1
|
Yang H, Yuan Y, Liu X, Du Y, Li Z. Phytohormonal homeostasis, chloroplast stability, and heat shock transcription pathways related to the adaptability of creeping bentgrass species to heat stress. PROTOPLASMA 2025; 262:649-665. [PMID: 39794516 DOI: 10.1007/s00709-024-02022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
Creeping bentgrass (Agrostis stolonifera) is a cool-season perennial turfgrass and is frequently utilized in high-quality turf areas. However, a poor to moderate resistance to heat stress limits its promotion and utilization in transitional and worm climate zones. The objectives of the study were to assess the heat tolerance of 18 creeping bentgrass genotypes in the field and to further uncover differential mechanisms of heat tolerance between heat-tolerant and heat-sensitive genotypes. The results showed that 18 different genotypes had different heat tolerance during summer months of 2021 and 2022. Among them, 13 M was identified as the best heat-tolerant cultivar based on the subordinate function values analysis of five physiological indicators. Under controlled growth conditions, heat stress significantly inhibited photosynthetic capacity and also accelerated oxidative damage and chlorophyll (Chl) degradation in both heat-tolerant 13 M and heat-sensitive PA4. However, as compared with heat-sensitive PA4, 13 M maintained significantly higher net photosynthetic rate, water use efficiency, and total antioxidant capacity as well as less Chl degradation and damage to chloroplast ultrastructure. Significantly higher contents of abscisic acid, cytokinin, gibberellin, and polyamines (spermine, spermidine, and putrescine) were also detected in 13 M than that in PA4 in the later stage of heat stress, but 13 M exhibited significantly lower indoleacetic acid content than PA4 during heat stress. In addition, heat-upregulated genes involved in heat shock transcriptional pathways were more pronounced in 13 M than in PA4. These findings indicated that better heat tolerance of 13 M could be related to more stable Chl metabolism, better photosynthetic and antioxidant capacities, endogenous hormonal homeostasis, and more effective heat shock transcriptional pathway. 13 M is more appropriate for planting in transitional and subtropical zones instead of widely used PA4.
Collapse
Affiliation(s)
- Huizhen Yang
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Yuan
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinying Liu
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Du
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhou Li
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Zhang P, Sharwood RE, Carroll A, Estavillo GM, von Caemmerer S, Furbank RT. Systems analysis of long-term heat stress responses in the C4 grass Setaria viridis. THE PLANT CELL 2025; 37:koaf005. [PMID: 39778116 PMCID: PMC11964294 DOI: 10.1093/plcell/koaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 09/30/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Many C4 plants are used as food and fodder crops and often display improved resource use efficiency compared to C3 plants. However, the response of C4 plants to future extreme conditions such as heatwaves is less understood. Here, Setaria viridis, an emerging C4 model grass, was grown under long-term high-temperature stress for 2 wk (42 °C, compared to 28 °C). This resulted in stunted growth, but surprisingly had little impact on leaf thickness, leaf area-based photosynthetic rates, and bundle sheath leakiness. Dark respiration rates increased, and there were major alterations in carbon and nitrogen metabolism in the heat-stressed plants. Abscisic acid and indole-3-acetic acid-amino acid conjugates accumulated in the heat-stressed plants, consistent with transcriptional changes. Leaf transcriptomics, proteomics, and metabolomics analyses were carried out and mapped onto the metabolic pathways of photosynthesis, respiration, carbon/nitrogen metabolism, and phytohormone biosynthesis and signaling. An in-depth analysis of correlations between transcripts and their corresponding proteins revealed strong differences between groups in the strengths and signs of correlations. Overall, many stress signaling pathways were upregulated, consistent with multiple signals leading to reduced plant growth. A systems-based model of the plant response to long-term heat stress is presented based on the oxidative stress, phytohormone, and sugar signaling pathways.
Collapse
Affiliation(s)
- Peng Zhang
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, ACT 2601, Australia
| | - Robert E Sharwood
- ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, ACT 2601, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | - Adam Carroll
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Gonzalo M Estavillo
- Commonwealth Scientific and Research Organisation, Agriculture and Food, Black Mountain Canberra, ACT 2601, Australia
| | - Susanne von Caemmerer
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, ACT 2601, Australia
| | - Robert T Furbank
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
3
|
Lohani N, Singh MB, Bhalla PL. Deciphering the Vulnerability of Pollen to Heat Stress for Securing Crop Yields in a Warming Climate. PLANT, CELL & ENVIRONMENT 2025; 48:2549-2580. [PMID: 39722468 DOI: 10.1111/pce.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Climate change is leading to more frequent and severe extreme temperature events, negatively impacting agricultural productivity and threatening global food security. Plant reproduction, the process fundamental to crop yield, is highly susceptible to heatwaves, which disrupt pollen development and ultimately affect seed-set and crop yields. Recent research has increasingly focused on understanding how pollen grains from various crops react to heat stress at the molecular and cellular levels. This surge in interest over the last decade has been driven by advances in genomic technologies, such as single-cell RNA sequencing, which holds significant potential for revealing the underlying regulatory reprogramming triggered by heat stress throughout the various stages of pollen development. This review focuses on how heat stress affects gene regulatory networks, including the heat stress response, the unfolded protein response, and autophagy, and discusses the impact of these changes on various stages of pollen development. It highlights the potential of pollen selection as a key strategy for improving heat tolerance in crops by leveraging the genetic variability among pollen grains. Additionally, genome-wide association studies and population screenings have shed light on the genetic underpinnings of traits in major crops that respond to high temperatures during male reproductive stages. Gene-editing tools like CRISPR/Cas systems could facilitate precise genetic modifications to boost pollen heat resilience. The information covered in this review is valuable for selecting traits and employing molecular genetic approaches to develop heat-tolerant genotypes.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
