1
|
Guo R, Wang S, Niu NN, Xu YL, Zhu JX, Scheer H, Noy D, Zhao KH. Dichromic Allophycocyanin Trimer Covering a Broad Spectral Range (550-660 nm). Chemistry 2023; 29:e202203367. [PMID: 36382427 DOI: 10.1002/chem.202203367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
Phycobilisomes, the light-harvesting complexes of cyanobacteria and red algae, are a resource for photosynthetic, photonic and fluorescence labeling elements. They cover an exceptionally broad spectral range, but the complex superstructure and assembly have been an obstacle. By replacing in Synechocystis sp. PCC 6803 the biliverdin reductases, we studied the role of chromophores in the assembly of the phycobilisome core. Introduction of the green-absorbing phycoerythrobilin instead of the red-absorbing phycocyanobilin inhibited aggregation. A novel, trimeric allophycocyanin (Dic-APC) was obtained. In the small (110 kDa) unit, the two chromophores, phycoerythrobilin and phytochromobilin, cover a wide spectral range (550 to 660 nm). Due to efficient energy transfer, it provides an efficient artificial light-harvesting element. Dic-APC was generated in vitro by using the contained core-linker, LC , for template-assisted purification and assembly. Labeling the linker provides a method for targeting Dic-APC.
Collapse
Affiliation(s)
- Rui Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Si Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Nan-Nan Niu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ya-Li Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Jun-Xun Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Str. 67, D-80638, München, Germany
| | - Dror Noy
- MIGAL-Galilee Research Institute S. Industrial Zone, Kiryat Shmona, Israel.,Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee, Israel
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
2
|
Wang F, Fang J, Guan K, Luo S, Dogra V, Li B, Ma D, Zhao X, Lee KP, Sun P, Xin J, Liu T, Xing W, Kim C. The Arabidopsis CRUMPLED LEAF protein, a homolog of the cyanobacterial bilin lyase, retains the bilin-binding pocket for a yet unknown function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:964-978. [PMID: 32860438 DOI: 10.1111/tpj.14974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
The photosynthetic bacterial phycobiliprotein lyases, also called CpcT lyases, catalyze the biogenesis of phycobilisome, a light-harvesting antenna complex, through the covalent attachment of chromophores to the antenna proteins. The Arabidopsis CRUMPLED LEAF (CRL) protein is a homolog of the cyanobacterial CpcT lyase. Loss of CRL leads to multiple lesions, including localized foliar cell death, constitutive expression of stress-related nuclear genes, abnormal cell cycle, and impaired plastid division. Notwithstanding the apparent phenotypes, the function of CRL still remains elusive. To gain insight into the function of CRL, we examined whether CRL still retains the capacity to bind with the bacterial chromophore phycocyanobilin (PCB) and its plant analog phytochromobilin (PΦB). The revealed structure of the CpcT domain of CRL is comparable to that of the CpcT lyase, despite the low sequence identity. The subsequent in vitro biochemical assays found, as shown for the CpcT lyase, that PCB/PΦB binds to the CRL dimer. However, some mutant forms of CRL, substantially compromised in their bilin-binding ability, still restore the crl-induced multiple lesions. These results suggest that although CRL retains the bilin-binding pocket, it seems not functionally associated with the crl-induced multiple lesions.
