1
|
Sun X, Mu Q, Yang F, Liu M, Zhou B. The effects of thioredoxin peroxidase from Cysticercus cellulosae excretory-secretory antigens on TGF-β signaling pathway and Th17 cells differentiation in Jurkat cells by transcriptomics. Parasitol Res 2023; 123:50. [PMID: 38095704 DOI: 10.1007/s00436-023-08075-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023]
Abstract
Thioredoxin peroxidase (TPx) protein from the excretory-secretory antigens (ESAs) of Cysticercus cellulosae (C. cellulosae) has been shown to regulate the differentiation of host Treg and Th17 cells, resulting in an immunosuppressive response dominated by Treg cells. However, the molecular mechanism by which TPx protein from the ESAs of C. cellulosae regulates the imbalance of host Treg/Th17 cell differentiation has not been reported. TPx protein from porcine C. cellulosae ESAs was used to stimulate Jurkat cells activated with PMA and ionomycin at 0, 24, 48, and 72 h. Transcriptomic analysis was performed to investigate the signaling pathways associated with Jurkat cells differentiation regulated by TPx protein from C. cellulosae ESAs. Gene Set Enrichment Analysis (GSEA) revealed that TPx protein from porcine C. cellulosae ESAs could induce upregulation of the TGF-β signaling pathway and downregulation of Th17 cell differentiation in Jurkat cells. TPx protein from porcine C. cellulosae ESAs can activate the TGF-β signaling pathway in Jurkat cells, thereby regulating the differentiation of Treg/Th17 cells and leading to an immunosuppressive response dominated by Treg cells, enabling evasion of the host immune attack. This study provides a foundation for further validation of these pathways and further elucidates the molecular mechanisms underlying immune evasion caused by porcine C. cellulosae.
Collapse
Affiliation(s)
- Xiaoqing Sun
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| | - Qianqian Mu
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| | - Fengjiao Yang
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| | - Meichen Liu
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| | - Biying Zhou
- Department of Parasitology, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Ahmadpour E, Spotin A, Moghimi A, Shahrivar F, Jadidi-Niaragh F, Hajizadeh F, Mehrani S, Mazhab-Jafari K. Tumor suppressor p73 induces apoptosis of murine peritoneal cell after exposure to hydatid cyst antigens; a possibly survival mechanism of cystic echinococcosis in vivo mice model. PLoS One 2023; 18:e0292434. [PMID: 37796859 PMCID: PMC10553360 DOI: 10.1371/journal.pone.0292434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
Cystic echinococcosis (CE) is a life-threatening helminthic disease caused by the Echinococcus granulosus sensulato complex. Previous evidence indicates that the host's innate immune responses against CE can combat and regulate the growth rate and mortality of hydatid cyst in the host's internal organs. However, the survival mechanisms of CE are not yet fully elucidated in the human body. In the present study, the apoptotic effects of fertile and infertile hydatid fluid (HF) were tested on murine peritoneal cells in vivo mice model. Mice were divided into five groups including; control group, fertile HF-treated peritoneal cells, infertile HF-treated peritoneal cells, protoscolices (PSCs)-treated peritoneal cells and HF+PSCs-treated peritoneal cells group. Mice groups were intraperitoneally inoculated with PBS, HF, and/or PSCs. Afterwards, peritoneal cells were isolated and mRNA expression of STAT3, caspase-3, p73 and Smac genes were evaluated by quantitative Real-time PCR. After 48 hours of exposure, the protein levels of Smac and STAT3 was determined by western blotting technique. After 6 hours of exposure, Caspase-3 activity was also measured by fluorometric assay. The intracellular reactive oxygen species (ROS) production was examined in all groups. The mRNA expression levels of p73, caspase-3 and also Caspase-3 activity in HF+PSCs-treated peritoneal cells were higher than in the test and control groups (Pv<0.05), while the mRNA expression level of anti-apoptotic STAT3 and Smac genes in HF+PSC-treated peritoneal cells were lower than in the other groups (Pv<0.05). As well, the level of intracellular ROS in the fertile HCF-treated peritoneal cells, infertile HCF-treated peritoneal cells, PSC-treated peritoneal cells and HF+PSC-treated peritoneal cells groups were significantly higher than in the control group (Pv<0.05).Current findings indicates that oxidative stress and p73 can trigger the apoptosis of murine peritoneal cells through modulator of HF-treated PSCs that is likely one of the hydatid cyst survival mechanisms in vivo mice model.
