1
|
Wang Y, Fang F, Liu X. Targeting histamine in metabolic syndrome: Insights and therapeutic potential. Life Sci 2024; 358:123172. [PMID: 39461668 DOI: 10.1016/j.lfs.2024.123172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Metabolic syndrome is a complex disorder defined by a cluster of interconnected factors including obesity, insulin resistance, hypertension, hyperlipidemia and hyperglycemia which increase the risk of cardiovascular disease, non-alcoholic fatty liver disease, type 2 diabetes mellitus and other related diseases. Histamine, as a biogenic amine, participates in various physiological processes. Increasing evidence suggests histamine plays critical roles in Metabolic syndrome as well as its associated diseases by interacting with four histamine receptors. In this review, we summarize the functions and mechanisms of histamine in Metabolic syndrome, indicating histamine as a possible target in treating Metabolic syndrome and its associated diseases.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Fude Fang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xiaojun Liu
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
2
|
Deng Y, Hu M, Huang S, Fu N. Molecular mechanism and therapeutic significance of essential amino acids in metabolically associated fatty liver disease. J Nutr Biochem 2024; 126:109581. [PMID: 38219809 DOI: 10.1016/j.jnutbio.2024.109581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/01/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), also known as metabolically associated fatty liver disease (MAFLD), is a systemic metabolic disease characterized by lipid accumulation in the liver, lipid toxicity, insulin resistance, intestinal dysbiosis, and inflammation that can progress from simple steatosis to nonalcoholic steatohepatitis (NASH) and even cirrhosis or cancer. It is the most prevalent illness threatening world health. Currently, there are almost no approved drug interventions for MAFLD, mainly dietary changes and exercise to control weight and regulate metabolic disorders. Meanwhile, the metabolic pathway involved in amino acid metabolism also influences the onset and development of MAFLD in the body, and most amino acid metabolism takes place in the liver. Essential amino acids are those amino acids that must be supplemented from outside the diet and that cannot be synthesized in the body or cannot be synthesized at a rate sufficient to meet the body's needs, including leucine, isoleucine, valine (collectively known as branched-chain amino acids), tryptophan, phenylalanine (which are aromatic amino acids), histidine, methionine, threonine and lysine. The metabolic balance of the body is closely linked to these essential amino acids, and essential amino acids are closely linked to the pathophysiological process of MAFLD. In this paper, we will focus on the metabolism of essential amino acids in the body and further explore the therapeutic strategies for MAFLD based on the studies conducted in recent years.
Collapse
Affiliation(s)
- Yuting Deng
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Mengsi Hu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Shufang Huang
- The Affiliated Nanhua Hospital, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China.
| | - Nian Fu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China; The Affiliated Nanhua Hospital, Institute of Clinical Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China.
| |
Collapse
|
3
|
Liao J, Cao Y, Zhao J, Yu B, Wang Y, Li W, Li H, Lv S, Wen W, Cui H, Chen Y. Aqueous extract of Polygala japonica Houtt. ameliorated nonalcoholic steatohepatitis in mice through restoring the gut microbiota disorders and affecting the metabolites in feces and liver. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154937. [PMID: 37393831 DOI: 10.1016/j.phymed.2023.154937] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Polygala japonica Houtt. (PJ) has been demonstrated with several biological potentials such as lipid-lowering and anti-inflammatory effects. However, the effects and mechanisms of PJ on nonalcoholic steatohepatitis (NASH) remain unclear. PURPOSE The aim of this study was to evaluate the effects of PJ on NASH and illustrate the mechanism based on modulating gut microbiota and host metabolism. MATERIALS AND METHODS NASH mouse model was induced using methionine and choline deficient (MCD) diet and orally treated with PJ. The therapeutic, anti-inflammatory, and anti-oxidative effects of PJ on mice with NASH were firstly assessed. Then, the gut microbiota of mice was analyzed using 16S rRNA sequencing to assess the changes. Finally, the effects of PJ on the metabolites in liver and feces were explored by untargeted metabolomics. RESULTS The results indicated that PJ could improve hepatic steatosis, liver injury, inflammatory response, and oxidative stress in NASH mice. PJ treatment also affected the diversity of gut microbiota and changed the relative abundances of Faecalibaculum. Lactobacillus, Muribaculaceae, Dubosiella, Akkermansia, Lachnospiraceae_NK4A136_group, and Turicibacter in NASH mice. In addition, PJ treatment modulated 59 metabolites both in liver and feces. Metabolites involved in histidine, and tryptophan metabolism pathways were identified as the key metabolites according to the correlation analysis between differential gut microbiota and metabolites. CONCLUSION Our study demonstrated the therapeutic, anti-inflammatory and anti-oxidative potentials of PJ on NASH. The mechanisms of PJ treatment were related to the improvement of gut microbiota dysbiosis and the regulation of histidine and tryptophan metabolism.
