1
|
Chou CW, Huang CC, Chen KM, Wang CI, Chen WJ, Hsu CH, Lai SC, Chou S, Chang YK, Lin KY, Chiu CH, Lu CY. Upregulation of Nrf2 attenuates Angiostrongylus cantonensis-induced parasitic meningitis in mice. Parasit Vectors 2025; 18:129. [PMID: 40181380 PMCID: PMC11969990 DOI: 10.1186/s13071-025-06724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/12/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Angiostrongylus cantonensis is a food-borne parasite that can infect mammals, including humans, causing angiostrongyliasis. The nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that plays a crucial role in the host's antioxidant defense and inflammation mechanisms. Herein, this study investigates the anti-inflammatory effects of Nrf2 in A. cantonensis-induced parasitic meningitis in mice. METHODS We used animal infection and treatment, larvae collection, western blotting, enzyme-linked immunosorbent assay (ELISA), hematoxylin and eosin (H&E) stain, blood-brain barrier (BBB) permeability assays, and an NAD(P)H quinone dehydrogenase 1 (NQO1) enzyme activity, reactive oxygen species (ROS), and superoxide dismutase (SOD) assay kit in this study. RESULTS Our findings revealed that larvae recovery, BBB permeability, and inflammatory mediators (interleukin (IL)-1β, IL-6, IL-17A, and tumor necrosis factor (TNF)-α) were increased in A. cantonensis-infected mice. However, p-Nrf2 levels were slightly increased in infected groups. To better understand the modulatory role of Nrf2 in the parasitic meningitis, we also treated A. cantonensis-infected mice with oltipraz (an Nrf2 activator) and trigonelline (an Nrf2 inhibitor). The larvae recovery, BBB permeability, and levels of inflammatory mediators were significantly decreased in the albendazole alone, oltipraz, and albendazole-oltipraz co-treatment groups, particularly in albendazole-oltipraz co-treatment groups. In contrast, trigonelline treatment resulted in increased levels of larvae recovery, BBB permeability, and inflammatory mediators. Moreover, since Nrf2 is involved in the regulation of antioxidant enzymes, we also examined the expression of ROS, NQO1, and SOD. ROS levels were significantly increased in infected groups but decreased in the albendazole alone, oltipraz alone, and albendazole-oltipraz co-treatment groups. NQO1 and SOD levels were significantly decreased in infected groups, but these levels were notably restored during treatment with albendazole alone, oltipraz alone, and albendazole-oltipraz co-treatment. CONCLUSIONS Our findings revealed the albendazole-Nrf2 activator co-treatment effectively suppressed excessive inflammation compared with the anthelmintics drug (albendazole) treatment alone, and Nrf2 activation might produce a synergistic effect in the inflammatory response of the brain in mice with angiostrongyliasis.
Collapse
Affiliation(s)
- Chii-Wen Chou
- Division of Neurosurgery, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan
| | - Chia-Chun Huang
- Department of Emergency Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| | - Ke-Min Chen
- Department of Parasitology, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-I Wang
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wan-Jing Chen
- Medical Research Center, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Chiung-Hung Hsu
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shih-Chan Lai
- Department of Parasitology, Chung Shan Medical University, Taichung, Taiwan
| | - Shyun Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Kang Chang
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
- Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Kuan-Yu Lin
- Department of Nursing, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chih-Hao Chiu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-You Lu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
2
|
Vatankhah M, Panahizadeh R, Safari A, Ziyabakhsh A, Mohammadi-Ghalehbin B, Soozangar N, Jeddi F. The role of Nrf2 signaling in parasitic diseases and its therapeutic potential. Heliyon 2024; 10:e32459. [PMID: 38988513 PMCID: PMC11233909 DOI: 10.1016/j.heliyon.2024.e32459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
In response to invading parasites, one of the principal arms of innate immunity is oxidative stress, caused by reactive oxygen species (ROS). However, oxidative stresses play dual functions in the disease, whereby free radicals promote pathogen removal, but they can also trigger inflammation, resulting in tissue injuries. A growing body of evidence has strongly supported the notion that nuclear factor erythroid 2-related factor 2 (NRF) signaling is one of the main antioxidant pathways to combat this oxidative burst against parasites. Given the important role of NRF2 in oxidative stress, in this review, we investigate the activation mechanism of the NRF2 antioxidant pathway in different parasitic diseases, such as malaria, leishmaniasis, trypanosomiasis, toxoplasmosis, schistosomiasis, entamoebiasis, and trichinosis.
