1
|
Bronner H, Doll-Nikutta K, Donath S, Ehlert N, Krysiak Y, Heisterkamp A, Stiesch M, Kalies S, Polarz S. A versatile two-light mode triggered system for highly localized sequential release of reactive oxygen species and conjugated drugs from mesoporous organosilica particles. J Mater Chem B 2025; 13:3032-3038. [PMID: 39888299 DOI: 10.1039/d4tb02691h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The increasing prevalence of antimicrobial resistance and adverse effects of systemic treatments calls for urgent reevaluation of current methods that rely on excessive, uncontrolled drug administration. In recent years triggerable systems have emerged as promising alternatives, enabling time-controlled and localized drug release, which are only activated if necessary. Light is an obvious candidate as an external trigger, since it allows for localized activation, is non-invasive and its wavelength and intensity can be tailored to fit the demands of the drug release system. Such localized and triggered systems minimize off-target effects and undesired exposure, making it a promising tool for combating health threats such as antimicrobial resistance. However, the limited tissue penetration of visible light significantly limits the applicability of this concept in vivo. Here, we introduce an innovative triggerable drug release system, based on mono-, bi-, and tri-functionalized mesoporous organosilica particles (MOPs). The limited tissue penetration is addressed by an advanced trigger system featuring two-photon absorption. Two-photon absorption enables utilization of near-infrared (NIR) light as a trigger, which is known to exhibit an enhanced penetration depth. The particles are designed to release reactive oxygen species (ROS) upon NIR irradiation and undergo Förster resonance energy transfer (FRET) to a ROS producing dye. Moreover, by oxidative cleavage, an additional therapeutic agent is released in a cascade reaction, enhancing the system's effectiveness. The ROS release is microscopically demonstrated in situ and, for the first time, release of a fluorescent compound (therapeutic agent) in a cascade reaction is observed in real-time, providing valuable insights into the behavior and performance of our particles. This novel sequential dual-release platform for light-triggered therapeutic delivery has great potential for advanced therapeutic applications in both superficial and deep tissue treatments.
Collapse
Affiliation(s)
- Hannah Bronner
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany.
| | - Katharina Doll-Nikutta
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany.
| | - Sören Donath
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany.
- Institute of Quantum Optics, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - Nina Ehlert
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany.
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany.
| | - Yaşar Krysiak
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany.
| | - Alexander Heisterkamp
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany.
- Institute of Quantum Optics, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany.
| | - Stefan Kalies
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany.
- Institute of Quantum Optics, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - Sebastian Polarz
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany.
| |
Collapse
|
2
|
Ban S, Yi H, Park J, Huang Y, Yu KJ, Yeo WH. Advances in Photonic Materials and Integrated Devices for Smart and Digital Healthcare: Bridging the Gap Between Materials and Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416899. [PMID: 39905874 DOI: 10.1002/adma.202416899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/06/2024] [Indexed: 02/06/2025]
Abstract
Recent advances in developing photonic technologies using various materials offer enhanced biosensing, therapeutic intervention, and non-invasive imaging in healthcare. Here, this article summarizes significant technological advancements in materials, photonic devices, and bio-interfaced systems, which demonstrate successful applications for impacting human healthcare via improved therapies, advanced diagnostics, and on-skin health monitoring. The details of required materials, necessary properties, and device configurations are described for next-generation healthcare systems, followed by an explanation of the working principles of light-based therapeutics and diagnostics. Next, this paper shares the recent examples of integrated photonic systems focusing on translation and immediate applications for clinical studies. In addition, the limitations of existing materials and devices and future directions for smart photonic systems are discussed. Collectively, this review article summarizes the recent focus and trends of technological advancements in developing new nanomaterials, light delivery methods, system designs, mechanical structures, material functionalization, and integrated photonic systems to advance human healthcare and digital healthcare.
Collapse
Affiliation(s)
- Seunghyeb Ban
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hoon Yi
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jaejin Park
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Yunuo Huang
- School of Industrial Design, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ki Jun Yu
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
- The Biotech Center, Pohang University of Science and Technology (POSTECH), Gyeongbuk, 37673, South Korea
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, Seoul, 03722, South Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Wearable Intelligent Systems and Healthcare Center at the Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
3
|
Castilla-Casadiego DA, Loh DH, Pineda-Hernandez A, Rosales AM. Stimuli-Responsive Substrates to Control the Immunomodulatory Potential of Stromal Cells. Biomacromolecules 2024; 25:6319-6337. [PMID: 39283807 PMCID: PMC11506505 DOI: 10.1021/acs.biomac.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Mesenchymal stromal cells (MSCs) have broad immunomodulatory properties that range from regulation, proliferation, differentiation, and immune cell activation to secreting bioactive molecules that inhibit inflammation and regulate immune response. These properties provide MSCs with high therapeutic potency that has been shown to be relevant to tissue engineering and regenerative medicine. Hence, researchers have explored diverse strategies to control the immunomodulatory potential of stromal cells using polymeric substrates or scaffolds. These substrates alter the immunomodulatory response of MSCs, especially through biophysical cues such as matrix mechanical properties. To leverage these cell-matrix interactions as a strategy for priming MSCs, emerging studies have explored the use of stimuli-responsive substrates to enhance the therapeutic value of stromal cells. This review highlights how stimuli-responsive materials, including chemo-responsive, microenvironment-responsive, magneto-responsive, mechano-responsive, and photo-responsive substrates, have specifically been used to promote the immunomodulatory potential of stromal cells by controlling their secretory activity.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Darren H Loh
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrianne M Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Nejabat M, Samie A, Khojastehnezhad A, Hadizadeh F, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM, Siaj M. Stimuli-Responsive Covalent Organic Frameworks for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51837-51859. [PMID: 39163539 DOI: 10.1021/acsami.4c07040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Chemotherapy as a common anticancer therapeutic modality is often challenged by various obstacles such as poor stability, low solubility, and severe side effects of chemotherapeutic agents as well as multidrug resistance of cancerous cells. Nanoparticles in the role of carriers for chemotherapeutic drugs and platforms for combining different therapeutic approaches have effectively participated in overcoming such drawbacks. In particular, nanoparticles able to induce their therapeutic effect in response to specific stimuli like tumor microenvironment characteristics (e.g., hypoxia, acidic pH, high levels of glutathione, and overexpressed hydrogen peroxide) or extrinsic stimulus of laser light bring about more precise and selective treatments. Among them, nanostructures of covalent organic frameworks (COFs) have drawn great interest in biomedical fields during recent years. Possessing large surface area, high porosity, structural stability, and customizable architecture, these biocompatible porous crystalline polymers properly translate to promising platforms for drug delivery and induction of combination therapies. With the focus on stimuli-responsive characteristics of nanoscale COFs, this study aims to propose an overview of their potentiality in cancer treatment on the basis of chemotherapy alone or in combination with sonodynamic, chemodynamic, photodynamic, and photothermal therapies.
Collapse
Affiliation(s)
- Masoud Nejabat
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Ali Samie
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Amir Khojastehnezhad
- Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mohamed Siaj
- Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
5
|
Ramundo A, Janoš J, Muchová L, Šranková M, Dostál J, Kloz M, Vítek L, Slavíček P, Klán P. Visible-Light-Activated Carbon Monoxide Release from Porphyrin-Flavonol Hybrids. J Am Chem Soc 2024; 146:920-929. [PMID: 38157303 PMCID: PMC10785818 DOI: 10.1021/jacs.3c11426] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
We report on porphyrin-flavonol hybrids consisting of a porphyrin antenna and four covalently bound 3-hydroxyflavone (flavonol) groups, which act as highly efficient photoactivatable carbon monoxide (CO)-releasing molecules (photoCORMs). These bichromophoric systems enable activation of the UV-absorbing flavonol chromophore by visible light up to 650 nm and offer precise spatial and temporal control of CO administration. The physicochemical properties of the porphyrin antenna system can also be tuned by inserting a metal cation. Our computational study revealed that the process occurs via endergonic triplet-triplet energy transfer from porphyrin to flavonol and may become feasible thanks to flavonol energy stabilization upon intramolecular proton transfer. This mechanism was also indirectly supported by steady-state and transient absorption spectroscopy techniques. Additionally, the porphyrin-flavonol hybrids were found to be biologically benign. With four flavonol CO donors attached to a single porphyrin chromophore, high CO release yields, excellent uncaging cross sections, low toxicity, and CO therapeutic properties, these photoCORMs offer exceptional potential for their further development and future biological and medical applications.
