1
|
Golubnitschaja O, Sargheini N, Bastert J. Mitochondria in cutaneous health, disease, ageing and rejuvenation-the 3PM-guided mitochondria-centric dermatology. EPMA J 2025; 16:1-15. [PMID: 39991093 PMCID: PMC11842662 DOI: 10.1007/s13167-025-00400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/25/2025]
Abstract
Association of both intrinsic and extrinsic risk factors leading to accelerated skin ageing is reflected in excessive ROS production and ir/reversible mitochondrial injury and burnout, as abundantly demonstrated by accumulating research data. Due to the critical role of mitochondrial stress in the pathophysiology of skin ageing and disorders, maintained (primary care) and restored (secondary care) mitochondrial health, rejuvenation and homoeostasis are considered the most effective holistic approach to advance dermatological treatments based on systemic health-supportive and stimulating measures. Per evidence, an effective skin anti-ageing protection, wound healing and scarring quality - all strongly depend on the sustainable mitochondrial functionality and well-balanced homoeostasis. The latter can be objectively measured and, if necessary, restored in a systemic manner by pre- and rehabilitation algorithms tailored to individualised patient profiles. The entire spectrum of corresponding innovations in the area includes natural and systemic skin rejuvenation, aesthetic and reconstructive medicine, sustainable skin protection and targeted treatments of skin disorders. Contextually, mitochondria-centric dermatology is instrumental for advanced 3PM-guided approach which makes a good use of predictive multi-level diagnostics and targeted protection of skin against both - the health-to-disease transition and progression of relevant disorders. Cost-effective targeted protection and new treatment avenues focused on sustainable mitochondrial health and physiologic homoeostasis are proposed in the article including in-depth analysis of patient cases and exemplified 3PM-guided care with detailed mechanisms and corresponding expert recommendations presented.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Janine Bastert
- Private Dermatological Clinic, Kirchheimer Str. 71, 70619 Stuttgart, Germany
| |
Collapse
|
2
|
Quan T, Li R, Gao T. Role of Mitochondrial Dynamics in Skin Homeostasis: An Update. Int J Mol Sci 2025; 26:1803. [PMID: 40076431 PMCID: PMC11898645 DOI: 10.3390/ijms26051803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 03/14/2025] Open
Abstract
Skin aging is the most prominent phenotype of host aging and is the consequence of a combination of genes and environment. Improving skin aging is essential for maintaining the healthy physiological function of the skin and the mental health of the human body. Mitochondria are vital organelles that play important roles in cellular mechanisms, including energy production and free radical balance. However, mitochondrial metabolism, mitochondrial dynamics, biogenesis, and degradation processes vary greatly in various cells in the skin. It is well known that mitochondrial dysfunction can promote the aging and its associated diseases of the skin, resulting in the damage of skin physiology and the occurrence of skin pathology. In this review, we summarize the important role of mitochondria in various skin cells, review the cellular responses to vital steps in mitochondrial quality regulation, mitochondrial dynamics, mitochondrial biogenesis, and mitochondrial phagocytosis, and describe their importance and specific pathways in skin aging.
Collapse
Affiliation(s)
| | | | - Ting Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (T.Q.); (R.L.)
| |
Collapse
|
3
|
Alves F, Lane D, Nguyen TPM, Bush AI, Ayton S. In defence of ferroptosis. Signal Transduct Target Ther 2025; 10:2. [PMID: 39746918 PMCID: PMC11696223 DOI: 10.1038/s41392-024-02088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/10/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Rampant phospholipid peroxidation initiated by iron causes ferroptosis unless this is restrained by cellular defences. Ferroptosis is increasingly implicated in a host of diseases, and unlike other cell death programs the physiological initiation of ferroptosis is conceived to occur not by an endogenous executioner, but by the withdrawal of cellular guardians that otherwise constantly oppose ferroptosis induction. Here, we profile key ferroptotic defence strategies including iron regulation, phospholipid modulation and enzymes and metabolite systems: glutathione reductase (GR), Ferroptosis suppressor protein 1 (FSP1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), Dihydrofolate reductase (DHFR), retinal reductases and retinal dehydrogenases (RDH) and thioredoxin reductases (TR). A common thread uniting all key enzymes and metabolites that combat lipid peroxidation during ferroptosis is a dependence on a key cellular reductant, nicotinamide adenine dinucleotide phosphate (NADPH). We will outline how cells control central carbon metabolism to produce NADPH and necessary precursors to defend against ferroptosis. Subsequently we will discuss evidence for ferroptosis and NADPH dysregulation in different disease contexts including glucose-6-phosphate dehydrogenase deficiency, cancer and neurodegeneration. Finally, we discuss several anti-ferroptosis therapeutic strategies spanning the use of radical trapping agents, iron modulation and glutathione dependent redox support and highlight the current landscape of clinical trials focusing on ferroptosis.
