1
|
Raha P, Khatua I, Saha G, Adhikari S, Gantait S, Bandyopadhyay TK. Morpho-histology of co-occurrence of somatic embryos, shoots, and inflorescences within a callus of Limonium 'Misty Blue'. PHYSIOLOGIA PLANTARUM 2024; 176:e14389. [PMID: 38887935 DOI: 10.1111/ppl.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
This is the first attempt to report the co-occurrence of somatic embryos, shoots, and inflorescences and their sequential development from stem cell niches of an individual callus mass through morpho-histological study of any angiosperm. In the presence of a proper auxin/cytokinin combination, precambial stem cells from the middle layer of a compact callus, which was derived from the thin cell layer of the inflorescence rachis of Limonium, expressed the highest level of totipotency and pluripotency and simultaneously developed somatic embryos, shoots, and inflorescences. This study also proposed the concept of programmed cell death during bipolar somatic embryo and unipolar shoot bud pattern formation. The unique feature of this research was the stepwise histological description of in vitro racemose inflorescence development. Remarkably, during the initiation of inflorescence development, either a unipolar structure with open vascular elements or an independent bipolar structure with closed vascular elements were observed. The protocol predicted the production of 6.6 ± 0.24 and 7.4 ± 0.24 somatic embryos and shoots, respectively, from 400 mg of callus, which again multiplied, rooted, and acclimatised. The plants' ploidy level and genetic fidelity were assessed randomly before acclimatisation by flow cytometry and inter simple sequence repeats (ISSR) marker analysis. Finally, the survivability and flower quality of the regenerated plants were evaluated in the field.
Collapse
Affiliation(s)
- Priyanka Raha
- Department of Molecular Biology and Biotechnology, University of Kalyani, Nadia, West Bengal, India
| | - Ishita Khatua
- Department of Molecular Biology and Biotechnology, University of Kalyani, Nadia, West Bengal, India
| | - Gourab Saha
- Department of Molecular Biology and Biotechnology, University of Kalyani, Nadia, West Bengal, India
| | - Sinchan Adhikari
- Department of Botany, University of Kalyani, Nadia, West Bengal, India
| | - Saikat Gantait
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Nadia, West Bengal, India
| | | |
Collapse
|
2
|
Meira FS, Ribeiro DG, de Campos SS, Falcão LL, Gomes ACMM, de Alencar Dusi DM, Marcellino LH, Mehta A, Scherwinski-Pereira JE. Differential expression of genes potentially related to the callogenesis and in situ hybridization of SERK gene in macaw palm (Acrocomia aculeata Jacq.) Lodd. ex Mart. PROTOPLASMA 2024; 261:89-101. [PMID: 37482557 DOI: 10.1007/s00709-023-01881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
For the purpose of understanding the molecular processes triggered during callus formation in macaw palm, the expression of seven genes potentially involved in this process, identified in previous studies and from the literature, was investigated by RT-qPCR. In addition, in situ hybridization of the SERK gene was performed. Leaf tissues from adult plants from two macaw palm accession were inoculated in a medium combined with Picloram at a concentration of 450 μM to induce callus. The expression analysis was performed from leaf samples from two accessions of different origins (Municipalities of Tiros, MG, and Buriti Vermelho, DF, Brazil), which are characterized as non-responsive (NR) and responsive (R), respectively. The material was collected before callus induction (0 DAI, initial day) and 120 days after callus induction (120 DAI). Genes related to development (SERK, OASA, EF1, ANN1) and stress (LEA, CAT2, and MDAR5) were evaluated. The results obtained showed that all the genes involved with the development had their expressions downregulated at 0 DAI when the accession R was compared with the accession NR. On the other hand, it was possible to observe that these genes were upregulated at 120 DAI. The LEA stress gene showed a tendency to increase expression in the NR accession, while the R accession showed decreased expression and the CAT2 and MDAR5 genes showed upregulation in both accessions. In situ hybridization showed SERK transcripts in the vascular bundles, indicating the expression of SERK in this region, in addition to its expression in calluses. The results obtained in this study support our hypothesis that the regulation of genes involved in the control of oxidative stress and development is crucial for the formation of calluses in macaw palm.