Collapse
Affiliation(s)
- Andrea Ramundo
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 62500 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech
Republic
| | - Jiří Janoš
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická
5, 16628 Prague
6, Czech Republic
| | - Lucie Muchová
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University
Hospital in Prague and First Faculty of Medicine, Charles University, Na Bojišti 3, 12108 Prague 2, Czech Republic
| | - Mária Šranková
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University
Hospital in Prague and First Faculty of Medicine, Charles University, Na Bojišti 3, 12108 Prague 2, Czech Republic
| | - Jakub Dostál
- ELI
Beamlines Facility, The Extreme Light Infrastructure
ERIC, Za Radnicí 835, 25241 Dolní Břežany, Czech Republic
| | - Miroslav Kloz
- ELI
Beamlines Facility, The Extreme Light Infrastructure
ERIC, Za Radnicí 835, 25241 Dolní Břežany, Czech Republic
| | - Libor Vítek
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University
Hospital in Prague and First Faculty of Medicine, Charles University, Na Bojišti 3, 12108 Prague 2, Czech Republic
| | - Petr Slavíček
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická
5, 16628 Prague
6, Czech Republic
| | - Petr Klán
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 62500 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech
Republic
| |
Collapse
|
6
|
Eremina OE, Schaefer S, Czaja AT, Awad S, Lim MA, Zavaleta C. Multiplexing potential of NIR resonant and non-resonant Raman reporters for bio-imaging applications. Analyst 2023; 148:5915-5925. [PMID: 37850265 PMCID: PMC10947999 DOI: 10.1039/d3an01298k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Multiplexed imaging, which allows for the interrogation of multiple molecular features simultaneously, is vital for addressing numerous challenges across biomedicine. Optically unique surface-enhanced Raman scattering (SERS) nanoparticles (NPs) have the potential to serve as a vehicle to achieve highly multiplexed imaging in a single acquisition, which is non-destructive, quantitative, and simple to execute. When using laser excitation at 785 nm, which allows for a lower background from biological tissues, near infrared (NIR) dyes can be used as Raman reporters to provide high Raman signal intensity due to the resonance effect. This class of imaging agents are known as surface-enhanced resonance Raman scattering (SERRS) NPs. Investigators have predominantly utilized two classes of Raman reporters in their nanoparticle constructs for use in biomedical applications: NIR-resonant and non-resonant Raman reporters. Herein, we investigate the multiplexing potential of five non-resonant SERS: BPE, 44DP, PTT, PODT, and BMMBP, and five NIR resonant SERRS NP flavors with heptamethine cyanine dyes: DTTC, IR-770, IR-780, IR-792, and IR-797, which have been extensively used for biomedical imaging applications. Although SERRS NPs display high Raman intensities, due to their resonance properties, we observed that non-resonant SERS NP concentrations can be quantitated by the intensity of their unique emissions with higher accuracy. Spectral unmixing of five-plex mixtures revealed that the studied non-resonant SERS NPs maintain their detection limits more robustly as compared to the NIR resonant SERRS NP flavors when introducing more components into a mixture.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Sarah Schaefer
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Alexander T Czaja
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Samer Awad
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Matthew A Lim
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA.
- USC Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA
| |
Collapse
|
7
|
Tsai WY, Breimann S, Shen TW, Frishman D. Photoacoustic and absorption spectroscopy imaging analysis of human blood. PLoS One 2023; 18:e0289704. [PMID: 37540721 PMCID: PMC10403132 DOI: 10.1371/journal.pone.0289704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
Photoacoustic and absorption spectroscopy imaging are safe and non-invasive molecular quantification techniques, which do not utilize ionizing radiation and allow for repeated probing of samples without them being contaminated or damaged. Here we assessed the potential of these techniques for measuring biochemical parameters. We investigated the statistical association between 31 time and frequency domain features derived from photoacoustic and absorption spectroscopy signals and 19 biochemical blood parameters. We found that photoacoustic and absorption spectroscopy imaging features are significantly correlated with 14 and 17 individual biochemical parameters, respectively. Moreover, some of the biochemical blood parameters can be accurately predicted based on photoacoustic and absorption spectroscopy imaging features by polynomial regression. In particular, the levels of uric acid and albumin can be accurately explained by a combination of photoacoustic and absorption spectroscopy imaging features (adjusted R-squared > 0.75), while creatinine levels can be accurately explained by the features of the photoacoustic system (adjusted R-squared > 0.80). We identified a number of imaging features that inform on the biochemical blood parameters and can be potentially useful in clinical diagnosis. We also demonstrated that linear and non-linear combinations of photoacoustic and absorption spectroscopy imaging features can accurately predict some of the biochemical blood parameters. These results demonstrate that photoacoustic and absorption spectroscopy imaging systems show promise for future applications in clinical practice.
Collapse
Affiliation(s)
- Wei-Yun Tsai
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Stephan Breimann
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Tsu-Wang Shen
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan
- Master's Program Biomedical Informatics and Biomedical Engineering, Feng Chia University, Taichung, Taiwan
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
8
|
Rosenberger JE, Xie Y, Fang Y, Lyu X, Trout WS, Dmitrenko O, Fox JM. Ligand-Directed Photocatalysts and Far-Red Light Enable Catalytic Bioorthogonal Uncaging inside Live Cells. J Am Chem Soc 2023; 145:6067-6078. [PMID: 36881718 PMCID: PMC10589873 DOI: 10.1021/jacs.2c10655] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Described are ligand-directed catalysts for live-cell, photocatalytic activation of bioorthogonal chemistry. Catalytic groups are localized via a tethered ligand either to DNA or to tubulin, and red light (660 nm) photocatalysis is used to initiate a cascade of DHTz oxidation, intramolecular Diels-Alder reaction, and elimination to release phenolic compounds. Silarhodamine (SiR) dyes, more conventionally used as biological fluorophores, serve as photocatalysts that have high cytocompatibility and produce minimal singlet oxygen. Commercially available conjugates of Hoechst dye (SiR-H) and docetaxel (SiR-T) are used to localize SiR to the nucleus and microtubules, respectively. Computation was used to assist the design of a new class of redox-activated photocage to release either phenol or n-CA4, a microtubule-destabilizing agent. In model studies, uncaging is complete within 5 min using only 2 μM SiR and 40 μM photocage. In situ spectroscopic studies support a mechanism involving rapid intramolecular Diels-Alder reaction and a rate-determining elimination step. In cellular studies, this uncaging process is successful at low concentrations of both the photocage (25 nM) and the SiR-H dye (500 nM). Uncaging n-CA4 causes microtubule depolymerization and an accompanying reduction in cell area. Control studies demonstrate that SiR-H catalyzes uncaging inside the cell, and not in the extracellular environment. With SiR-T, the same dye serves as a photocatalyst and the fluorescent reporter for microtubule depolymerization, and with confocal microscopy, it was possible to visualize microtubule depolymerization in real time as the result of photocatalytic uncaging in live cells.