Collapse
Affiliation(s)
- Francesca Alves
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Darius Lane
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | | | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Wieland JG, Naskar N, Reess K, Dos Santos DNS, Weise JM, Blatt T, Kordes S, Walther P, Rück A. Impact of Coenzyme Q 10 on Mitochondrial Metabolism: A Complementary Study Using Fluorescence Lifetime Imaging and Electron Microscopy. FRONT BIOSCI-LANDMRK 2024; 29:383. [PMID: 39614446 DOI: 10.31083/j.fbl2911383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Coenzyme Q10 (CoQ10), also known as ubiquinone-10, is an important molecule of the mitochondrial respiratory chain that acts as an electron carrier between complexes I, II, and III and additionally functions as an antioxidant. Due to its bioenergetic properties, CoQ10 is of high interest for therapeutic and cosmetic use. This study aims to characterize the metabolic impact of CoQ10 on primary human dermal fibroblasts (HDF) using fluorescence lifetime imaging microscopy (FLIM) and electron microscopy. METHODS FLIM of nicotinamide adenine dinucleotide (NADH) is a robust method to characterize cellular energy metabolism that also provides spatial information. Electron microscopy offers a way to characterize the ultrastructure of mitochondria and reveal features not visible in FLIM. RESULTS We reported a shift towards longer lifetimes of NADH in primary fibroblasts from ten different donors upon treatment with CoQ10, which indicates the stimulation of oxidative phosphorylation. This is confirmed by phasor-based metabolic pattern segmentation, which showed localization of longer NADH lifetimes in CoQ10-treated cells, indicating activated mitochondria in the cytoplasm. In addition, a complementary investigation of the mitochondrial ultrastructure using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) tomography showed a reduction in stress granules in CoQ10-treated cells. CONCLUSIONS Together, FLIM and electron microscopy (EM) imaging strongly imply that CoQ10 stimulates cellular energy metabolism.
Collapse
Affiliation(s)
- Johannes Georg Wieland
- Center for Biomedical Research, Ulm University, 89081 Ulm, Germany
- Central Facility Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | - Nilanjon Naskar
- Center for Biomedical Research, Ulm University, 89081 Ulm, Germany
| | - Kirsten Reess
- Center for Biomedical Research, Ulm University, 89081 Ulm, Germany
| | | | - Julia M Weise
- Research and Development, Beiersdorf AG, 20245 Hamburg, Germany
| | - Thomas Blatt
- Research and Development, Beiersdorf AG, 20245 Hamburg, Germany
| | | | - Paul Walther
- Central Facility Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | - Angelika Rück
- Center for Biomedical Research, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
5
|
Theodosis-Nobelos P, Rekka EA. The Antioxidant Potential of Vitamins and Their Implication in Metabolic Abnormalities. Nutrients 2024; 16:2740. [PMID: 39203876 PMCID: PMC11356998 DOI: 10.3390/nu16162740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Vitamins are micronutrients necessary for the normal function of the body. Although each vitamin has different physicochemical properties and a specific role in maintaining life, they may also possess a common characteristic, i.e., antioxidant activity. Oxidative stress can harm all the main biological structures leading to protein, DNA and lipid oxidation, with concomitant impairment of the cell. It has been established that oxidative stress is implicated in several pathological conditions such as atherosclerosis, diabetes, obesity, inflammation and metabolic syndrome. In this review we investigate the influence of oxidative stress on the above conditions, examine the interrelation between oxidative stress and inflammation and point out the importance of vitamins in these processes, especially in oxidative load manipulation and metabolic abnormalities.
