was characterized by more gene down-regulation than the UVB or ROS response, although UVB affected over fourfold more genes than UVA or ROS. Regarding expression patterns, responses to UVA and ROS were more similar and differentiated from those to UVB. For example, genes involved in ROS metabolism were up-regulated under both UVA and ROS. However, when it came to RNA and protein metabolism, there were more up-regulated genes under UVB and ROS compared to UVA. This suggests that the response to UVB and ROS is more active than the response to UVA, which stimulated more genes in secondary metabolism. Histidine kinases and response regulators were often differentially expressed, demonstrating that regulatory systems were at the base of the patterns. This study provides background for future studies targeting different genes, proteins and systems sensitive to these conditions. It also highlights the significance of considering multiple stress conditions.
Collapse
Affiliation(s)
- Tanya Soule
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, USA
| | - Daniela Ferreira
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Justin Lothamer
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, USA
| | | |
Collapse
|
8
|
Pezzoni M, Pizarro RA, Costa CS. Role of quorum sensing in UVA-induced biofilm formation in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2020; 166:735-750. [PMID: 32496187 DOI: 10.1099/mic.0.000932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pseudomonas aeruginosa, a versatile bacterium present in terrestrial and aquatic environments and a relevant opportunistic human pathogen, is largely known for the production of robust biofilms. The unique properties of these structures complicate biofilm eradication, because they make the biofilms very resistant to diverse antibacterial agents. Biofilm development and establishment is a complex process regulated by multiple regulatory genetic systems, among them is quorum sensing (QS), a mechanism employed by bacteria to regulate gene transcription in response to population density. In addition, environmental factors such as UVA radiation (400-315 nm) have been linked to biofilm formation. In this work, we further investigate the mechanism underlying the induction of biofilm formation by UVA, analysing the role of QS in this phenomenon. We demonstrate that UVA induces key genes of the Las and Rhl QS systems at the transcriptional level. We also report that pelA and pslA genes, which are essential for biofilm formation and whose transcription depends in part on QS, are significantly induced under UVA exposure. Finally, the results demonstrate that in a relA strain (impaired for ppGpp production), the UVA treatment does not induce biofilm formation or QS genes, suggesting that the increase of biofilm formation due to exposure to UVA in P. aeruginosa could rely on a ppGpp-dependent QS induction.
Collapse
Affiliation(s)
- Magdalena Pezzoni
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Ramón A Pizarro
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Cristina S Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| |
Collapse
|
9
|
Tribelli PM, Pezzoni M, Brito MG, Montesinos NV, Costa CS, López NI. Response to lethal UVA radiation in the Antarctic bacterium Pseudomonas extremaustralis: polyhydroxybutyrate and cold adaptation as protective factors. Extremophiles 2019; 24:265-275. [DOI: 10.1007/s00792-019-01152-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
|
10
|
Rates of Molecular Evolution in a Marine Synechococcus Phage Lineage. Viruses 2019; 11:v11080720. [PMID: 31390807 PMCID: PMC6722890 DOI: 10.3390/v11080720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 12/30/2022] Open
Abstract
Cyanophages are characterized by vast genomic diversity and the formation of stable ecotypes over time. The evolution of phage diversity includes vertical processes, such as mutation, and horizontal processes, such as recombination and gene transfer. Here, we study the contribution of vertical and horizontal processes to short-term evolution of marine cyanophages. Analyzing time series data of Synechococcus-infecting Myoviridae ecotypes spanning up to 17 years, we found a high contribution of recombination relative to mutation (r/m) in all ecotypes. Additionally, we found a molecular clock of substitution and recombination in one ecotype, RIM8. The estimated RIM8 evolutionary rates are 2.2 genome-wide substitutions per year (1.275 × 10−5 substitutions/site/year) and 29 genome-wide nucleotide alterations due to recombination per year. We found 26 variable protein families, of which only two families have a predicted functional annotation, suggesting that they are auxiliary metabolic genes with bacterial homologs. A comparison of our rate estimates to other phage evolutionary rate estimates in the literature reveals a negative correlation of phage substitution rates with their genome size. A comparison to evolutionary rates in bacterial organisms further shows that phages have high rates of mutation and recombination compared to their bacterial hosts. We conclude that the increased recombination rate in phages likely contributes to their vast genomic diversity.
