1
|
Iqbal A, Bao H, Wang J, Liu H, Liu J, Huang L, Li D. Role of jasmonates in plant response to temperature stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112477. [PMID: 40097048 DOI: 10.1016/j.plantsci.2025.112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
The ambient temperature exerts a significant influence on the growth and development of plants, which are sessile organisms. Exposure to extreme temperatures, both low and high, has a detrimental impact on plant growth and development, crop yields, and even geographical distribution. Jasmonates constitute a class of lipid hormones that regulate plant tolerance to biotic and abiotic stresses. Recent studies have revealed that jasmonate biosynthesis and signaling pathways are integral to plant responses to both high and low temperatures. Exogenous application of jasmonate improves cold and heat tolerance in plants and reduces cold injury in fruits and vegetables during cold storage. Jasmonate interacts with low and high temperature key response factors and engages in crosstalk with primary and secondary metabolic pathways, including hormones, under conditions of temperature stress. This review presents a comprehensive summary of the jasmonate synthesis and signal transduction pathway, as well as an overview of the functions and mechanisms of jasmonate in response to temperature stress.
Collapse
Affiliation(s)
- Aafia Iqbal
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Henan Bao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Huijie Liu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Jiangtao Liu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Liqun Huang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Dongping Li
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
2
|
Zhang Z, Xiong T, Li K, Huang K. Origin, evolution and diversification of plant caleosins. BMC PLANT BIOLOGY 2025; 25:433. [PMID: 40186101 PMCID: PMC11971793 DOI: 10.1186/s12870-025-06463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Caleosins are lipid-associated proteins that exist in plants and fungi. Its molecules and biological functions have been extensively characterized, particularly in some economic crops. Different caleosins have various physiological roles in plant growth, development, and plant-environment interactions. However, a comprehensive investigation into their evolutionary history and patterns has yet to be undertaken. RESULTS Here, we identified 922 caleosins from 203 species comprising green algae and other plant taxa, followed by large-scale phylogenetic analysis. Phylogenetic analysis indicates that the plant caleosin family gave rise to the H and L branches after the emergence of aquatic algae and before the appearance of land plants. Hornworts and liverworts lost the L-caleosin during the evolutionary process. Caleosins from Araucariaceae, Podocarpaceae, Sciadopityaceae, and Stangeriaceae are absent in the H clade, and those from Ginkgoaceae, Gnetaceae, Pinaceae, and Zamiaceae are missing in the L clade. This suggests that the H and L clades were lost at the family level. In addition, we present a more comprehensive phylogenetic structure of angiosperm caleosin. The H and L branches of angiosperm caleosin expanded once each, generating two branches, respectively. We also explored the diversification of caleosin in Brassicaceae and Poaceae, respectively. CONCLUSION Our study offers a comprehensive understanding of the evolutionary trajectory of the caleosin gene family in green plants at a genome-wide level. These findings establish a crucial groundwork for future research to conduct thorough functional characterization.
Collapse
Affiliation(s)
- Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China.
| | - Tao Xiong
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Kejia Li
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| | - Kexin Huang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| |
Collapse
|
3
|
Kamolsukyeunyong W, Dabbhadatta Y, Jaiprasert A, Thunnom B, Poncheewin W, Wanchana S, Ruanjaichon V, Toojinda T, Burns P. Genome-Wide Association Analysis Identifies Candidate Loci for Callus Induction in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2112. [PMID: 39124230 PMCID: PMC11314294 DOI: 10.3390/plants13152112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Callus induction (CI) is a critical trait for transforming desirable genes in plants. A genome-wide association study (GWAS) analysis was conducted on the rice germplasms of 110 Indica rice accessions, in which three tissue culture media, B5, MS, and N6, were used for the CI of those rice panels' mature seeds. Seven quantitative trait loci (QTLs) on rice chromosomes 2, 6, 7, and 11 affected the CI percentage in the three media. For the B5 medium, one QTL (qCI-B5-Chr6) was identified on rice chromosome 6; for the MS medium, two QTLs were identified on rice chromosomes 2 and 6 (qCI-MS-Chr2 and qCI-MS-Chr6, respectively); for the N6 medium, four QTLs were identified on rice chromosomes 6, 7, and 11 (qCI-N6-Chr6.1 and qCI-N6-Chr6.2, qCI-N6-Chr7, and qCI-N6-Chr11, respectively). Fifty-five genes were identified within the haplotype blocks corresponding to these QTLs, thirty-one of which showed haplotypes associated with different CI percentages in those media. qCI-B5-Chr6 was located in the same region as qCI-N6-Chr6.2, and the Caleosin-related family protein was also identified in this region. Analysis of the gene-based haplotype revealed the association of this gene with different CI percentages in both B5 and N6 media, suggesting that the gene may play a critical role in the CI mechanism. Moreover, several genes, including those that encode the beta-tubulin protein, zinc finger protein, RNP-1 domain-containing protein, and lysophosphatidic acid acyltransferase, were associated with different CI percentages in the N6 medium. The results of this study provide insights into the potential QTLs and candidate genes for callus induction in rice that contribute to our understanding of the physiological and biochemical processes involved in callus formation, which is an essential tool in the molecular breeding of rice.
