1
|
Henkel S, Richter R, Andraczek K, Mundry R, Dontschev M, Engelmann RA, Hartmann T, Hecht C, Kasperidus HD, Rieland G, Scholz M, Seele-Dilbat C, Vieweg M, Wirth C. Ash dieback and hydrology affect tree growth patterns under climate change in European floodplain forests. Sci Rep 2025; 15:10117. [PMID: 40128345 PMCID: PMC11933702 DOI: 10.1038/s41598-025-92079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
Floodplain forests are currently undergoing substantial reorganization processes due to the combined effects of management-induced altered hydrological conditions, climate change and novel invasive pathogens. Nowadays, the ash dieback is one of the most concerning diseases affecting European floodplain forests, causing substantial tree mortality and threatening the loss of the dominant key tree species of the hardwood floodplain forest, Fraxinus excelsior. Understanding how the increased light availability caused by pathogen-driven mortality in combination with altered hydrological conditions and climate change affects growth responses in a diverse forest community is of crucial importance for conservation efforts. Thus, we examined growth of the main tree species in response to ash dieback and how it depended on altered hydrological conditions under novel climatic conditions for the lower and upper canopy in the floodplain forest of Leipzig, Germany. Our study period encompassed the consecutive drought years from 2018 to 2020. We found that tree growth responded mostly positively to increased light availability, but only on moist sites, while tree growth largely declined on dry sites, suggesting that water availability is a critical factor for tree species to be able to benefit from increased light availability due to canopy disturbances caused by ash dieback. This hydrological effect was species-specific in the lower canopy but not in the upper canopy. While, in the lower canopy, some species such as the competitive shade-tolerant but flood-intolerant Acer pseudoplatanus and Acer platanoides benefited from ash dieback on moist sites, others were less affected or suffered disproportionally, indicating that floodplain forests might turn into a novel ecosystem dominated by competitive Acer species, which may have detrimental effects on ecosystem functioning. Our results give hints on floodplain forests of the future and have important implications for conservation measures, suggesting that a substantial revitalization of natural hydrological dynamics is important to maintain a tree composition that resembles the existing one and thus sustain their conservation status.
Collapse
Affiliation(s)
- Stefanie Henkel
- Systematic Botany and Functional Biodiversity, Institute for Biology, Leipzig University, Johannisallee 21, 04103, Leipzig, Germany.
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.
- Department Biodiversity and People, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany.
| | - Ronny Richter
- Systematic Botany and Functional Biodiversity, Institute for Biology, Leipzig University, Johannisallee 21, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| | - Karl Andraczek
- Systematic Botany and Functional Biodiversity, Institute for Biology, Leipzig University, Johannisallee 21, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| | - Roger Mundry
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Department for Primate Cognition, Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach Institute, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| | - Madeleine Dontschev
- Department of Plant Ecology, Institute for Ecology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Rolf A Engelmann
- Systematic Botany and Functional Biodiversity, Institute for Biology, Leipzig University, Johannisallee 21, 04103, Leipzig, Germany
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
| | - Timo Hartmann
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
| | - Christian Hecht
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
- Department Community Ecology, Helmholtz Centre for Environmental Research (UFZ), Theodor-Lieser- Str. 4, 06120, Halle, Germany
- Department of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
| | - Hans Dieter Kasperidus
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
| | - Georg Rieland
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
- Anhalt University of Applied Sciences, Nature Conservation and Landscape Planning, 06406, Bernburg, Germany
| | - Mathias Scholz
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
| | - Carolin Seele-Dilbat
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
- Agency for Environmental Protection, Nature Conservation Authority, Prager Str. 118-136, 04317, Leipzig, Germany
| | - Michael Vieweg
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318, Leipzig, Germany
| | - Christian Wirth
- Systematic Botany and Functional Biodiversity, Institute for Biology, Leipzig University, Johannisallee 21, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| |
Collapse
|
2
|
Lenk A, Richter R, Kretz L, Wirth C. Effects of canopy gaps on microclimate, soil biological activity and their relationship in a European mixed floodplain forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173572. [PMID: 38823707 DOI: 10.1016/j.scitotenv.2024.173572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/25/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Forest canopy gaps can influence understorey microclimate and ecosystem functions such as decomposition. Gaps can arise from silviculture or tree mortality, increasingly influenced by climate change. However, to what degree canopy gaps affect the buffered microclimate in the understorey under macroclimatic changes is unclear. We, therefore, investigated the effect of forest gaps differing in structure and size (25 gaps: single tree gaps up to 0.67 ha cuttings) on microclimate and soil biological activity compared to closed forest in a European mixed floodplain forest. During the investigation period in the drought year 2022 between May and October, mean soil moisture and temperature as well as soil and air temperature fluctuations increased with increasing openness. In summer, the highest difference of monthly means between cuttings and closed forest in the topsoil was 3.98 ± 9.43 % volumetric moisture and 2.05 ± 0.89 °C temperature, and in the air at 30 cm height 0.61 ± 0.35 °C temperature. For buffering, both the over- and understorey tree layers appeared as relevant with a particularly strong influence of understorey density on soil temperature. Three experiments, investigating soil biological activity by quantifying decomposition rates of tea and wooden spatulas as well as mesofauna feeding activity with bait-lamina stripes, revealed no significant differences between gaps and closed forest. However, we found a positive significant effect of mean soil temperature on feeding activity throughout the season. Although soil moisture decreased during this period, it showed no counteracting effect on feeding activity. Generally, very few significant relationships were observed between microclimate and soil biological activity in single experiments. Despite the dry growing season, decomposition rates remained high, suggesting temperature had a stronger influence than soil moisture. We conclude that the microclimatic differences within the gap gradient of our experiment were not strong enough to affect soil biological activity considerably.