Collapse
Affiliation(s)
- Filipe Sathler Meira
- Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Daiane Gonzaga Ribeiro
- Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Samanta Siqueira de Campos
- Universidade Federal do Rio Grande do Sul, Departamento de Horticultura e Silvicultura, Porto Alegre, RS, 91540-000, Brazil
| | - Loeni Ludke Falcão
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Brasília, 70770-917, Brazil
| | | | | | - Lucilia Helena Marcellino
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Brasília, 70770-917, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Brasília, 70770-917, Brazil
| | | |
Collapse
|
3
|
de Araújo Silva-Cardoso IM, Medeiros MO, Gomes ACMM, de Souza ALX, Scherwinski-Pereira JE. Use of Electron Microscopy for the Detection of Contaminant Endophytic Bacteria In Vitro. Methods Mol Biol 2024; 2827:71-84. [PMID: 38985263 DOI: 10.1007/978-1-0716-3954-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The success of in vitro cultivation, particularly for micropropagation purposes, depends on the efficient control of contaminants. In this context, the sterilization of plant material constitutes a fundamental step in initiating cultures. Microbial contaminants can be found either on the surface (epiphyte) or inside plant explants (endophyte). However, the latter is generally challenging to detect and may not always be eradicated through surface sterilization alone. Endophyte contaminants, such as bacteria, can persist within plant material over several cultivation cycles, potentially interfering with or inhibiting in vitro establishment, growth, or recovery of cryopreserved materials. Therefore, microscopy techniques, such as electron microscopy, can yield valuable insights into bacterial endophytes' localization, tissue colonization patterns, and functions in in vitro plant culture. This information is essential for adopting effective strategies for eliminating, preventing, or harmonious coexistence with contaminants.
Collapse
Affiliation(s)
| | - Mariana Oliveira Medeiros
- Department of Botany, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | | | | | | |
Collapse
|
4
|
de Araújo Silva-Cardoso IM, Gomes ACMM, Scherwinski-Pereira JE. Cellular responses of oil palm genotypes during somatic embryogenesis involve participation of procambial cells, DNA demethylation, and auxin accumulation. PLANT CELL REPORTS 2022; 41:1875-1893. [PMID: 35776139 DOI: 10.1007/s00299-022-02898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Cell markers of somatic embryogenesis initiation from leaf tissues in oil palm involve the participation of procambial cells, DNA demethylation, and auxin accumulation. Low callogenesis and genotype-dependent response have been mentioned in the development of somatic embryogenesis protocols of Elaeis oleifera × E. guineensis elite hybrids, which requires more detailed investigations of the process. Thus, the initial cellular responses of immature leaves of adult genotypes of this hybrid were investigated for the first time, emphasizing histological, epigenetic, and endogenous auxin changes. Leaf segments from two genotypes, one responsive to somatic embryogenesis (B351733) and another non-responsive (B352933), were inoculated in Murashige and Skoog medium with 450 µM of 4-amino-3, 5, 6-trichloropicolinic acid. For anatomical analysis, samples of both genotypes were collected at 0, 20, 90, and 105 days of cultivation. Samples of both genotypes were also taken at different cultivation periods to analyze DNA methylation status (% 5-mC-5 methylcytosine) via ELISA test. Immunolocalization assays were performed with anti-indole-3-acetic acid and anti-5-methyl-deoxycytosine antibodies from samples of hybrid B351733. We distinguished two groups of cells reactive to the induction of embryogenic callogenesis, parenchymatous sheath cells, and procambial cells; however, only the latter are directly involved with the formation of calluses. The data obtained indicate that the formation of calluses in hybrid B351733 is related to DNA hypomethylation, while the non-responsiveness of leaf explants in hybrid B352932 is related to DNA hypermethylation. The in situ immunolocalization enabled the identification of initial markers of the callogenic process, such as IAA accumulation and hypomethylation. Identifying these events brings the possibility of establishing strategies for efficient manipulation of somatic embryogenesis protocols in palm trees.
Collapse
Affiliation(s)
| | | | - Jonny Everson Scherwinski-Pereira
- Laboratório de Microscopia, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.
- Laboratório de Cultura de Tecidos e Genética Vegetal, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.
| |
Collapse
|
5
|
de Sousa PCA, Silva e Souza SS, Nogueira GF, de Araújo Silva-Cardoso IM, Scherwinski-Pereira JE. Indirect somatic embryogenesis of Piper hispidinervum L. and evaluation of the regenerated plants by flow cytometry. J Genet Eng Biotechnol 2022; 20:40. [PMID: 35230554 PMCID: PMC8888786 DOI: 10.1186/s43141-022-00323-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/20/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Piper hispidinervum is a species native from the Amazon region with great economic potential, given its scientifically proven insecticidal properties. In this study, an efficient protocol of plant regeneration via indirect somatic embryogenesis has been established for the first time. In a first experiment, for the induction of calluses, foliar explants of non-discriminated accesses of P. hispidinervum were inoculated in MS medium supplemented with α-naphtalenacetic acid (NAA) and 6-benzylaminopurine (BAP), in different combinations. For a second experiment, foliar explants from five different accesses of P. hispidinervum (PH17, PH21, PH28, PH37, and PH39) were analyzed regarding the formation of calluses when cultivated in MS medium with 5 mg L−1 NAA + 2.5 mg L−1 BAP. To obtain somatic embryos-like structures, calluses were cultivated in MS medium with 10 mg L−1 NAA + 2.5 mg L−1 of BAP. The somatic embryos-like structures obtained were inoculated in MS medium devoid of growth regulators and the plantlets were subjected to acclimatization. Calluses and somatic embryos-like structures were subjected to anatomical analysis and genetic stability of regenerated plants was analyzed by flow cytometry.