Collapse
Affiliation(s)
| | - Eleni A. Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
6
|
Choi K, Kim H, Nam SY, Heo CY. Enhancement of skin rejuvenation and hair growth through novel near-infrared light emitting diode (nNIR) lighting: in vitro and in vivo study. Lasers Med Sci 2024; 39:104. [PMID: 38630175 PMCID: PMC11024053 DOI: 10.1007/s10103-024-04044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
The study aimed to explore the impact of a novel near-infrared LED (nNIR) with an extended spectrum on skin enhancement and hair growth. Various LED sources, including White and nNIRs, were compared across multiple parameters: cytotoxicity, adenosine triphosphate (ATP) synthesis, reactive oxygen species (ROS) reduction, skin thickness, collagen synthesis, collagenase expression, and hair follicle growth. Experiments were conducted on human skin cells and animal models. Cytotoxicity, ATP synthesis, and ROS reduction were evaluated in human skin cells exposed to nNIRs and Whites. LED irradiation effects were also studied on a UV-induced photoaging mouse model, analyzing skin thickness, collagen synthesis, and collagenase expression. Hair growth promotion was examined as well. Results revealed both White and nNIR were non-cytotoxic to human skin cells. nNIR enhanced ATP and collagen synthesis while reducing ROS levels, outperforming the commonly used 2chip LEDs. In the UV-induced photoaging mouse model, nNIR irradiation led to reduced skin thickness, increased collagen synthesis, and lowered collagenase expression. Additionally, nNIR irradiation stimulated hair growth, augmented skin thickness, and increased hair follicle count. In conclusion, the study highlighted positive effects of White and nNIR irradiation on skin and hair growth. However, nNIR exhibited superior outcomes compared to White. Its advancements in ATP content, collagen synthesis, collagenase inhibition, and hair growth promotion imply increased ATP synthesis activity. These findings underscore nNIR therapy's potential as an innovative and effective approach for enhancing skin and promoting hair growth.
Collapse
Affiliation(s)
- Keonwoo Choi
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
- H&BIO Corporation/R&D Center, Seongnam, Republic of Korea
| | - Hongbin Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
- H&BIO Corporation/R&D Center, Seongnam, Republic of Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- H&BIO Corporation/R&D Center, Seongnam, Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea.
- H&BIO Corporation/R&D Center, Seongnam, Republic of Korea.
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Martic I, Papaccio F, Bellei B, Cavinato M. Mitochondrial dynamics and metabolism across skin cells: implications for skin homeostasis and aging. Front Physiol 2023; 14:1284410. [PMID: 38046945 PMCID: PMC10693346 DOI: 10.3389/fphys.2023.1284410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Aging of human skin is a complex process leading to a decline in homeostasis and regenerative potential of this tissue. Mitochondria are important cell organelles that have a crucial role in several cellular mechanisms such as energy production and free radical maintenance. However, mitochondrial metabolism as well as processes of mitochondrial dynamics, biogenesis, and degradation varies considerably among the different types of cells that populate the skin. Disturbed mitochondrial function is known to promote aging and inflammation of the skin, leading to impairment of physiological skin function and the onset of skin pathologies. In this review, we discuss the essential role of mitochondria in different skin cell types and how impairment of mitochondrial morphology, physiology, and metabolism in each of these cellular compartments of the skin contributes to the process of skin aging.
Collapse
Affiliation(s)
- Ines Martic
- Institute for Biochemical Aging Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Federica Papaccio
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Maria Cavinato
- Institute for Biochemical Aging Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| |
Collapse
|
8
|
Zhao Y, Gao C, Pan X, Lei K. Emerging roles of mitochondria in animal regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:14. [PMID: 37142814 PMCID: PMC10160293 DOI: 10.1186/s13619-023-00158-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/19/2023] [Indexed: 05/06/2023]
Abstract
The regeneration capacity after an injury is critical to the survival of living organisms. In animals, regeneration ability can be classified into five primary types: cellular, tissue, organ, structure, and whole-body regeneration. Multiple organelles and signaling pathways are involved in the processes of initiation, progression, and completion of regeneration. Mitochondria, as intracellular signaling platforms of pleiotropic functions in animals, have recently gained attention in animal regeneration. However, most studies to date have focused on cellular and tissue regeneration. A mechanistic understanding of the mitochondrial role in large-scale regeneration is unclear. Here, we reviewed findings related to mitochondrial involvement in animal regeneration. We outlined the evidence of mitochondrial dynamics across different animal models. Moreover, we emphasized the impact of defects and perturbation in mitochondria resulting in regeneration failure. Ultimately, we discussed the regulation of aging by mitochondria in animal regeneration and recommended this for future study. We hope this review will serve as a means to advocate for more mechanistic studies of mitochondria related to animal regeneration on different scales.