Collapse
|
11
|
The Widely Conserved ebo Cluster Is Involved in Precursor Transport to the Periplasm during Scytonemin Synthesis in Nostoc punctiforme. mBio 2018; 9:mBio.02266-18. [PMID: 30482833 PMCID: PMC6282210 DOI: 10.1128/mbio.02266-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Scytonemin is a dimeric indole-phenol sunscreen synthesized by some cyanobacteria under conditions of exposure to UVA radiation. While its biosynthetic pathway has been elucidated only partially, comparative genomics reveals that the scytonemin operon often contains a cluster of five highly conserved genes (ebo cluster) of unknown function that is widespread and conserved among several bacterial and algal phyla. We sought to elucidate the function of the ebo cluster in the cyanobacterium Nostoc punctiforme by constructing and analyzing in-frame deletion mutants (one for each ebo gene and one for the entire cluster). Under conditions of UVA induction, all ebo mutants were scytoneminless, and all accumulated a single compound, the scytonemin monomer, clearly implicating all ebo genes in scytonemin production. We showed that the scytonemin monomer also accumulated in an induced deletion mutant of scyE, a non-ebo scytonemin gene whose product is demonstrably targeted to the periplasm. Confocal autofluorescence microscopy revealed that the accumulation was confined to the cytoplasm in all ebo mutants but that that was not the case in the scyE deletion, with an intact ebo cluster, where the scytonemin monomer was also excreted to the periplasm. The results implicate the ebo cluster in the export of the scytonemin monomer to the periplasm for final oxidative dimerization by ScyE. By extension, the ebo gene cluster may play similar roles in metabolite translocation across many bacterial phyla. We discuss potential mechanisms for such a role on the basis of structural and phylogenetic considerations of the ebo proteins.IMPORTANCE Elucidating the biochemical and genetic basis of scytonemin constitutes an interesting challenge because of its unique structure and the unusual fact that it is partially synthesized in the periplasmic space. Our work points to the ebo gene cluster, associated with the scytonemin operon of cyanobacteria, as being responsible for the excretion of scytonemin intermediates from the cytoplasm into the periplasm during biosynthesis. Few conserved systems have been described that facilitate the membrane translocation of small molecules. Because the ebo cluster is well conserved among a large diversity of bacteria and algae and yet insights into its potential function are lacking, our findings suggest that translocation of small molecules across the plasma membrane may be its generic role across microbes.
Collapse
|
12
|
Pezzoni M, Pizarro RA, Costa CS. Exposure to low doses of UVA increases biofilm formation in Pseudomonas aeruginosa. BIOFOULING 2018; 34:673-684. [PMID: 30185068 DOI: 10.1080/08927014.2018.1480758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
The establishment of bacterial biofilms on abiotic surfaces is a complex process regulated by multiple genetic regulators and environmental factors which are able to modulate the passage of planktonic cells to a sessile state. Solar ultraviolet-A radiation (UVA, 315-400) is one of the main environmental stress factors that bacteria must face at the Earth´s surface. The deleterious effects of UVA are mainly due to oxidative damage. This paper reports that exposure to low UVA doses promotes biofilm formation in three prototypical strains of Pseudomonas aeruginosa, a relevant opportunistic human pathogen. It demonstrates that exposure of planktonic cells to sublethal doses of UVA can increase cell surface hydrophobicity and swimming motility, two parameters known to favor cell adhesion. These results suggest that UVA radiation acts, at least in part, by promoting the first stages of biofilm development.