Collapse
Affiliation(s)
- Wintai Kamolsukyeunyong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (Y.D.); (A.J.); (B.T.); (W.P.); (S.W.); (V.R.); (T.T.)
| | | | | | | | | | | | | | | | - Parichart Burns
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (Y.D.); (A.J.); (B.T.); (W.P.); (S.W.); (V.R.); (T.T.)
| |
Collapse
|
4
|
Liao Y, Wang Z, Pei Y, Yan S, Chen T, Qi B, Li Y. Unveiling the applications of membrane proteins from oil bodies: leading the way in artificial oil body technology and other biotechnological advancements. Crit Rev Food Sci Nutr 2024; 65:2295-2322. [PMID: 38594966 DOI: 10.1080/10408398.2024.2331566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Oil bodies (OBs) function as organelles that store lipids in plant seeds. An oil body (OB) is encased by a membrane composed of proteins (e.g., oleosins, caleosins, and steroleosins) and a phospholipid monolayer. The distinctive protein-phospholipid membrane architecture of OBs imparts exceptional stability even in extreme environments, thereby sparking increasing interest in their structure and properties. However, a comprehensive understanding of the structure-activity relationships determining the stability and properties of oil bodies requires a more profound exploration of the associated membrane proteins, an aspect that remains relatively unexplored. In this review, we aim to summarize and discuss the structural attributes, biological functions, and properties of OB membrane proteins. From a commercial perspective, an in-depth understanding of the structural and functional properties of OBs is important for the expansion of their applications by producing artificial oil bodies (AOB). Besides exploring their structural intricacies, we describe various methods that are used for purifying and isolating OB membrane proteins. These insights may provide a foundational framework for the practical utilization of OB membrane proteins in diverse applications within the realm of AOB technology, including biological and probiotic delivery, protein purification, enzyme immobilization, astringency detection, and antibody production.
Collapse
Affiliation(s)
- Yi Liao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhenxiao Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yukun Pei
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tianyao Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- Intelligent Equipment Research Center for the Development of Special Medicinal and Food Resources, Harbin Institute of Technology Chongqing Research Institute, Chongqing, China
| |
Collapse
|
5
|
Liu H, An X, Liu X, Yang S, Liu Y, Wei X, Li X, Chen Q, Wang J. Molecular mechanism of salinity and waterlogging tolerance in mangrove Kandelia obovata. FRONTIERS IN PLANT SCIENCE 2024; 15:1354249. [PMID: 38384752 PMCID: PMC10879410 DOI: 10.3389/fpls.2024.1354249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Mangrove forests are colloquially referred to as "Earth's kidneys" and serve many important ecological and commercial functions. Salinity and waterlogging stress are the most important abiotic stressors restricting the growth and development of mangroves. Kandelia obovata (K. obovata) is the greatest latitudinally-distributed salt mangrove species in China.Here, morphology and transcriptomics were used to study the response of K. obovata to salt and waterlogging stress. In addition, weighted gene co-expression network analysis of the combined gene expression and phenotypic datasets was used to identify core salinity- and waterlogging-responsive modules. In this study, we observed that both high salinity and waterlogging significantly inhibited growth and development in K. obovata. Notably, growth was negatively correlated with salt concentration and positively correlated with waterlogging duration, and high salinity was significantly more inhibitive than waterlogging. A total of 7, 591 salt-responsive and 228 waterlogging-responsive differentially expressed genes were identified by RNA sequencing. Long-term salt stress was highly correlated with the measured physiological parameters while long-term waterlogging was poorly correlated with these traits. At the same time, 45 salinity-responsive and 16 waterlogging-responsive core genes were identified. All 61 core genes were mainly involved in metabolic and biosynthesis of secondary metabolites pathways. This study provides valuable insight into the molecular mechanisms of salinity and waterlogging tolerance in K. obovata, as well as a useful genetic resource for the improvement of mangrove stress tolerance using molecular breeding techniques.