Collapse
Affiliation(s)
- Yun Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Fudan University, Shanghai, China
| | - Chong Gao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xue Pan
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kai Lei
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
9
|
Schniertshauer D, Wespel S, Bergemann J. Natural Mitochondria Targeting Substances and Their Effect on Cellular Antioxidant System as a Potential Benefit in Mitochondrial Medicine for Prevention and Remediation of Mitochondrial Dysfunctions. Curr Issues Mol Biol 2023; 45:3911-3932. [PMID: 37232719 DOI: 10.3390/cimb45050250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Based on the knowledge that many diseases are caused by defects in the metabolism of the cells and, in particular, in defects of the mitochondria, mitochondrial medicine starts precisely at this point. This new form of therapy is used in numerous fields of human medicine and has become a central focus within the field of medicine in recent years. With this form of therapy, the disturbed cellular energy metabolism and an out-of-balance antioxidant system of the patient are to be influenced to a greater extent. The most important tool here is mitotropic substances, with the help of which attempts are made to compensate for existing dysfunction. In this article, both mitotropic substances and accompanying studies showing their efficacy are summarized. It appears that the action of many mitotropic substances is based on two important properties. First, on the property of acting antioxidantly, both directly as antioxidants and via activation of downstream enzymes and signaling pathways of the antioxidant system, and second, via enhanced transport of electrons and protons in the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Daniel Schniertshauer
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| | - Susanne Wespel
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| | - Jörg Bergemann
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| |
Collapse
|
10
|
He H, Xiong L, Jian L, Li L, Wu Y, Qiao S. Role of mitochondria on UV-induced skin damage and molecular mechanisms of active chemical compounds targeting mitochondria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112464. [PMID: 35597147 DOI: 10.1016/j.jphotobiol.2022.112464] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/07/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are the principal place of energy metabolism and ROS production, leading to mtDNA being especially sensitive to the impacts of oxidative stress. Our review aims to elucidate and update the mechanisms of mitochondria in UV-induced skin damage. The mitochondrial deteriorative response to UV manifests morphological and functional alterations, including mitochondrial fusion and fission, mitochondrial biogenesis, mitochondrial energy metabolism and mitophagy. Additionally, we conclude the effect and molecular mechanisms of active chemical components to protect skin from UV-induced damage via mitochondrial protection which have been described in the last five years, showing prospective prospects in cosmetics as new therapeutic targets.
Collapse
Affiliation(s)
- Hailun He
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China
| | - Lidan Xiong
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China; Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, China
| | - Linge Jian
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Liangman Li
- Orthopedics Department, the First Hospital of China Medical University, Shenyang, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China.
| | - Shuai Qiao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China.
| |
Collapse
|
11
|
Irma J, Kartika A, Rini M, Setiohadji B, Salim J. A Protective Role of Coenzyme Q10 in Ethambutol-Induced Retinal Ganglion Cell Toxicity: A Randomised Controlled Trial in Mice. Neuroophthalmology 2022; 46:298-303. [PMID: 36337227 PMCID: PMC9635534 DOI: 10.1080/01658107.2022.2047207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 10/18/2022] Open
Abstract
Ethambutol is a widely used drug to treat tuberculosis that may cause visual disturbance including ethambutol toxic optic neuropathy (ETON). The disease disrupts bodily tissues' energy production, including the retinal ganglion cells (RGC). Many have proposed treatment with coenzyme Q10 (coQ10) due to its antioxidant and facilitative effects that can improve mitochondrial electron transport. The present study hence assessed whether coQ10 could protect against ETON through a parallel triple-blinded randomised controlled trial in 18 mice using computer-generated tables for treatment allocation. All of the mice received 25 mg/kg ethambutol daily, while only nine in the treated group also received 100 mg/kg coQ10. After 30 days, blinded pathologists counted RGC numbers in enucleated and dyed orbital tissue. The treated group had significantly denser RGCs at 47.2 (standard deviation [SD] 10.6) cells per 500 µm microscope field vs 33.5 (SD 6.3) in the control group (t = 3.34, p = .004). CoQ10 therefore protected RGCs from ETON. Clinical trials of coQ10 in human subjects treated with ethambutol should be considered.