Collapse
Affiliation(s)
- Mohammadamin Vatankhah
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Panahizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Safari
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Ziyabakhsh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Narges Soozangar
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
3
|
Plasmodium berghei-Mediated NRF2 Activation in Infected Hepatocytes Enhances Parasite Survival. Cell Microbiol 2022. [DOI: 10.1155/2022/7647976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protozoan parasite Plasmodium, causative agent of malaria, initially invades and develops in hepatocytes where it resides in a parasitophorous vacuole (PV). A single invaded parasite develops into thousands of daughter parasites. Survival of the host cell is crucial for successful completion of liver stage development. Nuclear factor erythroid-derived 2-related factor 2 (NRF2) is a transcription factor known to induce transcription of cytoprotective genes when activated. Here we show that NRF2 is activated in Plasmodium berghei-infected hepatocytes. We observed that this NRF2 activation depends on PV membrane resident p62 recruiting KEAP1, the negative regulator of NRF2. Disrupting the NRF2 gene results in reduced parasite survival, indicating that NRF2 signaling is an important event for parasite development in hepatocytes. Together, our observations uncovered a novel mechanism of how Plasmodium parasites ensure host cell survival during liver stage development.
Collapse
|
4
|
Wang S, Yu M, Liu A, Bao Y, Qi X, Gao L, Chen Y, Liu P, Wang Y, Xing L, Meng L, Zhang Y, Fan L, Li X, Pan Q, Zhang Y, Cui H, Li K, Liu C, He X, Gao Y, Wang X. TRIM25 inhibits infectious bursal disease virus replication by targeting VP3 for ubiquitination and degradation. PLoS Pathog 2021; 17:e1009900. [PMID: 34516573 PMCID: PMC8459960 DOI: 10.1371/journal.ppat.1009900] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/23/2021] [Accepted: 08/17/2021] [Indexed: 12/28/2022] Open
Abstract
Infectious bursal disease virus (IBDV), a double-stranded RNA virus, causes immunosuppression and high mortality in 3-6-week-old chickens. Innate immune defense is a physical barrier to restrict viral replication. After viral infection, the host shows crucial defense responses, such as stimulation of antiviral effectors to restrict viral replication. Here, we conducted RNA-seq in avian cells infected by IBDV and identified TRIM25 as a host restriction factor. Specifically, TRIM25 deficiency dramatically increased viral yields, whereas overexpression of TRIM25 significantly inhibited IBDV replication. Immunoprecipitation assays indicated that TRIM25 only interacted with VP3 among all viral proteins, mediating its K27-linked polyubiquitination and subsequent proteasomal degradation. Moreover, the Lys854 residue of VP3 was identified as the key target site for the ubiquitination catalyzed by TRIM25. The ubiquitination site destroyed enhanced the replication ability of IBDV in vitro and in vivo. These findings demonstrated that TRIM25 inhibited IBDV replication by specifically ubiquitinating and degrading the structural protein VP3.
Collapse
Affiliation(s)
- Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Mengmeng Yu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Aijing Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yuanling Bao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yuntong Chen
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Peng Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yulong Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Lixiao Xing
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Lingzhai Meng
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yu Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Linjin Fan
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xinyi Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Qing Pan
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xijun He
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China.,National Poultry Laboratory Animal Resource Center, Harbin, PR China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PRChina
| |
Collapse
|
5
|
Jin X, Bai X, Zhao Y, Dong Z, Pang J, Liu M, Liu X. Nrf2 Participates in M2 Polarization by Trichinella spiralis to Alleviate TNBS-Induced Colitis in Mice. Front Immunol 2021; 12:698494. [PMID: 34249002 PMCID: PMC8261282 DOI: 10.3389/fimmu.2021.698494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
Trichinella spiralis induced alternative activated macrophages (M2), leading to protect against Crohn's disease, known as Th1 -related inflammation, which enhances oxidative stress in the host. However, the relationship of oxidative stress and T. spiralis -mediated immune response is still unknown. In our study, we showed that nuclear factor erythroid 2-related factor-2 (Nrf2), a key transcription factor in antioxidant, participated in M2 polarization induced by T. spiralis muscle larval excretory/secretory (ES) products in vitro. ES -treated M2 were injected intravenously after TNBS challenge and we demonstrated that ES-M could alleviate the severity of the colitis in mice. Adoptive transfer of ES -treated M2 decreased the level of IFN-γ and increased the levels of IL-4 and IL-10 in vivo. However, the capacity of ES -treated Nrf2 KO macrophages to treat colitis was dramatically impaired. ES -treated Nrf2 KO macrophages was insufficient to result in the elevated levels of IL-4 and IL-10. These findings indicate that Nrf2 was required for M2 polarization induced by T. spiralis ES to alleviate colitis in mice.
Collapse
Affiliation(s)
- Xuemin Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ying Zhao
- Department of Nephrology, First Hospital of Jilin University, Changchun, China
| | - Zijian Dong
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianda Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
6
|
Freeborn RA, Rockwell CE. The role of Nrf2 in autoimmunity and infectious disease: Therapeutic possibilities. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:61-110. [PMID: 34099113 DOI: 10.1016/bs.apha.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nrf2 is a cytoprotective transcription factor which is involved in ameliorating oxidative stress and toxic insults. Recently, an immunomodulatory role for Nrf2 has gained appreciation as it has been shown to protect cells and hosts alike in a variety of immune and inflammatory disorders. However, Nrf2 utilizes numerous distinct pathways to elicit its immunomodulatory effects. In this review, we summarize the literature discussing the roles of Nrf2 in autoimmunity and infectious diseases with a goal of understanding the potential to therapeutically target Nrf2.