Collapse
Affiliation(s)
- Julia E. Rosenberger
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Yixin Xie
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Yinzhi Fang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Xinyi Lyu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - William S. Trout
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Olga Dmitrenko
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
9
|
Yanagi S, Matsumoto A, Toriumi N, Tanaka Y, Miyamoto K, Muranaka A, Uchiyama M. A Switchable Near-Infrared-Absorbing Dye Based on Redox-Bistable Benzitetraazaporphyrin. Angew Chem Int Ed Engl 2023; 62:e202218358. [PMID: 36670047 DOI: 10.1002/anie.202218358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Activatable near-infrared (NIR) dyes responsive to external stimuli are used in medical and other applications. Here, we describe the design and synthesis of bench-stable 18π- and 20π-electron benzitetraazaporphyrins (BzTAPs) possessing redox-switchable NIR properties. X-Ray, NMR, and UV/Visible-NIR analyses revealed that 20π-electron BzTAP 1 exhibits NIR absorption and antiaromaticity with a paratropic ring-current, while 18π-electron BzTAP 2 shows weakly aromatic character with NIR inertness. Notably, the NIR-silent BzTAP 2 was readily converted to the NIR-active BzTAP 1 in the presence of mild reducing agents such as amine. The intense NIR absorption band of BzTAP 1 is in sharp contrast to the very weak absorption bands of previously reported antiaromatic porphyrinoids. Molecular orbital analysis revealed that symmetry-lowering perturbation of the 20π-electron porphyrinoid skeleton enables the HOMO-LUMO transition of 1 to be electric-dipole-allowed. BzTAPs are expected to be useful for constructing activatable NIR probes working in reductive environments.
Collapse
Affiliation(s)
- Shunsuke Yanagi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akihisa Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naoyuki Toriumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yusuke Tanaka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsuya Muranaka
- Advanced Elements Chemistry Laboratory, Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Advanced Elements Chemistry Laboratory, Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| |
Collapse
|
10
|
Cataldi E, Raschig M, Gutmann M, Geppert PT, Ruopp M, Schock M, Gerwe H, Bertermann R, Meinel L, Finze M, Nowak-Król A, Decker M, Lühmann T. Amber Light Control of Peptide Secondary Structure by a Perfluoroaromatic Azobenzene Photoswitch. Chembiochem 2023; 24:e202200570. [PMID: 36567253 DOI: 10.1002/cbic.202200570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
The incorporation of photoswitches into the molecular structure of peptides and proteins enables their dynamic photocontrol in complex biological systems. Here, a perfluorinated azobenzene derivative triggered by amber light was site-specifically conjugated to cysteines in a helical peptide by perfluoroarylation chemistry. In response to the photoisomerization (trans→cis) of the conjugated azobenzene with amber light, the secondary structure of the peptide was modulated from a disorganized into an amphiphilic helical structure.
Collapse
Affiliation(s)
- Eleonora Cataldi
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Martina Raschig
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Marcus Gutmann
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Patrick T Geppert
- Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry and Catalysis with Boron, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Ruopp
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Marvin Schock
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Hubert Gerwe
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Rüdiger Bertermann
- Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry and Catalysis with Boron, Am Hubland, 97074, Würzburg, Germany
| | - Lorenz Meinel
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany.,Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080, Würzburg, Germany
| | - Maik Finze
- Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry and Catalysis with Boron, Am Hubland, 97074, Würzburg, Germany
| | - Agnieszka Nowak-Król
- Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry and Catalysis with Boron, Am Hubland, 97074, Würzburg, Germany
| | - Michael Decker
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Tessa Lühmann
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
11
|
Imaging Technologies for Cerebral Pharmacokinetic Studies: Progress and Perspectives. Biomedicines 2022; 10:biomedicines10102447. [PMID: 36289709 PMCID: PMC9598571 DOI: 10.3390/biomedicines10102447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmacokinetic assessment of drug disposition processes in vivo is critical in predicting pharmacodynamics and toxicology to reduce the risk of inappropriate drug development. The blood–brain barrier (BBB), a special physiological structure in brain tissue, hinders the entry of targeted drugs into the central nervous system (CNS), making the drug concentrations in target tissue correlate poorly with the blood drug concentrations. Additionally, once non-CNS drugs act directly on the fragile and important brain tissue, they may produce extra-therapeutic effects that may impair CNS function. Thus, an intracerebral pharmacokinetic study was developed to reflect the disposition and course of action of drugs following intracerebral absorption. Through an increasing understanding of the fine structure in the brain and the rapid development of analytical techniques, cerebral pharmacokinetic techniques have developed into non-invasive imaging techniques. Through non-invasive imaging techniques, molecules can be tracked and visualized in the entire BBB, visualizing how they enter the BBB, allowing quantitative tools to be combined with the imaging system to derive reliable pharmacokinetic profiles. The advent of imaging-based pharmacokinetic techniques in the brain has made the field of intracerebral pharmacokinetics more complete and reliable, paving the way for elucidating the dynamics of drug action in the brain and predicting its course. The paper reviews the development and application of imaging technologies for cerebral pharmacokinetic study, represented by optical imaging, radiographic autoradiography, radionuclide imaging and mass spectrometry imaging, and objectively evaluates the advantages and limitations of these methods for predicting the pharmacodynamic and toxic effects of drugs in brain tissues.
Collapse
|
12
|
Red‐Shifted Water‐Soluble BODIPY Photocages for Visualisation and Controllable Cellular Delivery of Signaling Lipids. Angew Chem Int Ed Engl 2022; 61:e202205855. [DOI: 10.1002/anie.202205855] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/07/2022]
|
13
|
Li C, Zhao T, Li L, Hu X, Li C, Chen W, Hu Y. Stimuli-Responsive Gold Nanocages for Cancer Diagnosis and Treatment. Pharmaceutics 2022; 14:1321. [PMID: 35890217 PMCID: PMC9318695 DOI: 10.3390/pharmaceutics14071321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 02/01/2023] Open
Abstract
With advances in nanotechnology, various new drug delivery systems (DDSs) have emerged and played a key role in the diagnosis and treatment of cancers. Over the last two decades, gold nanocages (AuNCs) have been attracting considerable attention because of their outstanding properties. This review summarizes current advancements in endogenous, exogenous, and dual/multi-stimuli responsive AuNCs in drug delivery. This review focuses on the properties, clinical translation potential, and limitations of stimuli-responsive AuNCs for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chunming Li
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Tengyue Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450001, China;
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Xiaogang Hu
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Chao Li
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Chongqing 400030, China; (C.L.); (L.L.); (X.H.); (C.L.)