Collapse
Affiliation(s)
- Jiabao Liao
- Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Yongjun Cao
- Nanjing University of Chinese Medicine, Jiangsu, China
| | - Jie Zhao
- Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan, China
| | - Bolun Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenting Li
- Yunnan University of Traditional Chinese Medicine, Yunnan, China
| | - Hanzhou Li
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Shuquan Lv
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Weibo Wen
- Nanjing University of Chinese Medicine, Jiangsu, China; Yunnan University of Traditional Chinese Medicine, Yunnan, China.
| | - Huantian Cui
- Yunnan University of Traditional Chinese Medicine, Yunnan, China; Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Shandong, China.
| | - Yao Chen
- Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan, China.
| |
Collapse
|
4
|
Demirel M, Köktaşoğlu F, Özkan E, Dulun Ağaç H, Gül AZ, Sharifov R, Sarıkaya U, Başaranoğlu M, Selek Ş. Mass spectrometry-based untargeted metabolomics study of non-obese individuals with non-alcoholic fatty liver disease. Scand J Gastroenterol 2023; 58:1344-1350. [PMID: 37337892 DOI: 10.1080/00365521.2023.2225667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is a disease characterized by the accumulation of excessive fat in the liver, which can lead to fibrosis and has an increasing prevalence. NAFLD requires non-invasive diagnostic biomarkers. While typically observed in overweight individuals, it can also occur in non-obese/non-overweight individuals. Comparative studies on non-obese NAFLD patients are scarce. This study aimed to conduct a using liquid chromatography-high resolution mass spectrometry (LC-MS/MS)-based metabolic profiling of non-obese NAFLD patients and healthy controls. MATERIALS AND METHODS The patient group consisted of 27 individuals with NAFLD, while the healthy control group included 39 individuals. Both groups were between 18 and 40 years old, had a BMI of less than 25 and had alcohol consumption less than 20 g/week for men and 10 g/week for women. Serum samples were collected and analyzed using LC-MS/MS. The data were analyzed using the TidyMass and MetaboAnalyst. RESULTS The LC-MS/MS analyses detected significant changes in D-amino acid metabolism, vitamin B6 metabolism, apoptosis, mTOR signaling pathway, lysine degradation, and phenylalanine metabolism pathways in non-obese NAFLD patients. Significant changes were also observed in the metabolites D-pantothenic acid, hypoxanthine, citric acid, citramalic acid, L-phenylalanine, glutamine, and histamine-trifluoromethyl-toluidide, β-hydroxymyristic acid, DL-Lactic acid, and 3-methyl-2-oxopentanoic. Overall, the study provides valuable insights into the metabolic changes associated with non-obese NAFLD patients and can contribute to the development of non-invasive diagnostic biomarkers for NAFLD. CONCLUSIONS This study sheds light on the metabolic changes in non-obese NAFLD patients. Further research is needed to better understand the metabolic changes associated with NAFLD and to develop effective treatment options.