Collapse
Affiliation(s)
- Fangfang Wang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Fang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaoling Guan
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengji Luo
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Vivek Dogra
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bingqi Li
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Demin Ma
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyan Zhao
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Keun Pyo Lee
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Pengkai Sun
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Jian Xin
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Liu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiman Xing
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
3
|
Hu PP, Hou JY, Xu YL, Niu NN, Zhao C, Lu L, Zhou M, Scheer H, Zhao KH. The role of lyases, NblA and NblB proteins and bilin chromophore transfer in restructuring the cyanobacterial light-harvesting complex ‡. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:529-540. [PMID: 31820831 DOI: 10.1111/tpj.14647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Phycobilisomes are large light-harvesting complexes attached to the stromal side of thylakoids in cyanobacteria and red algae. They can be remodeled or degraded in response to changing light and nutritional status. Both the core and the peripheral rods of phycobilisomes contain biliproteins. During biliprotein biosynthesis, open-chain tetrapyrrole chromophores are attached covalently to the apoproteins by dedicated lyases. Another set of non-bleaching (Nb) proteins has been implicated in phycobilisome degradation, among them NblA and NblB. We report in vitro experiments with lyases, biliproteins and NblA/B which imply that the situation is more complex than currently discussed: lyases can also detach the chromophores and NblA and NblB can modulate lyase-catalyzed binding and detachment of chromophores in a complex fashion. We show: (i) NblA and NblB can interfere with chromophorylation as well as chromophore detachment of phycobiliprotein, they are generally inhibitors but in some cases enhance the reaction; (ii) NblA and NblB promote dissociation of whole phycobilisomes, cores and, in particular, allophycocyanin trimers; (iii) while NblA and NblB do not interact with each other, both interact with lyases, apo- and holo-biliproteins; (iv) they promote synergistically the lyase-catalyzed chromophorylation of the β-subunit of the major rod component, CPC; and (v) they modulate lyase-catalyzed and lyase-independent chromophore transfers among biliproteins, with the core protein, ApcF, the rod protein, CpcA, and sensory biliproteins (phytochromes, cyanobacteriochromes) acting as potential traps. The results indicate that NblA/B can cooperate with lyases in remodeling the phycobilisomes to balance the metabolic requirements of acclimating their light-harvesting capacity without straining the overall metabolic economy of the cell.
Collapse
Affiliation(s)
- Ping-Ping Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jian-Yun Hou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ya-Li Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Nan-Nan Niu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Cheng Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Lu Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Str. 67, D-80638, München, Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| |
Collapse
|
4
|
Stepanenko OV, Stepanenko OV, Shpironok OG, Fonin AV, Kuznetsova IM, Turoverov KK. Near-Infrared Markers based on Bacterial Phytochromes with Phycocyanobilin as a Chromophore. Int J Mol Sci 2019; 20:ijms20236067. [PMID: 31810174 PMCID: PMC6928796 DOI: 10.3390/ijms20236067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/03/2022] Open
Abstract
Biomarkers engineered on the basis of bacterial phytochromes with biliverdin IXα (BV) cofactor as a chromophore are increasingly used in cell biology and biomedicine, since their absorption and fluorescence spectra lie within the so-called optical “transparency window” of biological tissues. However, the quantum yield of BV fluorescence in these biomarkers does not exceed 0.145. The task of generating biomarkers with a higher fluorescence quantum yield remains relevant. To address the problem, we proposed the use of phycocyanobilin (PCB) as a chromophore of biomarkers derived from bacterial phytochromes. In this work, we characterized the complexes of iRFP713 evolved from RpBphP2 and its mutant variants with different location of cysteine residues capable of covalent tetrapyrrole attachment with the PCB cofactor. All analyzed proteins assembled with PCB were shown to have a higher fluorescence quantum yield than the proteins assembled with BV. The iRFP713/V256C and iRFP713/C15S/V256C assembled with PCB have a particularly high quantum yield of 0.5 and 0.45, which exceeds the quantum yield of all currently available near-infrared biomarkers. Moreover, PCB has 4 times greater affinity for iRFP713/V256C and iRFP713/C15S/V256C proteins compared to BV. These data establish iRFP713/V256C and iRFP713/C15S/V256C assembled with the PCB chromophore as promising biomarkers for application in vivo. The analysis of the spectral properties of the tested biomarkers allowed for suggesting that the high-fluorescence quantum yield of the PCB chromophore can be attributed to the lower mobility of the D-ring of PCB compared to BV.