Collapse
Affiliation(s)
- Annalena Lenk
- Systematic Botany and Functional Biodiversity, Leipzig University, Johannisallee 21, 04103 Leipzig, Germany.
| | - Ronny Richter
- Systematic Botany and Functional Biodiversity, Leipzig University, Johannisallee 21, 04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Lena Kretz
- Systematic Botany and Functional Biodiversity, Leipzig University, Johannisallee 21, 04103 Leipzig, Germany
| | - Christian Wirth
- Systematic Botany and Functional Biodiversity, Leipzig University, Johannisallee 21, 04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany; Max-Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745 Jena, Germany
| |
Collapse
|
3
|
Vilà-Cabrera A, Astigarraga J, Jump AS, Zavala MA, Seijo F, Sperlich D, Ruiz-Benito P. Anthropogenic land-use legacies underpin climate change-related risks to forest ecosystems. TRENDS IN PLANT SCIENCE 2023; 28:1132-1143. [PMID: 37263916 DOI: 10.1016/j.tplants.2023.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Forest ecosystems with long-lasting human imprints can emerge worldwide as outcomes of land-use cessation. However, the interaction of these anthropogenic legacies with climate change impacts on forests is not well understood. Here, we set out how anthropogenic land-use legacies that persist in forest properties, following alterations in forest distribution, structure, and composition, can interact with climate change stressors. We propose a risk-based framework to identify anthropogenic legacies of land uses in forest ecosystems and quantify the impact of their interaction with climate-related stress on forest responses. Considering anthropogenic land-use legacies alongside environmental drivers of forest ecosystem dynamics will improve our predictive capacity of climate-related risks to forests and our ability to promote ecosystem resilience to climate change.
Collapse
Affiliation(s)
- Albert Vilà-Cabrera
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain; Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK; Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain.
| | - Julen Astigarraga
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain
| | - Alistair S Jump
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Miguel A Zavala
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain
| | - Francisco Seijo
- Instituto de Empresa, School of Global and Public Affairs, Madrid, Spain
| | - Dominik Sperlich
- Department of Forestry Economics and Forest Planning, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Paloma Ruiz-Benito
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain; Universidad de Alcalá, Grupo de Investigación en Teledetección Ambiental, Departamento de Geología, Geografía y Medio Ambiente, 28801 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
4
|
Putzenlechner B, Koal P, Kappas M, Löw M, Mundhenk P, Tischer A, Wernicke J, Koukal T. Towards precision forestry: Drought response from remote sensing-based disturbance monitoring and fine-scale soil information in Central Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163114. [PMID: 37011694 DOI: 10.1016/j.scitotenv.2023.163114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/23/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023]
Abstract
Prolonged drought and susceptibility to biotic stressors induced an extensive calamity in Norway spruce (Picea abies (L.) Karst.) and widespread crown defoliation in European beech (Fagus sylvatica L.) in Central Europe. For future management decisions, it is crucial to link changes in canopy cover to site conditions. However, current knowledge on the role of soil properties for drought-induced forest disturbance is limited due to the scarcity and low spatial resolution of soil information. We present a fine-scale assessment on the role of soil properties for forest disturbance in Norway spruce and European beech derived from optical remote sensing. A forest disturbance modeling framework based on Sentinel-2 time series was applied on 340 km2 in low mountain ranges of Central Germany. Spatio-temporal information on forest disturbance was calculated at 10 m spatial resolution in the period 2019-2021 and intersected with high-resolution soil information (1:10,000) based on roughly 2850 soil profiles. We found distinct differences in disturbed area, depending on soil type, texture, stoniness, effective rooting depth and available water capacity (AWC). For spruce, we found a polynomial relationship between AWC (R2 = 0.7) and disturbance, with highest disturbed area (65 %) for AWC between 90 and 160 mm. Interestingly, we found no evidence for generally higher disturbance on shallow soils, although stands on the deepest soils were significantly less affected. Noteworthy, sites affected first did not necessarily exhibit highest proportions of disturbed area post-drought, indicating recovery or adaptation. We conclude that site- and species-specific understanding of drought impacts benefits from a combination of remote sensing and fine-scale soil information. Since our approach revealed which sites were affected first and most, it qualifies for prioritizing in situ monitoring activities to most vulnerable stands in acute drought conditions as well as for developing long-term strategies for reforestation and site-specific risk assessment for precision forestry.