Collapse
Affiliation(s)
- Metin Demirel
- Department of Medical Biochemistry, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey
- Health Sciences Institute, Bezmialem Vakif University, Istanbul, Turkey
| | - Fatmanur Köktaşoğlu
- Department of Medical Biochemistry, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey
| | - Esin Özkan
- Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Halime Dulun Ağaç
- Department of Medical Biochemistry, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey
| | - Ayşe Zehra Gül
- Department of Medical Biochemistry, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey
| | - Rasul Sharifov
- Department of Radiology, Department of Gastroenterology, Bezmialem Vakıf University, Istanbul, Turkey
| | - Ufuk Sarıkaya
- Health Sciences Institute, Bezmialem Vakif University, Istanbul, Turkey
- Department of Medical Services and Techniques, Vocational School of Health Services, Bezmialem Vakıf University, Istanbul, Turkey
| | - Metin Başaranoğlu
- Department of Gastroenterology and Hepatology, Bezmialem Vakif University, Istanbul, Turkey
| | - Şahabettin Selek
- Department of Medical Biochemistry, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
5
|
Han J, Guo X, Koyama T, Kawai D, Zhang J, Yamaguchi R, Zhou X, Motoo Y, Satoh T, Yamada S. Zonarol Protected Liver from Methionine- and Choline-Deficient Diet-Induced Nonalcoholic Fatty Liver Disease in a Mouse Model. Nutrients 2021; 13:3455. [PMID: 34684455 PMCID: PMC8537643 DOI: 10.3390/nu13103455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/03/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases with no approved treatment. Zonarol, an extract from brown algae, has been proven to have anti-inflammatory and antioxidant effects. In this study, we investigated the role of zonarol in the progression of methionine- and choline-deficiency (MCD) diet-induced NAFLD in mice. After oral treatment with zonarol, a lighter body weight was observed in zonarol group (ZG) mice in comparison to control group (CG) mice. The NAFLD scores of ZG mice were lower than those of CG mice. Hepatic and serum lipid levels were also lower in ZG mice with the reduced expression of lipid metabolism-related factors. Furthermore, ZG mice showed less lipid deposition, less inflammatory cell infiltration and lower inflammatory cytokine levels in comparison to CG mice. Moreover, the numbers of 8-hydroxy-20-deoxyguanosine (8-OHdG)-positive hepatocytes and levels of hepatic and serum thiobarbituric acid reactive substances (TBARS) were significantly lower in comparison to CG mice. The expression levels of nuclear factor erythroid 2 related factor 2 (Nrf2), as well as its upstream and downstream molecules, changed in ZG mice. Zonarol could prevent the progression of NAFLD by decreasing inflammatory responses, oxidative stress and improving lipid metabolism. Meanwhile the Nrf2 pathway may play an important role in these effects.
Collapse
Affiliation(s)
- Jia Han
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan; (J.H.); (J.Z.); (S.Y.)
- Department of Medical Oncology, Kanazawa Medical University, Ishikawa 920-0293, Japan;
| | - Xin Guo
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan; (J.H.); (J.Z.); (S.Y.)
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa 920-0293, Japan
| | - Tomoyuki Koyama
- Laboratory of Nutraceuticals and Functional Foods Science, Graduate School of Marine Science and Technology, Tokyo 108-8477, Japan; (T.K.); (D.K.)
| | - Daichi Kawai
- Laboratory of Nutraceuticals and Functional Foods Science, Graduate School of Marine Science and Technology, Tokyo 108-8477, Japan; (T.K.); (D.K.)
| | - Jing Zhang
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan; (J.H.); (J.Z.); (S.Y.)
| | - Reimon Yamaguchi
- Department of Dermatology, Kanazawa Medical University, Ishikawa 920-0293, Japan;
| | - Xiaolei Zhou
- College of Bioscience & Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, China;
| | - Yoshiharu Motoo
- Department of Medical Oncology, Kanazawa Medical University, Ishikawa 920-0293, Japan;
| | - Takumi Satoh
- Department of Anti-Aging Food Research, School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan;
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan; (J.H.); (J.Z.); (S.Y.)