Collapse
Affiliation(s)
- Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Spotin
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Moghimi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Firooz Shahrivar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farnaz Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sirous Mehrani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Komeil Mazhab-Jafari
- Department of Laboratory Sciences, Abadan University of Medical Sciences, Abadan, Iran
- Department of Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Shi C, Zhou X, Yang W, Wu J, Bai M, Zhang Y, Zhao W, Yang H, Nagai A, Yin M, Gao X, Ding S, Zhao J. Proteomic Analysis of Plasma-Derived Extracellular Vesicles From Mice With Echinococcus granulosus at Different Infection Stages and Their Immunomodulatory Functions. Front Cell Infect Microbiol 2022; 12:805010. [PMID: 35360110 PMCID: PMC8960237 DOI: 10.3389/fcimb.2022.805010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/14/2022] [Indexed: 01/15/2023] Open
Abstract
The globally distributed cystic echinococcosis (CE) is caused by the larval stage of Echinococcus granulosus (E. granulosus), a cosmopolitan and zoonotic disease with potentially life-threatening complications in humans. The emerging roles for extracellular vesicles (EVs) in parasitic infection include transferring proteins and modifying host cell gene expression to modulate host immune responses. Few studies focused on the host-derived EVs and its protein profiles. We focused on the EVs from mouse infected with E. granulosus at different stages. ExoQuick kit was used for isolating EVs from mouse plasma and ExoEasy Maxi kit was used for isolating protoscolex culture supernatant (PCS) and hydatid cyst fluid (HCF). Firstly, EVs were characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and immunoblot. Secondly, the proteins of plasma EVs were identified using liquid chromatography-tandem mass spectrometry (LC–MS/MS). The resulting LC–MS/MS data were processed using Maxquant search engine (v 1.5.2.8). Tandem mass spectra were researched against the mice and E. granulosus proteins database in the NCBI. The differentially expressed proteins are performed by proteomic label-free quantitative analysis and bioinformatics. Thirdly, in vitro experiment, the results of co-culture of plasma EVs and spleen mononuclear cells showed that 7W-EVs can increase the relative abundance of regulatory T (Treg) cells and IL-10. We further verified that EVs can be internalized by CD4+ and CD8+ T cells, B cells, and myeloid-derived suppressor cells (MDSC). These results implied host-derived EVs are multidirectional immune modulators. The findings can contribute to a better understanding of the role of host-derived EVs which are the optimal vehicle to transfer important cargo into host immune system. In addition, we have found several important proteins associated with E. granulosus and identified in infected mouse plasma at different stages. Furthermore, our study further highlighted the proteomics and immunological function of EVs from mouse infected with E. granulosus protoscoleces at different infection stages. We have laid a solid foundation for the role of EVs in cystic echinococcosis in the future research and supplemented a unique dataset for this E. granulosus.