Collapse
Affiliation(s)
- Josiah Irma
- Ophthalmology Department, Medical Faculty of Padjadjaran University, Bandung, Indonesia
- National Eye Center Cicendo Eye Hospital, Indonesia
- Ophthalmology Department, Siloam Hospitals Lippo Village, Tangerang, Indonesia
| | - Antonia Kartika
- Ophthalmology Department, Medical Faculty of Padjadjaran University, Bandung, Indonesia
- National Eye Center Cicendo Eye Hospital, Indonesia
| | - Mayang Rini
- Ophthalmology Department, Medical Faculty of Padjadjaran University, Bandung, Indonesia
- National Eye Center Cicendo Eye Hospital, Indonesia
| | - Bambang Setiohadji
- Ophthalmology Department, Medical Faculty of Padjadjaran University, Bandung, Indonesia
- National Eye Center Cicendo Eye Hospital, Indonesia
| | - Jonathan Salim
- Ophthalmology Department, Siloam Hospitals Lippo Village, Tangerang, Indonesia
- Faculty of Medicine, Pelita Harapan University, Tangerang, Indonesia
| |
Collapse
|
12
|
Chong RQ, Gelissen I, Chaar B, Penm J, Cheung JMY, Harnett JE. Do medicines commonly used by older adults impact their nutrient status? EXPLORATORY RESEARCH IN CLINICAL AND SOCIAL PHARMACY 2021; 3:100067. [PMID: 35480616 PMCID: PMC9031754 DOI: 10.1016/j.rcsop.2021.100067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/04/2023] Open
Abstract
Background Chronic health conditions and polypharmacy are common among the older population and associated with increased risks of adverse events, medicine-interactions, geriatric syndromes, falls and mortality. Poor nutrition is also common in older people. Causal associations between medication use and older people's nutrient status is seldom discussed. Objectives The objectives of this review were to summarise the literature reporting associations between medicines commonly prescribed to older adults and nutrient deficiencies, and to discuss the clinical implications and management. Methods Medicine information resources (n = 5) were searched for information about nutrient deficiencies associated with common medicines used by older people and listed within the top 50 medicines prescribed by volume on the Australian Pharmaceutical Benefits Scheme. This was followed by a search for clinical studies published on PubMed from inception to April 2020. Data was extracted, tabulated and summarised with clinical information relevant to pharmacists and clinicians involved in the care of older people taking medicines. Results A total of 23 clinical studies were identified reporting medicine-induced nutrient deficiencies in older adults. Vitamin B12, sodium, magnesium were identified as the 3 main nutrients susceptible to deficiency by medicines used to treat cardiovascular disease, neurological conditions, gastrointestinal conditions, and diabetes. The coenzyme CoQ10 was depleted by statins.Conclusion: Certain medicines commonly prescribed to older adults are associated with nutrient deficiencies that may be clinically significant. Given the high prevalence of comorbidities and polypharmacy it is possible that some of these individual drug-induced nutrient deficiencies are compounded, warranting both clinical and research attention.
Collapse
Affiliation(s)
- Rui Qi Chong
- The University of Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Ingrid Gelissen
- The University of Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Betty Chaar
- The University of Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Jonathan Penm
- The University of Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Janet MY Cheung
- The University of Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Joanna E. Harnett
- The University of Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Marcheggiani F, Kordes S, Cirilli I, Orlando P, Silvestri S, Vogelsang A, Möller N, Blatt T, Weise JM, Damiani E, Tiano L. Anti-ageing effects of ubiquinone and ubiquinol in a senescence model of human dermal fibroblasts. Free Radic Biol Med 2021; 165:282-288. [PMID: 33482334 DOI: 10.1016/j.freeradbiomed.2021.01.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/22/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Coenzyme Q10 (CoQ10) is an endogenous lipophilic quinone found in equilibrium between its oxidised (ubiquinone) and reduced (ubiquinol) form, ubiquitous in biological membranes and endowed with antioxidant and bioenergetic properties, both crucial to the ageing process. CoQ10 biosynthesis decreases with age in different tissues including skin and its biosynthesis can be modulated by 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors such as statins. Statin-induced CoQ10 deprivation has previously been shown to be associated with the development of a senescence phenotype in cultured human dermal fibroblasts (HDF), hence this model was used to further investigate the role of CoQ10 in skin ageing. The present study aimed to compare the bioavailability of exogenously added CoQ10, in the form of ubiquinone or ubiquinol, to CoQ10-deprived HDF, and to determine their efficacy in rescuing the senescent phenotype induced by CoQ10 deprivation. First, additional senescence markers were implemented to further support the pro-ageing effect of statin-induced CoQ10 deprivation in HDF. Indeed, numerous senescence-associated secretory phenotype (SASP) markers such as p21, IL-8, CXCL1, and MMP-1 were upregulated, whereas components of the extracellular matrix were downregulated (elastin, collagen type 1). Next, we showed that CoQ10 supplementation to statin-treated HDF was able to counteract CoQ10 deprivation and rescued the development of selected senescence/ageing markers in HDF. Ubiquinol resulted more bioavailable than ubiquinone at the same concentration (15 μg/mL) and it significantly improved the cellular oxidative status even within isolated mitochondria highlighting an effective subcellular delivery. Ubiquinol was also more efficient compared to ubiquinone in reverting the expression of the senescent phenotype, quantified in terms of β-galactosidase positivity, p21, collagen type 1, and elastin at the gene and protein expression levels. In conclusion, our results highlight the pivotal role of CoQ10 for skin vitality and strongly support the use of both forms as a beneficial and effective anti-ageing skin care treatment.