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa 920-0293, Japan
| |
Collapse
|
6
|
Noguchi H, Yamada S, Hirano KI, Yamaguchi S, Suzuki A, Guo X, Zaima N, Li M, Kobayashi K, Ikeda Y, Nakayama T, Sasaguri Y. Outside-in signaling by femoral cuff injury induces a distinct vascular lesion in adipose triglyceride lipase knockout mice. Histol Histopathol 2021; 36:91-100. [PMID: 33231284 DOI: 10.14670/hh-18-285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetic deficiency of adipose triglyceride lipase (ATGL), a rate-limiting enzyme for intracellular triglyceride (TG) hydrolysis, causes TG-deposit cardiomyovasculopathy (TGCV), a recently identified rare cardiovascular disorder (ORPHA code: 565612) in humans. One of the major characteristics of TGCV is a novel type of diffuse and concentric coronary atherosclerosis with ATGL-deficient smooth muscle cells (SMCs). Patients with TGCV have intractable coronary artery disease. Therefore, it is crucial to investigate the mechanisms underlying vascular lesions in ATGL deficiency using animal models. Cuff injury is an experimental procedure to induce vascular remodeling with neointimal formation with SMCs after placing a cuff around the adventitial side of the artery without direct influence on endothelium. We report the effect of cuff injury on femoral arteries of ATGL-knockout (ATGL⁻/⁻) mice. Cuff-induced concentric neointimal formation with migrating SMCs was exacerbated in ATGL⁻/⁻ mice, mimicking atherosclerotic lesions in patients with TGCV. In the media, cell death of SMCs and loss of elastic fibers increased. Perivascular infiltrating cells expressing tumor necrosis factor-α (TNF-α) were more prominent in ATGL⁻/⁻ mice than in wild-type (WT) mice. In Boyden chamber experiments, a greater number of ATGL⁻/⁻ SMCs migrated in response to TNF-α compared to WT SMCs. These data, for the first time, demonstrated that outside-in signaling by cuff-induced neointimal formation where paracrine stimuli from adventitial infiltrating cells may lead to neointimal formation and mediolysis in ATGL-deficient conditions. Cuff injury might be a valuable model for understanding the mechanisms underlying the development of atherosclerotic lesions in patients with TGCV.
Collapse
Grants
- 16ek0109092h0002 Japan Agency for Medical Research and Development (AMED)
- 24790394 Ministry of Education, Culture, Sports, Science and Technology, Tokyo, Japan
- 16K08750 Ministry of Education, Culture, Sports, Science and Technology, Tokyo, Japan
Collapse
Affiliation(s)
- Hirotsugu Noguchi
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kagoshima, Japan
- Department of Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Sohsuke Yamada
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kagoshima, Japan
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Kanazawa, Japan
| | - Ken-Ichi Hirano
- Laboratory of Cardiovascular Disease, Novel, Non-invasive, and Nutritional Therapeutics (CNT) and Triglyceride Research Center (TGRC), Department of Triglyceride Science, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Satoshi Yamaguchi
- Laboratory of Cardiovascular Disease, Novel, Non-invasive, and Nutritional Therapeutics (CNT) and Triglyceride Research Center (TGRC), Department of Triglyceride Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Akira Suzuki
- Laboratory of Cardiovascular Disease, Novel, Non-invasive, and Nutritional Therapeutics (CNT) and Triglyceride Research Center (TGRC), Department of Triglyceride Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Xin Guo
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Kanazawa, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Kindai, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Kindai, Japan
| | - Ming Li
- Laboratory of Cardiovascular Disease, Novel, Non-invasive, and Nutritional Therapeutics (CNT) and Triglyceride Research Center (TGRC), Department of Triglyceride Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kunihisa Kobayashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Yoshihiko Ikeda
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kagoshima, Japan