Collapse
Affiliation(s)
- Magdalena Pezzoni
- a Dpto. de Radiobiología , Comisión Nacional de Energía Atómica , General San Martín , Argentina
| | - Ramón A Pizarro
- a Dpto. de Radiobiología , Comisión Nacional de Energía Atómica , General San Martín , Argentina
| | - Cristina S Costa
- a Dpto. de Radiobiología , Comisión Nacional de Energía Atómica , General San Martín , Argentina
| |
Collapse
|
13
|
Naurin S, Bennett J, Videau P, Philmus B, Soule T. The response regulator Npun_F1278 is essential for scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133. JOURNAL OF PHYCOLOGY 2016; 52:564-571. [PMID: 27020740 DOI: 10.1111/jpy.12414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
Following exposure to long-wavelength ultraviolet radiation (UVA), some cyanobacteria produce the indole-alkaloid sunscreen scytonemin. The genomic region associated with scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme includes 18 cotranscribed genes. A two-component regulatory system (Npun_F1277/Npun_F1278) directly upstream from the biosynthetic genes was identified through comparative genomics and is likely involved in scytonemin regulation. In this study, the response regulator (RR), Npun_F1278, was evaluated for its ability to regulate scytonemin biosynthesis using a mutant strain of N. punctiforme deficient in this gene, hereafter strain Δ1278. Following UVA radiation, the typical stimulus to initiate scytonemin biosynthesis, Δ1278 was incapable of producing scytonemin. A phenotypic characterization of Δ1278 suggests that aside from the ability to produce scytonemin, the deletion of the Npun_F1278 gene does not affect the cellular morphology, cellular differentiation capability, or lipid-soluble pigment complement of Δ1278 compared to the wildtype. The mutant, however, had a slower specific growth rate under white light and produced ~2.5-fold more phycocyanin per cell under UVA than the wildtype. Since Δ1278 does not produce scytonemin, this study demonstrates that the RR gene, Npun_F1278, is essential for scytonemin biosynthesis in N. punctiforme. While most of the evaluated effects of this gene appear to be specific for scytonemin, this regulator may also influence the overall health of the cell and phycobiliprotein synthesis, directly or indirectly. This is the first study to identify a regulatory gene involved in the biosynthesis of the sunscreen scytonemin and posits a link between cell growth, pigment synthesis, and sunscreen production.
Collapse
Affiliation(s)
- Sejuti Naurin
- Department of Biology, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana, 46805, USA
| | - Janine Bennett
- Department of Biology, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana, 46805, USA
| | - Patrick Videau
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Tanya Soule
- Department of Biology, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana, 46805, USA
| |
Collapse
|
14
|
Soule T, Shipe D, Lothamer J. Extracellular Polysaccharide Production in a Scytonemin-Deficient Mutant of Nostoc punctiforme Under UVA and Oxidative Stress. Curr Microbiol 2016; 73:455-62. [DOI: 10.1007/s00284-016-1084-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
|
15
|
Pezzoni M, Tribelli PM, Pizarro RA, López NI, Costa CS. Exposure to low UVA doses increases KatA and KatB catalase activities, and confers cross-protection against subsequent oxidative injuries in Pseudomonas aeruginosa. Microbiology (Reading) 2016; 162:855-864. [DOI: 10.1099/mic.0.000268] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Magdalena Pezzoni
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Paula M. Tribelli
- IQUIBICEN-CONICET-Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Ramón A. Pizarro
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Nancy I. López
- IQUIBICEN-CONICET-Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Cristina S. Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| |
Collapse
|
16
|
Badri H, Monsieurs P, Coninx I, Wattiez R, Leys N. Molecular investigation of the radiation resistance of edible cyanobacterium Arthrospira sp. PCC 8005. Microbiologyopen 2015; 4:187-207. [PMID: 25678338 PMCID: PMC4398503 DOI: 10.1002/mbo3.229] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/28/2014] [Accepted: 11/10/2014] [Indexed: 01/28/2023] Open
Abstract
The aim of this work was to characterize in detail the response of Arthrospira to ionizing radiation, to better understand its radiation resistance capacity. Live cells of Arthrospira sp. PCC 8005 were irradiated with 60Co gamma rays. This study is the first, showing that Arthrospira is highly tolerant to gamma rays, and can survive at least 6400 Gy (dose rate of 527 Gy h−1), which identified Arthrospira sp. PCC 8005 as a radiation resistant bacterium. Biochemical, including proteomic and transcriptomic, analysis after irradiation with 3200 or 5000 Gy showed a decline in photosystem II quantum yield, reduced carbon fixation, and reduced pigment, lipid, and secondary metabolite synthesis. Transcription of photo-sensing and signaling pathways, and thiol-based antioxidant systems was induced. Transcriptomics did show significant activation of ssDNA repair systems and mobile genetic elements (MGEs) at the RNA level. Surprisingly, the cells did not induce the classical antioxidant or DNA repair systems, such superoxide dismutase (SOD) enzyme and the RecA protein. Arthrospira cells lack the catalase gene and the LexA repressor. Irradiated Arthrospira cells did induce strongly a group of conserved proteins, of which the function in radiation resistance remains to be elucidated, but which are a promising novel routes to be explored. This study revealed the radiation resistance of Arthrospira, and the molecular systems involved, paving the way for its further and better exploitation.