Collapse
Affiliation(s)
- Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, I-60131, Italy.
| | - Sebastian Kordes
- Research and Development, Beiersdorf AG, Unnastrasse 48, Hamburg, 20245, Germany.
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, I-60131, Italy; School of Pharmacy, University of Camerino, Via Gentile III da Varano, Camerino, 62032, Italy.
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, I-60131, Italy.
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, I-60131, Italy.
| | - Alexandra Vogelsang
- Research and Development, Beiersdorf AG, Unnastrasse 48, Hamburg, 20245, Germany.
| | - Nadine Möller
- Research and Development, Beiersdorf AG, Unnastrasse 48, Hamburg, 20245, Germany.
| | - Thomas Blatt
- Research and Development, Beiersdorf AG, Unnastrasse 48, Hamburg, 20245, Germany.
| | - Julia M Weise
- Research and Development, Beiersdorf AG, Unnastrasse 48, Hamburg, 20245, Germany.
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, I-60131, Italy.
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, I-60131, Italy.
| |
Collapse
|
14
|
The Role of Oxidative Stress in Physiopathology and Pharmacological Treatment with Pro- and Antioxidant Properties in Chronic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2082145. [PMID: 32774665 PMCID: PMC7396016 DOI: 10.1155/2020/2082145] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023]
Abstract
Oxidative stress (OS) has the ability to damage different molecules and cellular structures, altering the correct function of organs and systems. OS accumulates in the body by endogenous and exogenous mechanisms. Increasing evidence points to the involvement of OS in the physiopathology of various chronic diseases that require prolonged periods of pharmacological treatment. Long-term treatments may contribute to changes in systemic OS. In this review, we discuss the involvement of OS in the pathological mechanisms of some chronic diseases, the pro- or antioxidant effects of their pharmacological treatments, and possible adjuvant antioxidant alternatives. Diseases such as high blood pressure, arteriosclerosis, and diabetes mellitus contribute to the increased risk of cardiovascular disease. Antihypertensive, lipid-lowering, and hypoglycemic treatments help reduce the risk with an additional antioxidant benefit. Treatment with methotrexate in autoimmune systemic inflammatory diseases, such as rheumatoid arthritis, has a dual role in stimulating the production of OS and producing mitochondrial dysfunction. However, it can also help indirectly decrease the systemic OS induced by inflammation. Medicaments used to treat neurodegenerative diseases tend to decrease the mechanisms related to the production of reactive oxygen species (ROS) and balance OS. On the other hand, immunosuppressive treatments used in cancer or human immunodeficiency virus infection increase the production of ROS, causing significant oxidative damage in different organs and systems without widely documented exogenous antioxidant administration alternatives.
Collapse
|
15
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
16
|
Sreedhar A, Aguilera-Aguirre L, Singh KK. Mitochondria in skin health, aging, and disease. Cell Death Dis 2020; 11:444. [PMID: 32518230 PMCID: PMC7283348 DOI: 10.1038/s41419-020-2649-z] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 02/08/2023]
Abstract
The skin is a high turnover organ, and its constant renewal depends on the rapid proliferation of its progenitor cells. The energy requirement for these metabolically active cells is met by mitochondrial respiration, an ATP generating process driven by a series of protein complexes collectively known as the electron transport chain (ETC) that is located on the inner membrane of the mitochondria. However, reactive oxygen species (ROS) like superoxide, singlet oxygen, peroxides are inevitably produced during respiration and disrupt macromolecular and cellular structures if not quenched by the antioxidant system. The oxidative damage caused by mitochondrial ROS production has been established as the molecular basis of multiple pathophysiological conditions, including aging and cancer. Not surprisingly, the mitochondria are the primary organelle affected during chronological and UV-induced skin aging, the phenotypic manifestations of which are the direct consequence of mitochondrial dysfunction. Also, deletions and other aberrations in the mitochondrial DNA (mtDNA) are frequent in photo-aged skin and skin cancer lesions. Recent studies have revealed a more innate role of the mitochondria in maintaining skin homeostasis and pigmentation, which are affected when the essential mitochondrial functions are impaired. Some common and rare skin disorders have a mitochondrial involvement and include dermal manifestations of primary mitochondrial diseases as well as congenital skin diseases caused by damaged mitochondria. With studies increasingly supporting the close association between mitochondria and skin health, its therapeutic targeting in the skin-either via an ATP production boost or free radical scavenging-has gained attention from clinicians and aestheticians alike. Numerous bioactive compounds have been identified that improve mitochondrial functions and have proved effective against aged and diseased skin. In this review, we discuss the essential role of mitochondria in regulating normal and abnormal skin physiology and the possibility of targeting this organelle in various skin disorders.