Collapse
Affiliation(s)
- Huizi Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xia An
- Zhejiang Xiaoshan Institute of Cotton and Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xing Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Sheng Yang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Yu Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xin Wei
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xiaowen Li
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Qiuxia Chen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Jinwang Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| |
Collapse
|
6
|
Ren H, Zhang Y, Zhong M, Hussian J, Tang Y, Liu S, Qi G. Calcium signaling-mediated transcriptional reprogramming during abiotic stress response in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:210. [PMID: 37728763 DOI: 10.1007/s00122-023-04455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Calcium (Ca2+) is a second messenger in plants growth and development, as well as in stress responses. The transient elevation in cytosolic Ca2+ concentration have been reported to be involved in plants response to abiotic and biotic stresses. In plants, Ca2+-induced transcriptional changes trigger molecular mechanisms by which plants adapt and respond to environment stresses. The mechanism for transcription regulation by Ca2+ could be either rapid in which Ca2+ signals directly cause the related response through the gene transcript and protein activities, or involved amplification of Ca2+ signals by up-regulation the expression of Ca2+ responsive genes, and then increase the transmission of Ca2+ signals. Ca2+ regulates the expression of genes by directly binding to the transcription factors (TFs), or indirectly through its sensors like calmodulin, calcium-dependent protein kinases (CDPK) and calcineurin B-like protein (CBL). In recent years, significant progress has been made in understanding the role of Ca2+-mediated transcriptional regulation in different processes in plants. In this review, we have provided a comprehensive overview of Ca2+-mediated transcriptional regulation in plants in response to abiotic stresses including nutrition deficiency, temperature stresses (like heat and cold), dehydration stress, osmotic stress, hypoxic, salt stress, acid rain, and heavy metal stress.
Collapse
Affiliation(s)
- Huimin Ren
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Minyi Zhong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Jamshaid Hussian
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad, 22060, Pakistan
| | - Yuting Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
7
|
Zhu Y, Wang Y, Wei Z, Zhang X, Jiao B, Tian Y, Yan F, Li J, Liu Y, Yang X, Zhang J, Wang X, Mu Z, Wang Q. Analysis of oil synthesis pathway in Cyperus esculentus tubers and identification of oleosin and caleosin genes. JOURNAL OF PLANT PHYSIOLOGY 2023; 284:153961. [PMID: 36933340 DOI: 10.1016/j.jplph.2023.153961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The tubers of the widely distributed Cyperus esculentus are rich in oil, and therefore, the plant is considered to have a high utilization value in the vegetable oil industry. Oleosins and caleosins are lipid-associated proteins found in oil bodies of seeds; however oleosins and caleosins genes have not been identified in C. esculentus. In this study, we performed transcriptome sequencing and lipid metabolome analysis of C. esculentus tubers at four developmental stages to obtain the information on their genetic profile, expression trends, and metabolites in oil accumulation pathways. Overall, 120,881 non-redundant unigenes and 255 lipids were detected; 18 genes belonged to the acetyl-CoA carboxylase (ACC), malonyl-CoA:ACP transacylase (MCAT), β-ketoacyl-ACP synthase (KAS), and fatty acyl-ACP thioesterase (FAT) gene families involved in fatty acid biosynthesis, and 16 genes belonged to the glycerol-3-phosphate acyltransferase (GPAT), diacylglycerol acyltransferase 3 (DGAT3), phospholipid:diacylglycerol acyltransferase (PDAT), FAD2, and lysophosphatidic acid acyltransferase (LPAAT) gene families playing important roles in triacylglycerol synthesis. We also identified 9 oleosin- and 21 caleosin-encoding genes in C. esculentus tubers. These results provide detailed information on the C. esculentus transcriptional and metabolic profiles, which can be used as reference for the development of strategies to increase oil content in C. esculentus tubers.
Collapse
Affiliation(s)
- Youcheng Zhu
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Ying Wang
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Zunmiao Wei
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Gongzhuling, 136105, China.
| | - Xiaokai Zhang
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Bingyang Jiao
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Yu Tian
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Fan Yan
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Jingwen Li
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Yajing Liu
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Xuguang Yang
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Jinhao Zhang
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Xinyue Wang
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Zhongsheng Mu
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Gongzhuling, 136105, China.