Collapse
Affiliation(s)
- Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russia; (O.V.S.); (O.V.S.); (O.G.S.); (A.V.F.); (I.M.K.)
| | - Olga V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russia; (O.V.S.); (O.V.S.); (O.G.S.); (A.V.F.); (I.M.K.)
| | - Olesya G. Shpironok
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russia; (O.V.S.); (O.V.S.); (O.G.S.); (A.V.F.); (I.M.K.)
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russia; (O.V.S.); (O.V.S.); (O.G.S.); (A.V.F.); (I.M.K.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russia; (O.V.S.); (O.V.S.); (O.G.S.); (A.V.F.); (I.M.K.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russia; (O.V.S.); (O.V.S.); (O.G.S.); (A.V.F.); (I.M.K.)
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str., 29, St. Petersburg 194064, Russia
- Correspondence: ; Tel.: +7-812-297-19-57
| |
Collapse
|
5
|
Hou YN, Ding WL, Hu JL, Jiang XX, Tan ZZ, Zhao KH. Very Bright Phycoerythrobilin Chromophore for Fluorescence Biolabeling. Chembiochem 2019; 20:2777-2783. [PMID: 31145526 DOI: 10.1002/cbic.201900273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Indexed: 11/07/2022]
Abstract
Biliproteins have extended the spectral range of fluorescent proteins into the far-red (FR) and near-infrared (NIR) regions. These FR and NIR fluorescent proteins are suitable for the bioimaging of mammalian tissues and are indispensable for multiplex labeling. Their application, however, presents considerable challenges in increasing their brightness, while maintaining emission in FR regions and oligomerization of monomers. Two fluorescent biliprotein triads, termed BDFP1.2/1.6:3.3:1.2/1.6, are reported. In mammalian cells, these triads not only have extremely high brightness in the FR region, but also have monomeric oligomerization. The BDFP1.2 and BDFP1.6 domains covalently bind to biliverdin, which is accessible in most cells. The BDFP3.3 domain noncovalently binds phycoerythrobilin that is added externally. A new method of replacing phycoerythrobilin with proteolytically digested BDFP3.3 facilitates this labeling. BDFP3.3 has a very high fluorescence quantum yield of 66 %, with maximal absorbance at λ=608 nm and fluorescence at λ=619 nm. In BDFP1.2/1.6:3.3:1.2/1.6, the excitation energy that is absorbed in the red region by phycoerythrobilin in the BDFP3.3 domain is transferred to biliverdin in the two BDFP1.2 or BDFP1.6 domains and fluoresces at λ≈670 nm. The combination of BDFP3.3 and BDFP1.2/1.6:3.3:1.2/1.6 can realize dual-color labeling. Labeling various proteins by fusion to these new fluorescent biliproteins is demonstrated in prokaryotic and mammalian cells.
Collapse
Affiliation(s)
- Ya-Nan Hou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Ji-Ling Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Xiang-Xiang Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zi-Zhu Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
6
|
Hou YN, Ding WL, Jiang SP, Miao D, Tan ZZ, Hu JL, Scheer H, Zhao KH. Bright near-infrared fluorescence bio-labeling with a biliprotein triad. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:277-284. [PMID: 30471307 DOI: 10.1016/j.bbamcr.2018.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/22/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
Abstract
Biliproteins have extended the spectral range of fluorescent proteins into the near-infrared region (NIR, 700-770 nm) of maximal transmission of most tissues and are also favorable for multiplex labeling. Their application, however, presents considerable challenges to increase their stability under physiological conditions and, in particular, to increase their brightness while maintaining the emission in near-infrared regions: their fluorescence yield generally decreases with increasing wavelengths, and their effective brightness depends strongly on the environmental conditions. We report a fluorescent biliprotein triad, termed BDFP1.1:3.1:1.1, that combines a large red-shift (722 nm) with high brightness in mammalian cells and high stability under changing environmental conditions. It is fused from derivatives of the phycobilisome core subunits, ApcE2 and ApcF2. These two subunits are induced by far-red light (FR, 650-700 nm) in FR acclimated cyanobacteria. Two BDFP1.1 domains engineered from ApcF2 covalently bind biliverdin that is accessible in most cells. The soluble BDFP3 domain, engineered from ApcE2, binds phytochromobilin non-covalently, generating BDFP3.1. This phytochromobilin chromophore was added externally; it is readily generated by an improved synthesis in E. coli and subsequent extraction. Excitation energy absorbed in the FR by covalently bound biliverdins in the two BDFP1.1 domains is transferred via fluorescence resonance energy transfer to the non-covalently bound phytochromobilin in the BDFP3.1 domain fluorescing in the NIR around 720 nm. Labeling of a variety of proteins by fusion to the biliprotein triad is demonstrated in prokaryotic and mammalian cells, including human cell lines.