Results
The treatments 2.5 mg L−1 BAP and 5 mg L−1 NAA + 2.5 mg L−1 BAP, after 60 days of cultivation, provided each 32% of primary callus, not being verified the formation of calluses in medium devoid of BAP. It was found that accesses differed among them with respect to the formation of primary calluses, with emphasis on accesses PH28, PH37, and PH39, with mean percentage of 95.3%. Regarding the percentage of embryogenic calluses and formation of somatic embryos-like structures, there were no statistical differences between accesses, with mean values of 90.6% and 77.3%, respectively. The somatic embryos-like structures of P. hispidinervum have conspicuous morphoanatomical similarities with the zygotic embryo, and flow cytometry analysis showed no significant variation in nuclear DNA size among plants regenerated in vitro and plants coming from seed germination, which indicates ploidy level stability.
Conclusion
This protocol is the first cited in the literature that demonstrates an efficient micropropagation process by somatic embryogenesis of P. hispidinervum. It can be used either to enable large-scale vegetative production or to subsidize germplasm conservation or genetic engineering of P. hispidinervum.
Collapse
|
6
|
Godel-J Drychowska K, Kurczy Ska E. Qualitative and quantitative analyses of the plasmodesmata that accompany cell fate changes during the somatic embryogenesis of Arabidopsis thaliana. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:186-200. [PMID: 34838155 DOI: 10.1071/fp21243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Plasmodesmata (PD) are cytoplasmic and membrane-lined microchannels that enable symplasmic communication in plants, which is involved in the regulation of cell differentiation. The presented results emphasise the qualitative and quantitative analyses of PD, which are the basis of the symplasmic communication. The cells that initiate various development programmes create symplasmic domains that are characterised by different degrees of symplasmic communication. Changes in symplasmic communication are caused by the presence or absence of PD and/or the ability of signals to move through them. In the presented studies, somatic embryogenesis was used to describe the characteristics of the PD within and between the symplasmic domains in explants of the Arabidopsis thaliana (L.) Heynh ecotype Columbia-0 and 35S:BBM transgenic line. Transmission electron microscopy was used to describe the cells that regain totipotency/pluripotency during somatic embryogenesis, as well as the number and shape of the PD in the different symplasmic domains of the explants and somatic embryos. Array tomography was used to create a 3D reconstruction of the protodermal cells of the somatic embryos with particular emphasis on the PD distribution in the cell walls. The results showed that there were different frequencies of the PD within and between the symplasmic domain that emerges during somatic embryogenesis and between the Col-0 and 35S:BBM somatic embryos with regard to the differences in the shape of the PD.
Collapse
Affiliation(s)
- Kamila Godel-J Drychowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, The University of Silesia, 28 Jagiellonska Street, 40-032 Katowice, Poland
| | - Ewa Kurczy Ska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, The University of Silesia, 28 Jagiellonska Street, 40-032 Katowice, Poland
| |
Collapse
|
7
|
Zhang M, Wang A, Qin M, Qin X, Yang S, Su S, Sun Y, Zhang L. Direct and Indirect Somatic Embryogenesis Induction in Camellia oleifera Abel. FRONTIERS IN PLANT SCIENCE 2021; 12:644389. [PMID: 33841471 PMCID: PMC8034400 DOI: 10.3389/fpls.2021.644389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 05/08/2023]
Abstract
Camellia oleifera Abel. is an important woody oil species; however, the shortage of rapid and industrialized seedling culture is a large constraint on the development of the tea oil industry. Somatic embryogenesis (SE) is one of the main powerful biotechnological tools for plant mass regeneration, but the largely unknown SE in C. oleifera limits the scale production of clonal plants. In this study, we described a high-efficiency SE system via direct and indirect pathways in C. oleifera and investigated the effect of genotype, explant age and phytohormones on SE. In the direct pathway, somatic embryos were highly induced from immature seeds 220 days after full blossom, and the development of embryoids was achieved with a combination of 0.19 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.05 mg/L thidiazuron (TDZ). In the indirect pathway, embryogenic calli were induced from the same explants in medium containing 1.5 mg/L 2,4-D, while 0.75 mg/L 2,4-D treatment led to high proliferation rates for embryogenic calli. The addition of 0.19 mg/L 2,4-D alone stimulated the production of globular embryos while causing a 75% loss of the induction rate in the heart embryo stage. Upon transfer of the globular embryos to phytohormone-free medium, an optimal induction rate of 62.37% from globular embryos to cotyledonary embryos was obtained. These data suggest that the subsequent differentiation process after the globular embryo stage in ISE is more similar to an endogenous phytohormones-driven process. Mature embryos germinated to produce intact plantlets on half-strength MS basal medium with a regeneration rate of 63.67%. Histological analysis confirmed the vascular bundle isolation of embryoids from the mother tissue. We further studied the different varieties and found that there were no significant genotype differences for SE induction efficiency in C. oleifera. Thus, we established a high-efficiency induction system for direct and indirect somatic embryogenesis (ISE) in C. oleifera and regenerated intact plantlets via SE, not organogenesis. ISE has a more complicated induction and regulatory mechanism than direct somatic embryogenesis. The improved protocol of SE would benefit mass propagation and genetic manipulation in C. oleifera.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Aibin Wang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Mou Qin