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450001, China;
| |
Collapse
|
14
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
15
|
Keyvan Rad J, Balzade Z, Mahdavian AR. Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100487] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Poryvai A, Galkin M, Shvadchak V, Slanina T. Red‐Shifted Water‐Soluble BODIPY Photocages for Visualisation and Controllable Cellular Delivery of Signaling Lipids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anna Poryvai
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences: Ustav organicke chemie a biochemie Akademie ved Ceske republiky Redox Photochemistry CZECH REPUBLIC
| | - Maksym Galkin
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences: Ustav organicke chemie a biochemie Akademie ved Ceske republiky Chemical Biology CZECH REPUBLIC
| | - Volodymyr Shvadchak
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences: Ustav organicke chemie a biochemie Akademie ved Ceske republiky Chemical biology CZECH REPUBLIC
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences: Ustav organicke chemie a biochemie Akademie ved Ceske republiky Redox Photochemistry Flemingovo nám. 2 16000 Prague CZECH REPUBLIC
| |
Collapse
|
17
|
Welfare JG, Mortelliti MJ, McGlade CA, Hartman TW, Dempsey JL, Lawrence DS. Assessment of Photoreleasable Linkers and Light-Capturing Antennas on a Photoresponsive Cobalamin Scaffold. J Org Chem 2022; 87:5076-5084. [PMID: 35353509 PMCID: PMC9727707 DOI: 10.1021/acs.joc.1c02931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cobalamin has shown promise as a light-sensitive drug delivery platform owing to its ease of modification and the high quantum yields for drug photorelease. However, studies to date on the general photochemistry of alkyl cobalamins have primarily focused on methyl and adenosyl-substituted derivatives, the natural cofactors present in various enzymatic species. We describe the synthesis and photolytic behavior of cobalamin conjugates comprised of different combinations of fluorophores and β-axial ligands. In general, cobalamin conjugates containing β-axial alkyl substituents undergo efficient photolysis under aqueous conditions, with quantum yields up to >40%. However, substituents that are large and hydrophobic, or unable to readily support the presumed radical intermediate, suffer less efficient photolysis (<15%) than smaller, water-soluble, analogs. By contrast, quantum yields improve by 2-fold in DMF for cobalamins containing large hydrophobic β-axial substituents. This suggests that drug release from carriers comprised of membranous compartments, such as liposomes, may be significantly more efficient than the corresponding photorelease in an aqueous environment. Finally, we explored the impact of fluorophores on the photolysis of alkyl cobalamins under tissue-mimetic conditions. Cobalamins substituted with efficient photon-capturing fluorophores display up to 4-fold enhancements in photolysis relative to unsubstituted derivatives. In summary, we have shown that the photosensitivity of alkyl cobalamin conjugates can be tuned by altering the Co-appended alkyl moiety, modulating the polarity of the environment (solvent), and installing photon-capturing fluorophores onto the cobalamin framework.
Collapse
|
18
|
Lunzer M, Maryasin B, Zandrini T, Baudis S, Ovsianikov A, Liska R. A disulfide-based linker for thiol-norbornene conjugation: formation and cleavage of hydrogels by the use of light. Polym Chem 2022; 13:1158-1168. [PMID: 35341220 PMCID: PMC8886483 DOI: 10.1039/d1py00914a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022]
Abstract
Photolabile groups are the key components of photo-responsive polymers, dynamically tunable materials with multiple applications in materials and life sciences. They usually consist of a chromophore and a labile bond and are inherently light sensitive. An exception are disulfides, simple reversible linkages, which become photocleavable upon addition of a photoinitiator. Despite their practical features, disulfides are rarely utilized due to their impractical formation. Here, we report a disulfide-based linker series bearing norbornene terminals for facile crosslinking of thiol-functionalized macromers via light-triggered thiol-ene conjugation (TEC). Besides finding a highly reactive lead compound, we also identify an unexpected TEC-retardation, strongly dependent on the molecular linker structure and affecting hydrogel stability. Finally, we present a useful method for localized disulfide cleavage by two-photon irradiation permitting micropatterning of disulfide-crosslinked networks.
Collapse
Affiliation(s)
- Markus Lunzer
- Institute of Applied Synthetic Chemistry, Technische Universität Wien Getreidemarkt 9/E163 1060 Vienna Austria
- Institute of Materials Science and Technology, Technische Universität Wien Getreidemarkt 9/E308 1060 Vienna Austria
| | - Boris Maryasin
- Institute of Organic Chemistry, University of Vienna Währinger Strasse 38 1090 Vienna Austria
- Institute of Theoretical Chemistry, University of Vienna Währinger Strasse 17 1090 Vienna Austria
| | - Tommaso Zandrini
- Institute of Materials Science and Technology, Technische Universität Wien Getreidemarkt 9/E308 1060 Vienna Austria
| | - Stefan Baudis
- Institute of Applied Synthetic Chemistry, Technische Universität Wien Getreidemarkt 9/E163 1060 Vienna Austria
| | - Aleksandr Ovsianikov
- Institute of Materials Science and Technology, Technische Universität Wien Getreidemarkt 9/E308 1060 Vienna Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, Technische Universität Wien Getreidemarkt 9/E163 1060 Vienna Austria
| |
Collapse
|
19
|
Li M, Gebremedhin KH, Ma D, Pu Z, Xiong T, Xu Y, Kim JS, Peng X. Conditionally Activatable Photoredox Catalysis in Living Systems. J Am Chem Soc 2022; 144:163-173. [PMID: 34963281 DOI: 10.1021/jacs.1c07372] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transformational effect of photoredox catalytic chemistries has inspired new opportunities, enabling us to interrogate nature in ways that are not possible otherwise and to unveil new biotechnologies in therapy and diagnosis. However, the deployment of artificial photoredox catalysis in living systems remains challenging, mired by the off-target risk and safety concerns of photocatalyst toxicity. Here, we present an appealing approach, namely conditionally activatable photoredox catalysis (ConAPC), and as a proof of concept design the first ConAPC architecture (Se-NO2) based upon classic self-immolative chemistry, in which the inherent photocatalytic properties can be temporarily caged while the species becomes active only at the tumor sites via sensing to specific biomarkers. Such a masking strategy allows a spatial-temporal control of photoresponsivity in vitro and in vivo. In particular, for ConAPC design, a new biologically benign metal-free photocatalyst (Se-NH2), which is able to initiate NIR photoredox catalysis to manipulate the cellular electron pool in an O2-independent mechanism of action, is identified. With this unique strategy, potent tumor-specific targeting photocatalytic eradication (TGI: 95%) is obtained in a mouse model. Impressively, favorable features such as high-resolution tumor recognition (SBR: 33.6) and excellent biocompatibility and safety are also achieved. This work therefore offers a new possibility for chemists to leverage artificial photocatalytic reactions toward the development of facile and intelligent photocatalytic theranostics.
Collapse
Affiliation(s)
- Mingle Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kalayou Hiluf Gebremedhin
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
- Department of Chemistry, CNCS, Mekelle University, 231 Mekelle, Ethiopia
| | - Dandan Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Zhongji Pu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Tao Xiong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yunjie Xu
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
- Research Institute of Dalian University of Technology in Shenzhen, Shenzhen 518057, People's Republic of China
| |
Collapse
|
20
|
Versace DL, Breloy L, Palierse E, Coradin T. Contributions of photochemistry to bio-based antibacterial polymer materials. J Mater Chem B 2021; 9:9624-9641. [PMID: 34807217 DOI: 10.1039/d1tb01801a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surgical site infections constitute a major health concern that may be addressed by conferring antibacterial properties to surgical tools and medical devices via functional coatings. Bio-sourced polymers are particularly well-suited to prepare such coatings as they are usually safe and can exhibit intrinsic antibacterial properties or serve as hosts for bactericidal agents. The goal of this Review is to highlight the unique contribution of photochemistry as a green and mild methodology for the development of such bio-based antibacterial materials. Photo-generation and photo-activation of bactericidal materials are illustrated. Recent efforts and current challenges to optimize the sustainability of the process, improve the safety of the materials and extend these strategies to 3D biomaterials are also emphasized.
Collapse
Affiliation(s)
- Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (ICMPE, UMR-CNRS 7182), 2-8 rue Henri Dunant, 94320 Thiais, France.
| | - Louise Breloy
- Institut de Chimie et des Matériaux Paris-Est (ICMPE, UMR-CNRS 7182), 2-8 rue Henri Dunant, 94320 Thiais, France.
| | - Estelle Palierse
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 place Jussieu, 75005 Paris, France. .,Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), UMR 7197, 4 place Jussieu, 75005 Paris, France
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 place Jussieu, 75005 Paris, France.
| |
Collapse
|
21
|
Zhu C, Kou T, Kadi AA, Li J, Zhang Y. Molecular platforms based on biocompatible photoreactions for photomodulation of biological targets. Org Biomol Chem 2021; 19:9358-9368. [PMID: 34632469 DOI: 10.1039/d1ob01613j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoirradiation provides a convenient and biocompatible approach for spatiotemporal modulation of biological systems with photoresponsive components. The construction of molecular platforms with a photoresponse to be integrated into biomolecules for photomodulation has been of great research interest in optochemical biology. In this review, we summarize typical molecular platforms that are integratable with biomolecules for photomodulation purposes. We categorize these molecular platforms according to their excitation light source, namely ultraviolet (UV), visible (Vis) or near-infrared (NIR) light. The protype chemistry of these molecular platforms is introduced along with an overview of their most recent applications for spatiotemporal regulation of biomolecular function in living cells or mice models. Challenges and the outlook are also presented. We hope this review paper will contribute to further progress in the development of molecular platforms and their biomedical use.