Collapse
Affiliation(s)
- Ya-Nan Hou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Su-Ping Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dan Miao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zi-Zhu Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ji-Ling Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Str. 67, D-80638 München, Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
7
|
Stiefelmaier J, Ledermann B, Sorg M, Banek A, Geib D, Ulber R, Frankenberg-Dinkel N. Pink bacteria-Production of the pink chromophore phycoerythrobilin with Escherichia coli. J Biotechnol 2018; 274:47-53. [PMID: 29549003 DOI: 10.1016/j.jbiotec.2018.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/01/2018] [Accepted: 03/11/2018] [Indexed: 11/29/2022]
Abstract
Phycoerythrobilin (PEB) is an open-chain tetrapyrrole derived from heme and plays an important role as light-harvesting pigment in the phycobiliproteins of cyanobacteria and red algae. Furthermore, PEB can also function as an antioxidant with potential use as a natural acid stable food colorant. PEB is not commercially available and large, pure quantities can only be obtained by laborious methanolysis of red algae followed by liquid chromatography. Here we describe an improved method for high yield production and purification of PEB in Escherichia coli via heterologous expression where the two required enzymes heme oxygenase and PEB synthase subsequently convert the substrate heme provided by the host cell. Experiments in shaking flasks resulted in the highest product yield of 680.23 ± 42.75 μg PEB per g cell dry weight, by induction with 0.1 mM IPTG. Scale-up to batch-operated fermentation in a 2 L bioreactor reached product concentrations up to 5.02 mg PEB L-1 by adjustment of aeration, induction time, media composition and supplementation of precursors. A further approach included separation of PEB from developed foam above the culture. This enabled continuous product collection during cultivation and simplified product purification. Produced PEB was validated via UV-vis spectroscopy, high pressure liquid chromatography and mass spectrometry.
Collapse
Affiliation(s)
- Judith Stiefelmaier
- Lehrgebiet Bioverfahrenstechnik, Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
| | - Benjamin Ledermann
- Abteilung für Mikrobiologie, Technische Universität Kaiserslautern, Erwin-Schroedinger-Straße 56, 67663 Kaiserslautern, Germany.
| | - Michael Sorg
- Lehrgebiet Bioverfahrenstechnik, Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
| | - Angela Banek
- Lehrgebiet Bioverfahrenstechnik, Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany; Abteilung für Mikrobiologie, Technische Universität Kaiserslautern, Erwin-Schroedinger-Straße 56, 67663 Kaiserslautern, Germany.
| | - Doris Geib
- Lehrgebiet Bioverfahrenstechnik, Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
| | - Roland Ulber
- Lehrgebiet Bioverfahrenstechnik, Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany.
| | - Nicole Frankenberg-Dinkel
- Abteilung für Mikrobiologie, Technische Universität Kaiserslautern, Erwin-Schroedinger-Straße 56, 67663 Kaiserslautern, Germany.
| |
Collapse
|