- Baise Forestry Bureau of Guangxi Zhuang Autonomous Region, Baise, China
| | - Xuejing Qin
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Shiwen Yang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Shuchai Su
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Yongjiang Sun
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Lingyun Zhang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
8
|
Ferreira CD, Silva-Cardoso IMDA, Ferreira JCB, Costa FHDS, Scherwinski-Pereira JE. Morphostructural and histochemical dynamics of Euterpe precatoria (Arecaceae) germination. JOURNAL OF PLANT RESEARCH 2020; 133:693-713. [PMID: 32767021 DOI: 10.1007/s10265-020-01219-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
The fruits of Euterpe precatoria, popularly known as açaí palm, have been commercially exploited for use in food and beverages because of their medicinal and energetic properties. However, despite the growing demand, little is known about the seeds germination, until now, its main form of propagation. In this context, we have characterized the structure of the zygotic embryo and described temporally the germination process of E. precatoria with emphasis on the morpho-anatomical and histochemical aspects. For this end, we have collected and analyzed zygotic embryo and seedlings samples before sowing and at different periods after sowing-2, 4, 6, 8, 10, 15, 20, 30, 40, 50, and 60 days. The embryo has an oblique embryonic axis and mainly protein reserves. Seed germination is classified as cryptocotyledonar, hypogeal, and adjacent ligular and we observed seedlings at 20 days after sowing (33.3%), although anatomical evidence of the beginning of the germination process have been observed at 15 days. The day-20 was histologically marked by the expansion of the ligule, beginning of second eophyll differentiation, and complete root protrusion. This stage was characterized by the total consumption of protein reserves and increased starch grains. The occurrence of 100% of root and ligula emission was verified at day-60, which characterizes a slow and heterogeneous process. The morphological marker of the E. precatoria germination is the exit of the proximal region (cotyledonary petiole) of the embryo from within the seed by the lifting of the operculum and the species has some peculiarities, such as the presence of high concentrations of phenolic compounds and idioblasts before and throughout the germination process, and starch grains located on the embryonic axis. We can verify that the consumption of protein reserves of the embryo is related to the energy supply necessary for root protrusion.
Collapse
|
9
|
Embryonal Masses Induced at High Temperatures in Aleppo Pine: Cytokinin Profile and Cytological Characterization. FORESTS 2020. [DOI: 10.3390/f11080807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aleppo pine (Pinus halepensis Mill.), a native species of the Mediterranean region, has been suggested as a species that when introduced in degraded areas could facilitate the long-term colonization and expansion of late-successional species. Due to climate changes, plants need to withstand extreme environmental conditions through adaptation and changings in developmental pathways. Among other paths, plants undergo changes in developmental pathways controlled by phytohormones. At the same time, somatic embryogenesis has been widely used as a model to understand the mechanisms involved in plant response to different stresses. In this study, in order to induce a strong effect of temperature stress on plants regenerated from somatic embryos, higher temperatures (40 °C for 4 h, 50 °C for 30 min, and 60 °C for 5 min) than the control (23 °C) were applied during the induction stage of somatic embryogenesis in Pinus halepensis. A morphological characterization of the embryogenic cultures showed small differences in the number of starch grains, lipid bodies, and phenolic compounds between treatments. Results showed that high temperatures (60 °C) led to higher rates at the maturation stage of somatic embryogenesis when compared to the control (23 °C), strengthening the productivity through the increase in the number of somatic embryos obtained. Finally, analysis of endogenous concentration of cytokinins showed that different conditions applied during the initiation phase of somatic embryogenesis led to different hormonal profiles; isoprenoid cytokinins showed a clear defined pattern with the higher total hormone concentration being found in embryonal masses induced at 50 °C for 30 min, while different aromatic cytokinins presented different individual responses to the treatments applied. These differences corroborate the idea that cytokinins could be potential regulators of stress–response processes during initial steps of somatic embryogenesis.
Collapse
|