Collapse
Affiliation(s)
- Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Tianzhang Kou
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Kingdom of Saudi Arabia.
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
22
|
Shanmugam M, Kuthala N, Vankayala R, Chiang CS, Kong X, Hwang KC. Multifunctional CuO/Cu 2O Truncated Nanocubes as Trimodal Image-Guided Near-Infrared-III Photothermal Agents to Combat Multi-Drug-Resistant Lung Carcinoma. ACS NANO 2021; 15:14404-14418. [PMID: 34428028 DOI: 10.1021/acsnano.1c03784] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the development of various therapeutic modalities to tackle cancer, multidrug resistance (MDR) and incomplete destruction of deep tissue-buried tumors remain as long-standing challenges responsible for tumor recurrence and low survival rates. In addition to the MDR and deep tissue photoactivation problems, most primary tumors metastasize to the lungs and lymph nodes to form secondary tumors. Therefore, it leaves a great challenge to develop theranostic approaches to combat both MDR and deep tissue photoactivation problems. Herein, we develop a versatile plasmonic CuO/Cu2O truncated nanocube-based theranostic nanomedicine to act as a triple modal near-infrared fluorescence (NIRF) imaging agent in the biological window II (1000-1500 nm)/photoacoustic imaging (PAI)/T1-weighted magnetic resonance (MR) imaging agents, sensitize the formation of singlet oxygen (1O2) to exert nanomaterial-mediated photodynamic therapeutic (NIR-II NmPDT), and absorb long NIR light (i.e., 1550 nm) in the biological window III (1500-1700 nm) to exert nanomaterial-mediated photothermal therapeutic (NIR-III NmPTT) effects for the effective destruction of multi-drug-resistant lung tumors. We found that H69AR lung cancer cells do not create drug resistance toward plasmonic CuO/Cu2O TNCs-based nanomedicines.
Collapse
Affiliation(s)
- Munusamy Shanmugam
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan ROC
| | - Naresh Kuthala
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan ROC
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342037, Jodhpur, Rajasthan, India
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan ROC
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan ROC
| |
Collapse
|
23
|
Wang C, Zhang H, Zhang T, Zou X, Wang H, Rosenberger J, Vannam R, Trout WS, Grimm JB, Lavis LD, Thorpe C, Jia X, Li Z, Fox JM. Enabling In Vivo Photocatalytic Activation of Rapid Bioorthogonal Chemistry by Repurposing Silicon-Rhodamine Fluorophores as Cytocompatible Far-Red Photocatalysts. J Am Chem Soc 2021; 143:10793-10803. [PMID: 34250803 PMCID: PMC8765119 DOI: 10.1021/jacs.1c05547] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chromophores that absorb in the tissue-penetrant far-red/near-infrared window have long served as photocatalysts to generate singlet oxygen for photodynamic therapy. However, the cytotoxicity and side reactions associated with singlet oxygen sensitization have posed a problem for using long-wavelength photocatalysis to initiate other types of chemical reactions in biological environments. Herein, silicon-Rhodamine compounds (SiRs) are described as photocatalysts for inducing rapid bioorthogonal chemistry using 660 nm light through the oxidation of a dihydrotetrazine to a tetrazine in the presence of trans-cyclooctene dienophiles. SiRs have been commonly used as fluorophores for bioimaging but have not been applied to catalyze chemical reactions. A series of SiR derivatives were evaluated, and the Janelia Fluor-SiR dyes were found to be especially effective in catalyzing photooxidation (typically 3%). A dihydrotetrazine/tetrazine pair is described that displays high stability in both oxidation states. A protein that was site-selectively modified by trans-cyclooctene was quantitatively conjugated upon exposure to 660 nm light and a dihydrotetrazine. By contrast, a previously described methylene blue catalyst was found to rapidly degrade the protein. SiR-red light photocatalysis was used to cross-link hyaluronic acid derivatives functionalized by dihydrotetrazine and trans-cyclooctenes, enabling 3D culture of human prostate cancer cells. Photoinducible hydrogel formation could also be carried out in live mice through subcutaneous injection of a Cy7-labeled hydrogel precursor solution, followed by brief irradiation to produce a stable hydrogel. This cytocompatible method for using red light photocatalysis to activate bioorthogonal chemistry is anticipated to find broad applications where spatiotemporal control is needed in biological environments.
Collapse
Affiliation(s)
- Chuanqi Wang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Tao Zhang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Xiaoyu Zou
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Hui Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Julia Rosenberger
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Raghu Vannam
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - William S. Trout
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Jonathan B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn Virginia, 20147, USA
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn Virginia, 20147, USA
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
- Delaware Biotechnology Institute, Newark, Delaware 19711, USA
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
24
|
Liu J, Peng Y, Wei W. Light-Controllable PROTACs for Temporospatial Control of Protein Degradation. Front Cell Dev Biol 2021; 9:678077. [PMID: 34350175 PMCID: PMC8326567 DOI: 10.3389/fcell.2021.678077] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022] Open
Abstract
PROteolysis-TArgeting Chimeras (PROTACs) is an emerging and promising approach to target intracellular proteins for ubiquitination-mediated degradation, including those so-called undruggable protein targets, such as transcriptional factors and scaffold proteins. To date, plenty of PROTACs have been developed to degrade various disease-relevant proteins, such as estrogen receptor (ER), androgen receptor (AR), RTK, and CDKs. However, the on-target off-tissue and off-target effect is one of the major limitation that prevents the usage of PROTACs in clinic. To this end, we and several other groups have recently developed light-controllable PROTACs, as the representative for the third generation controllable PROTACs, by using either photo-caging or photo-switch approaches. In this review, we summarize the emerging light-controllable PROTACs and the prospective for other potential ways to achieve temporospatial control of PROTACs.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Yunhua Peng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Zeppuhar AN, Wolf SM, Falvey DE. Photoacid Generators Activated through Sequential Two-Photon Excitation: 1-Sulfonatoxy-2-alkoxyanthraquinone Derivatives. J Phys Chem A 2021; 125:5227-5236. [PMID: 34129332 DOI: 10.1021/acs.jpca.1c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two sulfonate ester derivatives of anthraquinone, 1-tosyloxy-2-methoxy-9,10-anthraquinone (1a) and 1-trifluoromethylsulfonoxy-2-methoxy-9,10-anthraquinone (1b), were prepared and their ability to produce strong acids upon photoexcitation was examined. It is shown that these compounds generate acid with a yield that increases with light intensity when the applied photon dose is held constant. Additional experiments show that the rate of acid generation increases fourfold when visible light (532 nm) laser pulses are combined with ultraviolet (355 nm) compared with ultraviolet alone. Continuous wave diode laser photolysis also affects acid generation with a rate that depends quadratically on the light intensity. Density functional theory calculations, laser flash photolysis, and chemical trapping experiments support a mechanism, whereby an initially formed triplet state (T1) is excited to a higher triplet state which in turn undergoes homolysis of the RS(O2)-OAr bond. Secondary reactions of the initially formed sulfonyl radicals produce strong acids. It is demonstrated that high-intensity photolysis of either 1a or 1b can initiate cationic polymerization of ethyl vinyl ether.