Collapse
Affiliation(s)
- Robert A Freeborn
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
7
|
Bichiou H, Bouabid C, Rabhi I, Guizani-Tabbane L. Transcription Factors Interplay Orchestrates the Immune-Metabolic Response of Leishmania Infected Macrophages. Front Cell Infect Microbiol 2021; 11:660415. [PMID: 33898331 PMCID: PMC8058464 DOI: 10.3389/fcimb.2021.660415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Leishmaniasis is a group of heterogenous diseases considered as an important public health problem in several countries. This neglected disease is caused by over 20 parasite species of the protozoa belonging to the Leishmania genus and is spread by the bite of a female phlebotomine sandfly. Depending on the parasite specie and the immune status of the patient, leishmaniasis can present a wide spectrum of clinical manifestations. As an obligate intracellular parasite, Leishmania colonize phagocytic cells, mainly the macrophages that orchestrate the host immune response and determine the fate of the infection. Once inside macrophages, Leishmania triggers different signaling pathways that regulate the immune and metabolic response of the host cells. Various transcription factors regulate such immune-metabolic responses and the associated leishmanicidal and inflammatory reaction against the invading parasite. In this review, we will highlight the most important transcription factors involved in these responses, their interactions and their impact on the establishment and the progression of the immune response along with their effect on the physiopathology of the disease.
Collapse
Affiliation(s)
- Haifa Bichiou
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Cyrine Bouabid
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Imen Rabhi
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia.,Biotechnology Department, Higher Institute of Biotechnology at Sidi-Thabet (ISBST), Biotechpole Sidi-Thabet- University of Manouba, Tunis, Tunisia
| | - Lamia Guizani-Tabbane
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
| |
Collapse
|
8
|
Ali M, Bonay M, Vanhee V, Vinit S, Deramaudt TB. Comparative effectiveness of 4 natural and chemical activators of Nrf2 on inflammation, oxidative stress, macrophage polarization, and bactericidal activity in an in vitro macrophage infection model. PLoS One 2020; 15:e0234484. [PMID: 32511271 PMCID: PMC7279588 DOI: 10.1371/journal.pone.0234484] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/27/2020] [Indexed: 12/27/2022] Open
Abstract
Inflammation plays a crucial role in the defense response of the innate immune system against pathogen infection. In this study, we selected 4 compounds for their potential or proven anti-inflammatory and/or anti-microbial properties to test on our in vitro model of bacteria-infected THP-1-derived macrophages. We first compared the capacity of sulforaphane (SFN), wogonin (WG), oltipraz (OTZ), and dimethyl fumarate (DMF) to induce the nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of the antioxidant, anti-inflammatory response pathways. Next, we performed a comparative evaluation of the antioxidant and anti-inflammatory efficacies of the 4 selected compounds. THP-1-derived macrophages and LPS-stimulated macrophages were treated with each compound and expression levels of genes coding for inflammatory cytokines IL-1β, IL-6, and TNF-α were quantified by RT-qPCR. Moreover, expression levels of genes coding for M1 (IL-23, CCR7, IL-1β, IL-6, and TNF-α) and M2 (PPARγ, MRC1, CCL22, and IL-10) markers were determined in classically-activated M1 macrophages treated with each compound. Finally, the effects of each compound on the intracellular bacterial survival of gram-negative E. coli and gram-positive S. aureus in THP-1-derived macrophages and PBMC-derived macrophages were examined. Our data confirmed the anti-inflammatory and antioxidant effects of SFN, WG, and DMF on LPS-stimulated THP-1-derived macrophages. In addition, SFN or WG treatment of classically-activated THP-1-derived macrophages reduced expression levels of M1 marker genes, while SFN or DMF treatment upregulated the M2 marker gene MRC1. This decrease in expression of M1 marker genes may be correlated with the decrease in intracellular S. aureus load in SFN- or DMF-treated macrophages. Interestingly, an increase in intracellular survival of E. coli in SFN-treated THP-1-derived macrophages that was not observed in PBMC-derived macrophages. Conversely, OTZ exhibited pro-oxidant and proinflammatory properties, and affected intracellular survival of E. coli in THP-1-derived macrophages. Altogether, we provide new potential therapeutic alternatives in treating inflammation and bacterial infection.
Collapse
Affiliation(s)
- Malika Ali
- UVSQ, INSERM END-ICAP, Université Paris-Saclay, Versailles, France
| | - Marcel Bonay
- UVSQ, INSERM END-ICAP, Université Paris-Saclay, Versailles, France
- Service de Physiologie-Explorations Fonctionnelles, Hôpital Ambroise Paré, APHP, Boulogne, France
| | - Valentin Vanhee
- UVSQ, INSERM END-ICAP, Université Paris-Saclay, Versailles, France
| | - Stéphane Vinit
- UVSQ, INSERM END-ICAP, Université Paris-Saclay, Versailles, France
| | | |
Collapse
|