Collapse
Affiliation(s)
- Birgitta Putzenlechner
- Institute of Geography, Dep. Cartography, GIS and Remote Sensing, Georg-August-University, Goldschmidtstr. 5, 37077 Göttingen, Germany.
| | - Philipp Koal
- Forestry Research and Competence Centre, ThüringenForst AöR, Jägerstr. 1, 99867 Gotha, Germany
| | - Martin Kappas
- Institute of Geography, Dep. Cartography, GIS and Remote Sensing, Georg-August-University, Goldschmidtstr. 5, 37077 Göttingen, Germany
| | - Markus Löw
- Federal Research and Training Centre for Forests Natural Hazards and Landscape, Seckendorff-Gudent-Weg 8, 1130 Vienna, Austria
| | - Philip Mundhenk
- Forestry Research and Competence Centre, ThüringenForst AöR, Jägerstr. 1, 99867 Gotha, Germany
| | - Alexander Tischer
- Institute of Geography, Friedrich-Schiller-University, Löbdergraben 32, 07743 Jena, Germany
| | - Jakob Wernicke
- Forestry Research and Competence Centre, ThüringenForst AöR, Jägerstr. 1, 99867 Gotha, Germany
| | - Tatjana Koukal
- Federal Research and Training Centre for Forests Natural Hazards and Landscape, Seckendorff-Gudent-Weg 8, 1130 Vienna, Austria
| |
Collapse
|
5
|
Klesse S, Wohlgemuth T, Meusburger K, Vitasse Y, von Arx G, Lévesque M, Neycken A, Braun S, Dubach V, Gessler A, Ginzler C, Gossner MM, Hagedorn F, Queloz V, Samblás Vives E, Rigling A, Frei ER. Long-term soil water limitation and previous tree vigor drive local variability of drought-induced crown dieback in Fagus sylvatica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157926. [PMID: 35985592 DOI: 10.1016/j.scitotenv.2022.157926] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Ongoing climate warming is increasing evapotranspiration, a process that reduces plant-available water and aggravates the impact of extreme droughts during the growing season. Such an exceptional hot drought occurred in Central Europe in 2018 and caused widespread defoliation in mid-summer in European beech (Fagus sylvatica L.) forests. Here, we recorded crown damage in 2021 in nine mature even-aged beech-dominated stands in northwestern Switzerland along a crown damage severity gradient (low, medium, high) and analyzed tree-ring widths of 21 mature trees per stand. We aimed at identifying predisposing factors responsible for differences in crown damage across and within stands such as tree growth characteristics (average growth rates and year-to-year variability) and site-level variables (mean canopy height, soil properties). We found that stand-level crown damage severity was strongly related to soil water availability, inferred from tree canopy height and plant available soil water storage capacity (AWC). Trees were shorter in drier stands, had higher year-to-year variability in radial growth, and showed higher growth sensitivity to moisture conditions of previous late summer than trees growing on soils with sufficient AWC, indicating that radial growth in these forests is principally limited by soil water availability. Within-stand variation of post-drought crown damage corresponded to growth rate and tree size (diameter at breast height, DBH), i.e., smaller and slower-growing trees that face more competition, were associated with increased crown damage after the 2018 drought. These findings point to tree vigor before the extreme 2018 drought (long-term relative growth rate) as an important driver of damage severity within and across stands. Our results suggest that European beech is less likely to be able to cope with future climate change-induced extreme droughts on shallow soils with limited water retention capacity.
Collapse
Affiliation(s)
- S Klesse
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland.
| | - T Wohlgemuth
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - K Meusburger
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - Y Vitasse
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - G von Arx
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - M Lévesque
- Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
| | - A Neycken
- Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
| | - S Braun
- Institute for Applied Plant Biology AG, Witterswil, Switzerland
| | - V Dubach
- Forest Health & Biotic Interactions, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - A Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
| | - C Ginzler
- Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - M M Gossner
- Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland; Forest Health & Biotic Interactions, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - F Hagedorn
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - V Queloz
- Forest Health & Biotic Interactions, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - E Samblás Vives
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland; Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Valles, Spain
| | - A Rigling
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
| | - E R Frei
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland; Alpine Environment and Natural Hazards, WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, Switzerland; Climate Change and Extremes in Alpine Regions Research Centre CERC, 7260 Davos Dorf, Switzerland
| |
Collapse
|
6
|
Schuldt B, Ruehr NK. Responses of European forests to global change-type droughts. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1093-1097. [PMID: 36445187 DOI: 10.1111/plb.13484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Affiliation(s)
- B Schuldt
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Dresden, Germany
| | - N K Ruehr
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| |
Collapse
|
7
|
Werner C. Extreme droughts and heatwaves endanger temperate forests. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1091-1092. [PMID: 36445188 DOI: 10.1111/plb.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|