Collapse
Affiliation(s)
| | | | - Keshav K Singh
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Integartive Center For Aging Research and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
17
|
Schniertshauer D, Gebhard D, van Beek H, Nöth V, Schon J, Bergemann J. The activity of the DNA repair enzyme hOGG1 can be directly modulated by ubiquinol. DNA Repair (Amst) 2020; 87:102784. [DOI: 10.1016/j.dnarep.2019.102784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023]
|
18
|
Ushikoshi-Nakayama R, Ryo K, Yamazaki T, Kaneko M, Sugano T, Ito Y, Matsumoto N, Saito I. Effect of gummy candy containing ubiquinol on secretion of saliva: A randomized, double-blind, placebo-controlled parallel-group comparative study and an in vitro study. PLoS One 2019; 14:e0214495. [PMID: 30943227 PMCID: PMC6447281 DOI: 10.1371/journal.pone.0214495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 03/08/2019] [Indexed: 12/17/2022] Open
Abstract
A randomized, double-blind, placebo-controlled, parallel-group comparative clinical study was conducted to examine the effects of ubiquinol (the reduced form of Coenzyme Q10) on secretion of saliva. This interventional study enrolled 40 subjects aged 65 years or younger who were healthy, but noted slight dryness of the mouth. Subjects were randomized with stratification according to gender and age to ingestion of gummy candy containing 50 mg of ubiquinol or placebo twice daily for 8 weeks. At the end of study, along with a significant increase of the CoQ10 level in saliva (p = 0.025*, d = 0.65), there was a significant increase of the saliva flow rate (p = 0.048*, d = 0.66) in the ubiquinol candy group (n = 18; 47.4±6.2 years; 6 men and 12 women) compared to the placebo group (n = 20; 52.2±7.7 years; 4 men and 16 women). The strength of the stomatognathic muscles was not significantly enhanced by ingestion of ubiquinol candy. Compared with baseline, significant improvement of the following four questionnaire items was observed in the ubiquinol group at the end of the study: feeling tired (p = 0.00506, d = -0.726), dryness of the mouth (p = 0.04799, d = -0.648), prone to catching a cold (p = 0.00577, d = -0.963), and diarrhea (p = 0.0166, d = -0.855). There were no serious adverse events. An in vitro study revealed that ubiquinol stimulated a significant and concentration-dependent increase of ATP production by a cell line derived from human salivary gland epithelial cells (p<0.05), while 1 nM ubiquinol significantly suppressed (p = 0.028) generation of malondialdehyde by cells exposed to FeSO4-induced oxidative stress. These findings suggest that ubiquinol increases secretion of saliva by suppressing oxidative stress in the salivary glands and by promoting ATP production. Trial Registration: UMIN-CTR UMIN000024406.
Collapse
Affiliation(s)
| | - Koufuchi Ryo
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Tomoe Yamazaki
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Mie Kaneko
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Tomoko Sugano
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yumi Ito
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Naoyuki Matsumoto
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Ichiro Saito
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- * E-mail:
| |
Collapse
|
19
|
Vollmer DL, West VA, Lephart ED. Enhancing Skin Health: By Oral Administration of Natural Compounds and Minerals with Implications to the Dermal Microbiome. Int J Mol Sci 2018; 19:E3059. [PMID: 30301271 PMCID: PMC6213755 DOI: 10.3390/ijms19103059] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
The history of cosmetics goes back to early Egyptian times for hygiene and health benefits while the history of topical applications that provide a medicinal treatment to combat dermal aging is relatively new. For example, the term cosmeceutical was first coined by Albert Kligman in 1984 to describe topical products that afford both cosmetic and therapeutic benefits. However, beauty comes from the inside. Therefore, for some time scientists have considered how nutrition reflects healthy skin and the aging process. The more recent link between nutrition and skin aging began in earnest around the year 2000 with the demonstrated increase in peer-reviewed scientific journal reports on this topic that included biochemical and molecular mechanisms of action. Thus, the application of: (a) topical administration from outside into the skin and (b) inside by oral consumption of nutritionals to the outer skin layers is now common place and many journal reports exhibit significant improvement for both on a variety of dermal parameters. Therefore, this review covers, where applicable, the history, chemical structure, and sources such as biological and biomedical properties in the skin along with animal and clinical data on the oral applications of: (a) collagen, (b) ceramide, (c) β-carotene, (d) astaxanthin, (e) coenzyme Q10, (f) colostrum, (g) zinc, and (h) selenium in their mode of action or function in improving dermal health by various quantified endpoints. Lastly, the importance of the human skin microbiome is briefly discussed in reference to the genomics, measurement, and factors influencing its expression and how it may alter the immune system, various dermal disorders, and potentially be involved in chemoprevention.