Collapse
Affiliation(s)
- Chunli Shi
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- Department of Molecular Biology, Shanghai Centre for Clinical Laboratory, Shanghai, China
| | - Xiaojing Zhou
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Department of Neurology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Wenjuan Yang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Jianwen Wu
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Min Bai
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Ying Zhang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Wei Zhao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- Research Center for Medical Science and Technology, Ningxia Medical University, Yinchuan, China
- Ningxia Institute of Medical Science, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Hui Yang
- Research Center for Medical Science and Technology, Ningxia Medical University, Yinchuan, China
- Ningxia Institute of Medical Science, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Atsushi Nagai
- Department of Neurology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Mei Yin
- Department of Respiratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoping Gao
- Department of Otolaryngology Head and Neck Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shuqin Ding
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- *Correspondence: Jiaqing Zhao, ; Shuqin Ding,
| | - Jiaqing Zhao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- Research Center for Medical Science and Technology, Ningxia Medical University, Yinchuan, China
- Ningxia Institute of Medical Science, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
- *Correspondence: Jiaqing Zhao, ; Shuqin Ding,
| |
Collapse
|
4
|
Yang J, Wu J, Fu Y, Yan L, Li Y, Guo X, Zhang Y, Wang X, Shen Y, Cho WC, Zheng Y. Identification of Different Extracellular Vesicles in the Hydatid Fluid of Echinococcus granulosus and Immunomodulatory Effects of 110 K EVs on Sheep PBMCs. Front Immunol 2021; 12:602717. [PMID: 33708201 PMCID: PMC7940240 DOI: 10.3389/fimmu.2021.602717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Echinococcosis, mainly caused by Echinococcus granulosus, is one of the 17 neglected tropical diseases. Extracellular vesicles (EVs) play an essential role in the host-parasite interplay. However, the EVs in the hydatid fluid (HF) of E. granulosus are not fully characterized. Herein, three different types of HF EVs, designated as 2 K, 10 K, and 110 K EVs based on the centrifugal force used, were morphologically identified. A total of 97, 80, and 581 proteins were identified in 2 K, 10 K, and 110 K EVs, respectively, 39 of which were commonly shared. Moreover, 11, 8, and 25 miRNAs were detected, respectively, and all of the 7 selected miRNAs were validated by qPCR to be significantly lower abundant than that in protoscoleces. It was further deemed that 110 K EVs were internalized by sheep peripheral blood mononuclear cells (PBMCs) in a time-dependent manner and thus induced interleukin (IL)-10, tumor necrosis factor-α (TNF-α), and IRF5 were significantly upregulated and IL-1β, IL-17, and CD14 were significantly downregulated (p < 0.05). These data demonstrate the physical discrepancy of three HF EVs and an immunomodulatory effect of 110 K EVs on sheep PMBCs, suggesting a role in immune responses during E. granulosus infection.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yong Fu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Lujun Yan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yating Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaola Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yong'e Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoqiang Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
- World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
5
|
Proteomic analysis of plasma exosomes from Cystic Echinococcosis patients provides in vivo support for distinct immune response profiles in active vs inactive infection and suggests potential biomarkers. PLoS Negl Trop Dis 2020; 14:e0008586. [PMID: 33017416 PMCID: PMC7535053 DOI: 10.1371/journal.pntd.0008586] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
The reference diagnostic method of human abdominal Cystic Echinococcosis (CE) is imaging, particularly ultrasound, supported by serology when imaging is inconclusive. However, current diagnostic tools are neither optimal nor widely available. The availability of a test detecting circulating biomarkers would considerably improve CE diagnosis and cyst staging (active vs inactive), as well as treatments and follow-up of patients. Exosomes are extracellular vesicles involved in intercellular communication, including immune system responses, and are a recognized source of biomarkers. With the aim of identifying potential biomarkers, plasma pools from patients infected by active or inactive CE, as well as from control subjects, were processed to isolate exosomes for proteomic label-free quantitative analysis. Results were statistically processed and subjected to bioinformatics analysis to define distinct features associated with parasite viability. First, a few parasite proteins were identified that were specifically associated with either active or inactive CE, which represent potential biomarkers to be validated in further studies. Second, numerous identified proteins of human origin were common to active and inactive CE, confirming an overlap of several immune response pathways. However, a subset of human proteins specific to either active or inactive CE, and central in the respective protein-protein interaction networks, were identified. These include the Src family kinases Src and Lyn, and the immune-suppressive cytokine TGF-β in active CE, and Cdc42 in inactive CE. The Src and Lyn Kinases were confirmed as potential markers of active CE in totally independent plasma pools. In addition, insights were obtained on immune response profiles: largely consistent with previous evidence, our observations hint to a Th1/Th2/regulatory immune environment in patients with active CE and a Th1/inflammatory environment with a component of the wound healing response in the presence of inactive CE. Of note, our results were obtained for the first time from the analysis of samples obtained in vivo from a well-characterized, large cohort of human subjects.