| | - Qingyu Wang
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| |
Collapse
|
8
|
Tran AD, Cho K, Han O. Rice peroxygenase catalyzes lipoxygenase-dependent regiospecific epoxidation of lipid peroxides in the response to abiotic stressors. Bioorg Chem 2023; 131:106285. [PMID: 36450198 DOI: 10.1016/j.bioorg.2022.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
The peroxygenase pathway plays pivotal roles in plant responses to oxidative stress and other environmental stressors. Analysis of a network of co-expressed stress-regulated rice genes demonstrated that expression of OsPXG9 is negatively correlated with expression of genes involved in jasmonic acid biosynthesis. DNA sequence analysis and structure/function studies reveal that OsPXG9 is a caleosin-like peroxygenase with amphipathic α-helices that localizes to lipid droplets in rice cells. Enzymatic studies demonstrate that 12-epoxidation is slightly more favorable with 9(S)-hydroperoxyoctadecatrienoic acid than with 9(S)-hydroperoxyoctadecadienoic acid as substrate. The products of 12-epoxidation are labile, and the epoxide ring is hydrolytically cleaved into corresponding trihydroxy compounds. On the other hand, OsPXG9 catalyzed 15-epoxidation of 13(S)-hydroperoxyoctadecatrienoic acid generates a relatively stable epoxide product. Therefore, the regiospecific 12- or 15-epoxidation catalyzed by OsPXG9 strongly depends on activation of the 9- or 13- peroxygenase reaction pathways, with their respective preferred substrates. The relative abundance of products in the 9-PXG and 13-PXG pathways suggest that the 12-epoxidation involves intramolecular oxygen transfer while the 15-epoxidation can proceed via intramolecular or intermolecular oxygen transfer. Expression of OsPXG9 is up-regulated by abiotic stimuli such as drought and salt stress, but it is down-regulated by biotic stimuli such as flagellin 22 and salicylic acid. The results suggest that the primary function of OsPXG9 is to modulate the level of lipid peroxides to facilitate effective defense responses to abiotic and biotic stressors.
Collapse
Affiliation(s)
- Anh Duc Tran
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyoungwon Cho
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Oksoo Han
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
9
|
Saadat F. A computational study on the structure-function relationships of plant caleosins. Sci Rep 2023; 13:72. [PMID: 36593238 PMCID: PMC9807586 DOI: 10.1038/s41598-022-26936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Plant cells store energy in oil bodies constructed by structural proteins such as oleosins and caleosins. Although oil bodies usually accumulate in the seed and pollen of plants, caleosins are present in various organs and organelles. This issue, coupled with the diverse activities of caleosins, complicates the description of these oleo-proteins. Therefore, the current article proposes a new classification based on the bioinformatics analysis of the transmembrane topology of caleosins. Accordingly, the non-membrane class are the most abundant and diverse caleosins, especially in lower plants. Comparing the results with other reports suggests a stress response capacity for these caleosins. However, other classes play a more specific role in germination and pollination. A phylogenetic study also revealed two main clades that were significantly different in terms of caleosin type, expression profile, molecular weight, and isoelectric point (P < 0.01). In addition to the biochemical significance of the findings, predicting the structure of caleosins is necessary for constructing oil bodies used in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Fatemeh Saadat
- Biotechnology Department, College of Agriculture and Natural Resources, University of Tehran, Tehran, 4111, Iran.
| |
Collapse
|
10
|
Su H, Tan C, Liu Y, Chen X, Li X, Jones A, Zhu Y, Song Y. Physiology and Molecular Breeding in Sustaining Wheat Grain Setting and Quality under Spring Cold Stress. Int J Mol Sci 2022; 23:ijms232214099. [PMID: 36430598 PMCID: PMC9693015 DOI: 10.3390/ijms232214099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Spring cold stress (SCS) compromises the reproductive growth of wheat, being a major constraint in achieving high grain yield and quality in winter wheat. To sustain wheat productivity in SCS conditions, breeding cultivars conferring cold tolerance is key. In this review, we examine how grain setting and quality traits are affected by SCS, which may occur at the pre-anthesis stage. We have investigated the physiological and molecular mechanisms involved in floret and spikelet SCS tolerance. It includes the protective enzymes scavenging reactive oxygen species (ROS), hormonal adjustment, and carbohydrate metabolism. Lastly, we explored quantitative trait loci (QTLs) that regulate SCS for identifying candidate genes for breeding. The existing cultivars for SCS tolerance were primarily bred on agronomic and morphophysiological traits and lacked in molecular investigations. Therefore, breeding novel wheat cultivars based on QTLs and associated genes underlying the fundamental resistance mechanism is urgently needed to sustain grain setting and quality under SCS.
Collapse
Affiliation(s)
- Hui Su
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Tan
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Yonghua Liu
- School of Horticulture, Hainan University, Haikou 570228, China
| | - Xiang Chen
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Xinrui Li
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Ashley Jones
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Yulei Zhu
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (Y.Z.); (Y.S.)
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
- Correspondence: (Y.Z.); (Y.S.)
| |
Collapse
|