Collapse
Affiliation(s)
- David L Vollmer
- 4Life Research, Scientific Research Division, Sandy, UT 84070, USA.
| | - Virginia A West
- 4Life Research, Scientific Research Division, Sandy, UT 84070, USA.
| | - Edwin D Lephart
- Department of Physiology, Developmental Biology and The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
20
|
Potential therapeutic role of Co-Q10 in alleviating intervertebral disc degeneration and suppressing IL-1β-mediated inflammatory reaction in NP cells. Int Immunopharmacol 2018; 64:424-431. [PMID: 30261465 DOI: 10.1016/j.intimp.2018.09.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/13/2018] [Accepted: 09/19/2018] [Indexed: 12/24/2022]
Abstract
Coenzyme Q10 (Co-Q10) is extraordinarily popular and has been used in abundant interventions as an antioxidant reagent that participates in numerous oxidation reactions. According to substantial evidence previously reported, interleukin-1β (IL-1β) is deemed to be one of the chief orchestrator molecules in the degeneration of intervertebral disc (IVD). However, it is unknown whether Co-Q10 is able to protect against IVD degeneration. In the current study, mouse-derived IVDs as well as primary human nucleus pulposus (NP) cells were isolated and cultured. NP cells were stimulated with IL-1β, with or without selective addition of Co-Q10 to investigate the therapeutic effect of Co-Q10 on IVD degeneration. Levels of IL-1β-induced inflammatory biomarkers including TNF-α, COX-2, IL-6 and iNOS were reduced by Co-Q10, which was possibly associated with inhibition of NF-κB signaling activation. Furthermore, Co-Q10 maintained the production of anabolic biomarkers in NP cells such as collagen 2, aggrecan and Sox-9 and altered the enhanced catabolism induced by IL-1β. Moreover, the therapeutic role of Co-Q10 in sustaining IVD tissue-enhanced anabolism is potentially dependent on activation of the Akt signaling pathway. In summary, Co-Q10 may potentially represent an available molecular target that may shed light on approaches to the prevention and treatment of IVD degeneration in the future.
Collapse
|
21
|
Significance of Ubiad1 for Epidermal Keratinocytes Involves More Than CoQ10 Synthesis: Implications for Skin Aging. COSMETICS 2018. [DOI: 10.3390/cosmetics5010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
A large-conductance calcium-regulated K+ channel in human dermal fibroblast mitochondria. Biochem J 2016; 473:4457-4471. [PMID: 27729542 DOI: 10.1042/bcj20160732] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/23/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023]
Abstract
Potassium channels have been found in the inner mitochondrial membrane of various cells. These channels regulate the mitochondrial membrane potential, respiration and production of reactive oxygen species. In the present study, we identified the activity of a mitochondrial large-conductance Ca2+-regulated potassium channel (mitoBKCa channel) in mitoplasts isolated from a primary human dermal fibroblast cell line. A potassium selective current was recorded with a mean conductance of 280 ± 2 pS in a symmetrical 150 mM KCl solution. The mitoBKCa channel was activated by the Ca2+ and by potassium channel opener NS1619. The channel activity was irreversibly inhibited by paxilline, a selective inhibitor of the BKCa channels. In isolated fibroblast mitochondria NS1619 depolarized the mitochondrial membrane potential, stimulated nonphosphorylating respiration and decreased superoxide formation. Additionally, the α- and β-subunits (predominantly the β3-form) of the BKCa channels were identified in fibroblast mitochondria. Our findings indicate, for the first time, the presence of a large-conductance Ca2+-regulated potassium channel in the inner mitochondrial membrane of human dermal fibroblasts.
Collapse
|