Collapse
Affiliation(s)
- Andrea N Zeppuhar
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Steven M Wolf
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Daniel E Falvey
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
26
|
Eremina OE, Eremin DB, Czaja A, Zavaleta C. Selecting Surface-Enhanced Raman Spectroscopy Flavors for Multiplexed Imaging Applications: Beyond the Experiment. J Phys Chem Lett 2021; 12:5564-5570. [PMID: 34105967 DOI: 10.1021/acs.jpclett.1c01504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multiplexing capabilities and sensitivity of surface-enhanced Raman spectroscopy (SERS) nanoparticles (NPs) are strongly dependent on the selected Raman reporter. These Raman-active molecules are responsible for giving each batch of SERS NPs its unique spectral fingerprint. Herein, we studied four types of SERS NPs, namely, AuNPs labeled with trans-1,2-bis(4-pyridyl)ethylene (BPE), 4,4'-bis(mercaptomethyl)biphenyl (BMMBP), 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol (PODT), and 5-(4-pyridyl)-1H-1,2,4-triazole-3-thiol (PTT), and demonstrated that the best level of theory could be chosen based on inner products of DFT-calculated and experimental Raman spectra. We also calculated the theoretical spectra of these Raman reporters bound to Au20 clusters to interrogate how SERS enhancement would affect their spectral fingerprint. Importantly, we found a correlation between B3LYP-D3 calculated and experimental enhancement factors, which opens up an avenue toward predicting which Raman reporters could offer improved sensitivity. We observed 0.5 and 3 fM limits of detection for BMMBP- and PTT-labeled 60 nm AuNPs, respectively.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Avenue, Los Angeles, California 90089, United States
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Dmitry B Eremin
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, 3620 McClintock Avenue, Los Angeles, California 90089, United States
| | - Alexander Czaja
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Avenue, Los Angeles, California 90089, United States
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, 3650 McClintock Avenue, Los Angeles, California 90089, United States
- Michelson Center for Convergent Bioscience, University of Southern California, 1002 Childs Way, Los Angeles, California 90089, United States
| |
Collapse
|
27
|
Maneiro M, De Vita E, Conole D, Kounde CS, Zhang Q, Tate EW. PROTACs, molecular glues and bifunctionals from bench to bedside: Unlocking the clinical potential of catalytic drugs. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:67-190. [PMID: 34147206 DOI: 10.1016/bs.pmch.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The vast majority of currently marketed drugs rely on small molecules with an 'occupancy-driven' mechanism of action (MOA). Therefore, the efficacy of these therapeutics depends on a high degree of target engagement, which often requires high dosages and enhanced drug exposure at the target site, thus increasing the risk of off-target toxicities (Churcher, 2018 [1]). Although small molecule drugs have been successfully used as treatments for decades, tackling a variety of disease-relevant targets with a defined binding site, many relevant therapeutic targets remain challenging to drug due, for example, to lack of well-defined binding pockets or large protein-protein interaction (PPI) interfaces which resist interference (Dang et al., 2017 [2]). In the quest for alternative therapeutic approaches to address different pathologies and achieve enhanced efficacy with reduced side effects, ligand-induced targeted protein degradation (TPD) has gained the attention of many research groups both in academia and in industry in the last two decades. This therapeutic modality represents a novel paradigm compared to conventional small-molecule inhibitors. To pursue this strategy, heterobifunctional small molecule degraders, termed PROteolysis TArgeting Chimeras (PROTACs) have been devised to artificially redirect a protein of interest (POI) to the cellular protein homeostasis machinery for proteasomal degradation (Chamberlain et al., 2019 [3]). In this chapter, the development of PROTACs will first be discussed providing a historical perspective in parallel to the experimental progress made to understand this novel therapeutic modality. Furthermore, common strategies for PROTAC design, including assays and troubleshooting tips will be provided for the reader, before presenting a compendium of all PROTAC targets reported in the literature to date. Due to the recent advancement of these molecules into clinical trials, consideration of pharmacokinetics and pharmacodynamic properties will be introduced, together with the biotech landscape that has developed from the success of PROTACs. Finally, an overview of subsequent strategies for targeted protein degradation will be presented, concluding with further scientific quests triggered by the invention of PROTACs.
Collapse
Affiliation(s)
- M Maneiro
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - E De Vita
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - D Conole
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - C S Kounde
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - Q Zhang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - E W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom.
| |
Collapse
|
28
|
Mueller NS, Pfitzner E, Okamura Y, Gordeev G, Kusch P, Lange H, Heberle J, Schulz F, Reich S. Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption by Plasmon Polaritons in Three-Dimensional Nanoparticle Supercrystals. ACS NANO 2021; 15:5523-5533. [PMID: 33667335 PMCID: PMC7992191 DOI: 10.1021/acsnano.1c00352] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/18/2021] [Indexed: 06/01/2023]
Abstract
Surface-enhanced vibrational spectroscopy strongly increases the cross section of Raman scattering and infrared absorption, overcoming the limited sensitivity and resolution of these two powerful analytic tools. While surface-enhanced setups with maximum enhancement have been studied widely in recent years, substrates with reproducible, uniform enhancement have received less attention although they are required in many applications. Here, we show that plasmonic supercrystals are an excellent platform for enhanced spectroscopy because they possess a high density of hotspots in the electric field. We describe the near field inside the supercrystal within the framework of plasmon polaritons that form due to strong light-matter interaction. From the polariton resonances we predict resonances in the far-field enhancement for Raman scattering and infrared absorption. We verify our predictions by measuring the vibrations of polystyrene molecules embedded in supercrystals of gold nanoparticles. The intensity of surface-enhanced Raman scattering is uniform within 10% across the crystal with a peak integrated enhancement of up to 300 and a peak hotspot enhancement of 105. The supercrystal polaritons induce pairs of incoming and outgoing resonances in the enhanced cross section as we demonstrate experimentally by measuring surface-enhanced Raman scattering with multiple laser wavelengths across the polariton resonance. The infrared absorption of polystyrene is likewise enhanced inside the supercrystals with a maximum enhancement of 400%. We show with a coupled oscillator model that the increase originates from the combined effects of hotspot formation and the excitation of standing polariton waves. Our work clearly relates the structural and optical properties of plasmonic supercrystals and shows that such crystals are excellent hosts and substrates for the uniform and predictable enhancement of vibrational spectra.
Collapse
Affiliation(s)
- Niclas S. Mueller
- Department
of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Emanuel Pfitzner
- Department
of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Yu Okamura
- Department
of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Georgy Gordeev
- Department
of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Patryk Kusch
- Department
of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Holger Lange
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Joachim Heberle
- Department
of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Florian Schulz
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
29
|
Truong VX, Barner-Kowollik C. Red-Light Driven Photocatalytic Oxime Ligation for Bioorthogonal Hydrogel Design. ACS Macro Lett 2021; 10:78-83. [PMID: 35548995 DOI: 10.1021/acsmacrolett.0c00767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Light-mediated polymer cross-linking is frequently employed for the preparation of hydrogels for biomedical applications. However, most photopolymerization processes require activation by UV light or short wavelength visible light, which are highly absorbed by skin and tissue, limiting their uses in transdermal initiation. Herein, we introduce red light-enabled oxime ligation by the in situ photogeneration of aldehydes, which rapidly react with hydroxylamines. We demonstrate efficient polymer cross-linking behind a dermal tissue model by red light initiation. Optimization of the photopolymerization conditions allows for 3D encapsulation of human foreskin fibroblasts with good cell viability postencapsulation.