Collapse
|
6
|
Nono JK, Lutz MB, Brehm K. Expansion of Host Regulatory T Cells by Secreted Products of the Tapeworm Echinococcus multilocularis. Front Immunol 2020; 11:798. [PMID: 32457746 PMCID: PMC7225322 DOI: 10.3389/fimmu.2020.00798] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/07/2020] [Indexed: 01/15/2023] Open
Abstract
Background Alveolar echinococcosis (AE), caused by the metacestode larval stage of the fox-tapeworm Echinococcus multilocularis, is a chronic zoonosis associated with significant modulation of the host immune response. A role of regulatory T-cells (Treg) in generating an immunosuppressive environment around the metacestode during chronic disease has been reported, but the molecular mechanisms of Treg induction by E. multilocularis, particularly parasite immunoregulatory factors involved, remain elusive so far. Methodology/Principal Findings We herein demonstrate that excretory/secretory (E/S) products of the E. multilocularis metacestode promote the formation of Foxp3+ Treg from CD4+ T-cells in vitro in a TGF-β-dependent manner, given that this effect was abrogated by treatment with antibody to mammalian TGF-β. We also show that host T-cells secrete elevated levels of the immunosuppressive cytokine IL-10 in response to metacestode E/S products. Within the E/S fraction of the metacestode we identified an E. multilocularis activin A homolog (EmACT) that displays significant similarities to mammalian Transforming Growth Factor-β (TGF-β/activin subfamily members. EmACT obtained from heterologous expression failed to directly induce Treg expansion from naïve T cells but required addition of recombinant host TGF-β to promote CD4+ Foxp3+ Treg conversion in vitro. Furthermore, like in the case of metacestode E/S products, EmACT-treated CD4+ T-cells secreted higher levels of IL-10. These observations suggest a contribution of EmACT to in vitro expansion of Foxp3+ Treg by the E. multilocularis metacestode. Using infection experiments we show that intraperitoneally injected metacestode tissue expands host Foxp3+ Treg, confirming the expansion of this cell type in vivo during parasite establishment. Conclusion/Significance In conclusion, we herein demonstrate that E. multilocularis larvae secrete factors that induce the secretion of IL-10 by T-cells and contribute to the expansion of TGF-b-driven Foxp3+ Treg, a cell type that has been reported crucial for generating a tolerogenic environment to support parasite establishment and proliferation. Among the E/S factors of the parasite we identified a factor with structural and functional homologies to mammalian activin A which might play an important role in these activities.
Collapse
Affiliation(s)
- Justin Komguep Nono
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
- The Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaounde, Cameroon
| | - Manfred B. Lutz
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Klaus Brehm
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Díaz Á, Sagasti C, Casaravilla C. Granulomatous responses in larval taeniid infections. Parasite Immunol 2018. [DOI: 10.1111/pim.12523] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Á. Díaz
- Área/Cátedra de Inmunología; Departamento de Biociencias (Facultad de Química) e Instituto de Química Biológica (Facultad de Ciencias); Universidad de la República; Montevideo Uruguay
| | - C. Sagasti
- Área/Cátedra de Inmunología; Departamento de Biociencias (Facultad de Química) e Instituto de Química Biológica (Facultad de Ciencias); Universidad de la República; Montevideo Uruguay
| | - C. Casaravilla
- Área/Cátedra de Inmunología; Departamento de Biociencias (Facultad de Química) e Instituto de Química Biológica (Facultad de Ciencias); Universidad de la República; Montevideo Uruguay
| |
Collapse
|