| | - Yasuyuki Sasaguri
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kagoshima, Japan
| |
Collapse
|
7
|
Misto A, Provensi G, Vozella V, Passani MB, Piomelli D. Mast Cell-Derived Histamine Regulates Liver Ketogenesis via Oleoylethanolamide Signaling. Cell Metab 2019; 29:91-102.e5. [PMID: 30318340 DOI: 10.1016/j.cmet.2018.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 06/11/2018] [Accepted: 09/12/2018] [Indexed: 01/30/2023]
Abstract
The conversion of lipolysis-derived fatty acids into ketone bodies (ketogenesis) is a crucial metabolic adaptation to prolonged periods of food scarcity. The process occurs primarily in liver mitochondria and is initiated by fatty-acid-mediated stimulation of the ligand-operated transcription factor, peroxisome proliferator-activated receptor-α (PPAR-α). Here, we present evidence that mast cells contribute to the control of fasting-induced ketogenesis via a paracrine mechanism that involves secretion of histamine into the hepatic portal circulation, stimulation of liver H1 receptors, and local biosynthesis of the high-affinity PPAR-α agonist, oleoylethanolamide (OEA). Genetic or pharmacological interventions that disable any one of these events, including mast cell elimination, deletion of histamine- or OEA-synthesizing enzymes, and H1 blockade, blunt ketogenesis without affecting lipolysis. The results reveal an unexpected role for mast cells in the regulation of systemic fatty-acid homeostasis, and suggest that OEA may act in concert with lipolysis-derived fatty acids to activate liver PPAR-α and promote ketogenesis.
Collapse
Affiliation(s)
- Alessandra Misto
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy; School of Advanced Studies Sant'Anna, Pisa 56127, Italy
| | - Gustavo Provensi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence 50139, Italy
| | - Valentina Vozella
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | | | - Daniele Piomelli
- Departments of Anatomy and Neurobiology, Biological Chemistry and Pharmacology, School of Medicine, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
8
|
|
9
|
Yamada S, Guo X. Peroxiredoxin 4 (PRDX4): Its critical in vivo roles in animal models of metabolic syndrome ranging from atherosclerosis to nonalcoholic fatty liver disease. Pathol Int 2018; 68:91-101. [PMID: 29341349 DOI: 10.1111/pin.12634] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/13/2017] [Indexed: 01/07/2023]
Abstract
The peroxiredoxin (PRDX) family, a new family of proteins with a pivotal antioxidative function, is ubiquitously synthesized and abundantly identified in various organisms. In contrast to the intracellular localization of other family members (PRDX1/2/3/5/6), PRDX4 is the only known secretory form and protects against oxidative damage by scavenging reactive oxygen species in both the intracellular (especially the endoplasmic reticulum) compartments and the extracellular space. We generated unique human PRDX4 (hPRDX4) transgenic (Tg) mice on a C57BL/6J background and investigated the critical and diverse protective roles of PRDX4 against diabetes mellitus, atherosclerosis, insulin resistance, and nonalcoholic fatty liver disease (NAFLD) as well as evaluated its role in the intestinal function in various animal models. Our published data have shown that PRDX4 helps prevent the progression of metabolic syndrome by reducing local and systemic oxidative stress and synergistically suppressing steatosis, inflammatory reactions, and/or apoptotic activity. These observations suggest that Tg mice may be a useful animal model for studying the relevance of oxidative stress on inflammation and the dysregulation of lipid/bile acid/glucose metabolism upon the progression of human metabolic syndrome, and that specific accelerators of PRDX4 may be useful as therapeutic agents for ameliorating various chronic inflammatory diseases.
Collapse
Affiliation(s)
- Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Xin Guo
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, Japan
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Hebei, China
| |
Collapse
|