Collapse
Affiliation(s)
- Vinh X. Truong
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane 4000, Australia
| |
Collapse
|
30
|
Gelmi A, Schutt CE. Stimuli-Responsive Biomaterials: Scaffolds for Stem Cell Control. Adv Healthc Mater 2021; 10:e2001125. [PMID: 32996270 PMCID: PMC11468740 DOI: 10.1002/adhm.202001125] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/18/2020] [Indexed: 12/28/2022]
Abstract
Stem cell fate is closely intertwined with microenvironmental and endogenous cues within the body. Recapitulating this dynamic environment ex vivo can be achieved through engineered biomaterials which can respond to exogenous stimulation (including light, electrical stimulation, ultrasound, and magnetic fields) to deliver temporal and spatial cues to stem cells. These stimuli-responsive biomaterials can be integrated into scaffolds to investigate stem cell response in vitro and in vivo, and offer many pathways of cellular manipulation: biochemical cues, scaffold property changes, drug release, mechanical stress, and electrical signaling. The aim of this review is to assess and discuss the current state of exogenous stimuli-responsive biomaterials, and their application in multipotent stem cell control. Future perspectives in utilizing these biomaterials for personalized tissue engineering and directing organoid models are also discussed.
Collapse
Affiliation(s)
- Amy Gelmi
- School of ScienceCollege of Science, Engineering and HealthRMIT UniversityMelbourneVIC3001Australia
| | - Carolyn E. Schutt
- Department of Biomedical EngineeringKnight Cancer Institute Cancer Early Detection Advanced Research Center (CEDAR)Oregon Health and Science UniversityPortlandOR97201USA
| |
Collapse
|
31
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
32
|
Lu X, Gautam V, Shishmarev D, Daria VR. Sensing refractive index gradients along dielectric nanopillar metasurfaces. OPTICS EXPRESS 2020; 28:31594-31602. [PMID: 33115129 DOI: 10.1364/oe.402259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Metasurfaces exhibit unique optical properties that depend on the ratio of their refractive index and that of their surroundings. As such, they are effective for sensing global changes in refractive index based on the shifts of resonances in their reflectivity spectra. However, when used as a biosensor, the metasurface can be exposed to a spatial distribution of biomolecules that brings about gradients in refractive index along the plane of the metasurface. Such gradients produce complex global reflectivity spectrum but with distinct optical enhancements in localized areas along the metasurface. Here, we propose a unique sensing paradigm that images and maps out the optical enhancements that are correlated with the spatial distribution of the refractive index. Moreover, we designed a metasurface whose resonances can be tuned to detect a range of refractive indices. Our metasurface consists of silicon nanopillars with a cylindrical nanotrench at their centers and a metal plane at the base. To assess its feasibility, we performed numerical simulations to show that the design effectively produces the desired reflectivity spectrum with resonances in the near-infrared. Using an incident light tuned to one of its resonances, our simulations further show that the field enhancements are correlated with the spatial mapping of the gradients of refractive indices along the metasurface.
Collapse
|
33
|
Romero Ávila M, León-Rojas AF, Lacroix PG, Malfant I, Farfán N, Mhanna R, Santillan R, Ramos-Ortiz G, Malval JP. Two-Photon-Triggered NO Release via a Ruthenium-Nitrosyl Complex with a Star-Shaped Architecture. J Phys Chem Lett 2020; 11:6487-6491. [PMID: 32696645 DOI: 10.1021/acs.jpclett.0c01953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report herein a molecular engineering strategy based on the design of a multipolar ruthenium-nitrosyl (Ru-NO) complex with a three-branched architecture. The three Ru-NO units are introduced at the periphery of a highly π-delocalized truxene core bearing three terpyridine ligands. The two-photon absorption capabilities of the complex were investigated by the Z-scan technique. The strong electronic coupling among the individual arms gives rise to a very strong two-photon absorption response (δ800 nm ∼ 1600 GM), which corresponds to a 16-fold enhancement of the capability of a single-arm reference, thereby promoting an efficient light-driven NO release process in aqueous media.
Collapse
Affiliation(s)
- Margarita Romero Ávila
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, BP44099, 31077 Toulouse Cedex 4, France
- Facultad de Quı́mica, Departamento de Quı́mica Orgánica, Universidad Nacional Autónoma de México, 04510 México, DF, México
| | - Andrés Felipe León-Rojas
- Facultad de Quı́mica, Departamento de Quı́mica Orgánica, Universidad Nacional Autónoma de México, 04510 México, DF, México
| | - Pascal G Lacroix
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, BP44099, 31077 Toulouse Cedex 4, France
| | - Isabelle Malfant
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, BP44099, 31077 Toulouse Cedex 4, France
| | - Norberto Farfán
- Facultad de Quı́mica, Departamento de Quı́mica Orgánica, Universidad Nacional Autónoma de México, 04510 México, DF, México
| | - Rana Mhanna
- Institut de Science des Matériaux de Mulhouse, CNRS-UMR 7361, Université de Haute Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France
| | - Rosa Santillan
- Departamento de Quı́mica, Centro de Investigación y de Estudios del IPN (CINVESTAV), Apdo., Postal 14-740, 07000 México, DF, México
| | | | - Jean-Pierre Malval
- Institut de Science des Matériaux de Mulhouse, CNRS-UMR 7361, Université de Haute Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France
| |
Collapse
|
34
|
Choi SK. Photoactivation Strategies for Therapeutic Release in Nanodelivery Systems. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences University of Michigan Medical School Ann Arbor MI 48109 USA
- Department of Internal Medicine University of Michigan Medical School Ann Arbor MI 48109 USA
| |
Collapse
|
35
|
Boase NRB. Shining a Light on Bioorthogonal Photochemistry for Polymer Science. Macromol Rapid Commun 2020; 41:e2000305. [DOI: 10.1002/marc.202000305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Nathan R. B. Boase
- Centre for Materials Science Queensland University of Technology 2 George Street Brisbane QLD 4000 Australia
- School of Chemistry and Physics Queensland University of Technology 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
36
|
Shao J, Huang PZ, Chen QY, Zheng QL. Nano adamantane-conjugated BODIPY for lipase affinity and light driven antibacterial. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118252. [PMID: 32208354 DOI: 10.1016/j.saa.2020.118252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
The increasing number of resistant bacterial strains has raised efforts in developing alternative treatment strategies. Lipase is highly expressed in most bacteria and lipase targeting dyes will be non-sacrificed materials for a sustainable method against microorganism. The combination of chemotherapy and antimicrobial photodynamic inactivation (aPDI) method will be an effective method due to enhanced antibacterial activity. Here we reported the spectroscopic features of five boron dipyrrolylmethene (BODIPY) derivatives with different functional groups for lipase affinity and antibacterial activity. Lipase affinity tests and antibacterial assays were conducted by spectroscopic methods. Adamantane-conjugated BODIPY (BDP-2) was found to be the active compound against E. coli. Next, BDP-2 was brominated, and then assembled with PEG resulting biocompatible BDP2-Br2@mPEG nanoparticles. The MTT assay indicated that BDP2-Br2@mPEG was less toxicity on BGC-823 cancer cells without irradiation. The BDP2-Br2@mPEG can inhibit the proliferation of E. coli and damage the membrane of bacterial cell under green LED light irradiation. The results proved BDP2-Br2@mPEG can be a very promising green LED light driven antibacterial material.