Collapse
Affiliation(s)
- Hanène Badri
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium.,Proteomics and Microbiology Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Pieter Monsieurs
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium
| | - Ilse Coninx
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Natalie Leys
- Expert Group for Molecular and Cellular Biology, Belgian Nuclear Research Center SCK•CEN, Mol, Belgium
| |
Collapse
|
17
|
Sand-Jensen K. Ecophysiology of gelatinous Nostoc colonies: unprecedented slow growth and survival in resource-poor and harsh environments. ANNALS OF BOTANY 2014; 114:17-33. [PMID: 24966352 PMCID: PMC4071103 DOI: 10.1093/aob/mcu085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/01/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND The cyanobacterial genus Nostoc includes several species forming centimetre-large gelatinous colonies in nutrient-poor freshwaters and harsh semi-terrestrial environments with extended drought or freezing. These Nostoc species have filaments with normal photosynthetic cells and N2-fixing heterocysts embedded in an extensive gelatinous matrix of polysaccharides and many other organic substances providing biological and environmental protection. Large colony size imposes constraints on the use of external resources and the gelatinous matrix represents extra costs and reduced growth rates. SCOPE The objective of this review is to evaluate the mechanisms behind the low rates of growth and mortality, protection against environmental hazards and the persistence and longevity of gelatinous Nostoc colonies, and their ability to economize with highly limiting resources. CONCLUSIONS Simple models predict the decline in uptake of dissolved inorganic carbon (DIC) and a decline in the growth rate of spherical freshwater colonies of N. pruniforme and N. zetterstedtii and sheet-like colonies of N. commune in response to a thicker diffusion boundary layer, lower external DIC concentration and higher organic carbon mass per surface area (CMA) of the colony. Measured growth rates of N. commune and N. pruniforme at high DIC availability comply with general empirical predictions of maximum growth rate (i.e. doubling time 10-14 d) as functions of CMA for marine macroalgae and as functions of tissue thickness for aquatic and terrestrial plants, while extremely low growth rates of N. zetterstedtii (i.e. doubling time 2-3 years) are 10-fold lower than model predictions, either because of very low ambient DIC and/or an extremely costly colony matrix. DIC uptake is limited by diffusion at low concentrations for all species, although they exhibit efficient HCO3(-) uptake, accumulation of respiratory DIC within the colonies and very low CO2 compensation points. Long light paths and light attenuation by structural substances in large Nostoc colonies cause lower quantum efficiency and assimilation number and higher light compensation points than in unicells and other aquatic macrophytes. Extremely low growth and mortality rates of N. zetterstedtii reflect stress-selected adaptation to nutrient- and DIC-poor temperate lakes, while N. pruniforme exhibits a mixed ruderal- and stress-selected strategy with slow growth and year-long survival prevailing in sub-Arctic lakes and faster growth and shorter longevity in temperate lakes. Nostoc commune and its close relative N. flagelliforme have a mixed stress-disturbance strategy not found among higher plants, with stress selection to limiting water and nutrients and disturbance selection in quiescent dry or frozen stages. Despite profound ecological differences between species, active growth of temperate specimens is mostly restricted to the same temperature range (0-35 °C; maximum at 25 °C). Future studies should aim to unravel the processes behind the extreme persistence and low metabolism of Nostoc species under ambient resource supply on sediment and soil surfaces.
Collapse
Affiliation(s)
- Kaj Sand-Jensen
- Freshwater Biological Laboratory, Biological Institute, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen, Denmark
| |
Collapse
|
18
|
Abstract
Approximately, 20 years ago, a haemoglobin gene was identified within the genome of the cyanobacterium Nostoc commune. Haemoglobins have now been confirmed in multiple species of photosynthetic microbes beyond N. commune, and the diversity of these proteins has recently come under increased scrutiny. This chapter summarizes the state of knowledge concerning the phylogeny, physiology and chemistry of globins in cyanobacteria and green algae. Sequence information is by far the best developed and the most rapidly expanding aspect of the field. Structural and ligand-binding properties have been described for just a few proteins. Physiological data are available for even fewer. Although activities such as nitric oxide dioxygenation and oxygen scavenging are strong candidates for cellular function, dedicated studies will be required to complete the story on this intriguing and ancient group of proteins.
Collapse
|