Collapse
Affiliation(s)
- Jian Shao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pu-Zhen Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qiu-Yun Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Qing-Lin Zheng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; THOR Specialty Chemical (Zhenjiang) Company Limited, No. 182 Jingang Avenue, New District, Zhenjiang, Jiangsu 212132, China
| |
Collapse
|
37
|
Moreno MJ, Ling B, Stanimirovic DB. In vivo near-infrared fluorescent optical imaging for CNS drug discovery. Expert Opin Drug Discov 2020; 15:903-915. [PMID: 32396023 DOI: 10.1080/17460441.2020.1759549] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION In vivo imaging technologies have become integral and essential component of drug discovery, development, and clinical assessment for central nervous system (CNS) diseases. Near-infrared (NIR) fluorescence imaging in the range of 650-950 nm is widely used for pre-clinical in vivo imaging studies. The recent expansion of NIR imaging into the shortwave infrared (SWIR, 1000-1700 nm) window enabled improvements in tissue penetration and resolution required for anatomical, dynamic, and molecular neuroimaging with high potential for clinical translation. AREAS COVERED This review focuses on the latest progress in near-infrared (NIR)-fluorescent optical imaging modalities with an emphasis on the SWIR window. Advantages and challenges in developing novel organic and inorganic SWIR emitters, with special attention to their toxicology and pharmacology, are discussed. Examples of their application in preclinical imaging of brain function and pathology provide a platform to assess the potential for their clinical translation. EXPERT OPINION Propelled through concomitant technological advancements in imaging instrumentation, algorithms and new SWIR emitters, SWIR imaging has addressed key barriers to optical imaging modalities used in pre-clinical studies addressing the CNS. Development of biocompatible SWIR emitters and adoption of SWIR into multi-modal imaging modalities promise to rapidly advance optical imaging into translational studies and clinical applications.
Collapse
Affiliation(s)
- Maria J Moreno
- Human Health Therapeutics Research Center, National Research Council Canada , Ottawa, ON, Canada
| | - Binbing Ling
- Human Health Therapeutics Research Center, National Research Council Canada , Ottawa, ON, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics Research Center, National Research Council Canada , Ottawa, ON, Canada
| |
Collapse
|
38
|
Fasciani I, Petragnano F, Aloisi G, Marampon F, Rossi M, Coppolino MF, Rossi R, Longoni B, Scarselli M, Maggio R. A New Threat to Dopamine Neurons: The Downside of Artificial Light. Neuroscience 2020; 432:216-228. [PMID: 32142863 DOI: 10.1016/j.neuroscience.2020.02.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/17/2022]
Abstract
Growing awareness of adverse impacts of artificial light on human health has led to recognize light pollution as a significant global environmental issue. Despite, a large number of studies in rodent and monkey models of Parkinson's disease have reported that near infrared light has neuroprotective effects on dopaminergic neurons, recent findings have shown that prolonged exposure of rodents and birds to fluorescent artificial light results in an increase of neuromelanin granules in substantia nigra and loss of dopaminergic neurons. The observed detrimental effect seems to be dependent on a direct effect of light on the substantia nigra rather than a secondary effect of the alterations of circadian rhythms. Moreover, inferences from animal models to human studies have shown a positive correlation between the prevalence of Parkinson's disease and light pollution. The present article discusses experimental evidence supporting a potentially deleterious impact of light on dopaminergic neurons and highlights the mechanisms whereby light might damage neuronal tissue. Moreover, it analyses epidemiological evidence that suggests light pollution to be an environmental risk factor for Parkinson's disease.
Collapse
Affiliation(s)
- Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gabriella Aloisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Mario Rossi
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Maria Francesca Coppolino
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Rossi
- Ph D Programme in Neuroscience, University Tor Vergata, Rome, Italy
| | - Biancamaria Longoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
39
|
Rustler K, Nitschke P, Zahnbrecher S, Zach J, Crespi S, König B. Photochromic Evaluation of 3(5)-Arylazo-1H-pyrazoles. J Org Chem 2020; 85:4079-4088. [DOI: 10.1021/acs.joc.9b03097] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karin Rustler
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Philipp Nitschke
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Sophie Zahnbrecher
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Julia Zach
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Stefano Crespi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
40
|
Vorobev AY, Moskalensky AE. Long-wavelength photoremovable protecting groups: On the way to in vivo application. Comput Struct Biotechnol J 2019; 18:27-34. [PMID: 31890141 PMCID: PMC6920508 DOI: 10.1016/j.csbj.2019.11.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/07/2023] Open
Abstract
Photoremovable protective groups (PPGs) and related "caged" compounds have been recognized as a powerful tool in an arsenal of life science methods. The present review is focused on recent advances in design of "caged" compounds which function in red or near-infrared region. The naive comparison of photon energy with that of organic bond leads to the illusion that long-wavelength activation is possible only for weak chemical bonds like N-N. However, there are different means to overcome this threshold and shift the uncaging functionality into red or near-infrared regions for general organic bonds. We overview these strategies, including the novel photochemical and photophysical mechanisms used in newly developed PPGs, singlet-oxygen-mediated photolysis, and two-photon absorption. Recent advances in science places the infrared-sensitive PPGs to the same usability level as traditional ones, facilitating in vivo application of caged compounds.
Collapse
Affiliation(s)
- Aleksey Yu. Vorobev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev Ave., Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Alexander E. Moskalensky
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya str. 3, Novosibirsk 630090, Russia
| |
Collapse
|
41
|
Yamamoto T, Caldwell DR, Gandioso A, Schnermann MJ. A Cyanine Photooxidation/β-Elimination Sequence Enables Near-infrared Uncaging of Aryl Amine Payloads. Photochem Photobiol 2019; 95:951-958. [PMID: 30701558 DOI: 10.1111/php.13090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
Uncaging strategies that use near-infrared wavelengths can enable the highly targeted delivery of biomolecules in complex settings. Many methods, including an approach we developed using cyanine photooxidation, are limited to phenol-containing payloads. Given the critical role of amines in diverse biological processes, we sought to use cyanine photooxidation to initiate the release of aryl amines. Heptamethine cyanines substituted with an aryl amine at the C4' position undergo only inefficient release, likely due electronic factors. We then pursued the hypothesis that the carbonyl products derived from cyanine photooxidation could undergo efficient β-elimination. After examining both symmetrical and unsymmetrical scaffolds, we identify a merocyanine substituted with indolenine and coumarin heterocycles that undergoes efficient photooxidation and aniline uncaging. In total, these studies provide a new scheme-cyanine photooxidation followed by β-elimination-through which to design photocages with efficient uncaging properties.
Collapse
Affiliation(s)
- Tsuyoshi Yamamoto
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
| | - Donald R Caldwell
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
| | - Albert Gandioso
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD.,Seccio de Química Orgànica, Departament de Química Inorganica i Organica, Universitat de Barcelona, Barcelona, Spain
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
| |
Collapse
|
42
|
Murata T, Kariyazono K, Ukai S, Ueda A, Kanzaki Y, Shiomi D, Sato K, Takui T, Morita Y. Trioxotriangulene with carbazole: a donor–acceptor molecule showing strong near-infrared absorption exceeding 1000 nm. Org Chem Front 2019. [DOI: 10.1039/c9qo00663j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A donor–acceptor type trioxotriangulene neutral radical derivative having three carbazolyl groups as electron-donors was newly synthesized, and exhibited a strong near-infrared photo absorption over 1000 nm.
Collapse
Affiliation(s)
- Tsuyoshi Murata
- Department of Applied Chemistry
- Faculty of Engineering
- Aichi Institute of Technology
- Toyota
- Japan
| | - Kazuki Kariyazono
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Shusaku Ukai
- Department of Applied Chemistry
- Faculty of Engineering
- Aichi Institute of Technology
- Toyota
- Japan
| | - Akira Ueda
- Department of Chemistry
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Yuki Kanzaki
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Daisuke Shiomi
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science
- Graduate School of Science
- Osaka City University
- Osaka
- Japan
| | - Yasushi Morita
- Department of Applied Chemistry
- Faculty of Engineering
- Aichi Institute of Technology
- Toyota
- Japan
| |
Collapse
|