4
|
Qian D, Wang M, Niu Y, Yang Y, Xiang Y. Sexual reproduction in plants under high temperature and drought stress. Cell Rep 2025; 44:115390. [PMID: 40056418 DOI: 10.1016/j.celrep.2025.115390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 03/10/2025] Open
Abstract
Climate-change-induced extreme heat and drought increasingly threaten plant growth and development, with a particularly significant impact on sexual reproduction. Heat and drought stress can disrupt key stages of plant sexual reproduction, including flowering time, gametophyte development, pollination, and seed formation, leading to infertility and substantial yield reductions in crops. This review systematically summarizes the latest research on the effects of heat and drought stress on various stages of plant sexual reproduction and proposes specific strategies to mitigate the agricultural hazards posed by these stresses. By providing an in-depth analysis of the underlying mechanisms and regulatory networks, this review offers a theoretical basis for advancing fundamental research and optimizing agricultural practices to address the severe challenges climate change presents to agriculture.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Muxuan Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Li J, Li Y, Xu Q, Niu X, Cao G, Liu H. Unveiling the Impact of Organic Fertilizer on Rice ( Oryza sativa L.) Salinity Tolerance: Insights from the Integration of NDVI and Metabolomics. PLANTS (BASEL, SWITZERLAND) 2025; 14:902. [PMID: 40265824 PMCID: PMC11946821 DOI: 10.3390/plants14060902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 04/24/2025]
Abstract
Soil salinization threatens global agriculture, reducing crop productivity and food security. Developing strategies to improve salt tolerance is crucial for sustainable agriculture. This study examines the role of organic fertilizer in mitigating salt stress in rice (Oryza sativa L.) by integrating NDVI and metabolomics. Using salt-sensitive (19X) and salt-tolerant (HHZ) cultivars, we aimed to (1) evaluate changes in NDVI and metabolite content under salt stress, (2) assess the regulatory effects of organic fertilizer, and (3) identify key metabolites involved in stress response and fertilizer-induced regulation. Under salt stress, survival rate of the 19X plants dropped to 6%, while HHZ maintained 38%, with organic fertilizer increasing survival rate to 25% in 19X and 66% in HHZ. NDVI values declined sharply in 19X (from 0.56 to <0.25) but remained stable in HHZ (~0.56), showing a strong correlation with survival rate (R2 = 0.87, p < 0.01). NDVI provided a dynamic, non-destructive assessment of rice health, offering a faster and more precise evaluation of salt tolerance than survival rate analysis. Metabolomic analysis identified 12 key salt-tolerant metabolites, including citric acid, which is well recognized for regulating salt tolerance. HTPA, pipecolic acid, maleamic acid, and myristoleic acid have previously been reported but require further study. Additionally, seven novel salt-tolerant metabolites-tridecylic acid, propentofylline, octadeca penten-3-one, 14,16-dihydroxy-benzoxacyclotetradecine-dione, cyclopentadecanolide, HpODE, and (±)8,9-DiHETE-were discovered, warranting further investigation. Organic fertilizer alleviated salt stress through distinct metabolic mechanisms in each cultivar. In 19X, it enhanced antioxidant defenses and energy metabolism, mitigating oxidative damage and improving fatty acid metabolism. In contrast, HHZ primarily benefitted from improved membrane stability and ion homeostasis, reducing lipid peroxidation and oxidative stress. These findings primarily support the identification and screening of salt-tolerant rice cultivars while also highlighting the need for cultivar-specific fertilization strategies to optimize stress resilience and crop performance. Based on the correlation analysis, 26 out of 53 differential metabolites were significantly correlated with NDVI, confirming a strong association between NDVI shifts and key metabolic changes in response to salt stress and organic fertilizer application. By integrating NDVI and metabolomics, this study provides a refined method for evaluating salt stress responses, capturing early NDVI changes and key salinity stress biomarkers. This approach may prove valuable for application in salt-tolerant variety screening, precision agriculture, and sustainable farming, contributing to scientific strategies for future crop improvement and agricultural resilience.
Collapse
Affiliation(s)
- Jiaolong Li
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (J.L.); (Y.L.); (Q.X.)
- School of Breeding and Multiplication, Hainan University, Haikou 570228, China
| | - Yunluo Li
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (J.L.); (Y.L.); (Q.X.)
- School of Breeding and Multiplication, Hainan University, Haikou 570228, China
| | - Qiyun Xu
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (J.L.); (Y.L.); (Q.X.)
- School of Breeding and Multiplication, Hainan University, Haikou 570228, China
| | - Xiaolei Niu
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (J.L.); (Y.L.); (Q.X.)
- School of Breeding and Multiplication, Hainan University, Haikou 570228, China
| | - Guangping Cao
- Institute of Food Crops, Hainan Academy of Agriculture Sciences, Haikou 571100, China
- Hainan Key Laboratory of Crop Genetics and Breeding, Hainan Academy of Agriculture Sciences, Haikou 571100, China
| | - Hongyan Liu
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (J.L.); (Y.L.); (Q.X.)
- School of Breeding and Multiplication, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Li J, Zhi X, Chen H, Chen L, Lu Y, Liao W, Tian Z, Wu M, Shan Y, Wang H, Yan L, Liu B, Wang X. Physiological and molecular mechanisms of leaf response to high-temperature stress in high-temperature-resistant soybean varieties. BMC Genomics 2024; 25:1145. [PMID: 39604834 PMCID: PMC11600837 DOI: 10.1186/s12864-024-10932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND With increasing global limate warm, high temperature (HT) is one of limiting factors for soybean yield and quality. Exploring HT resistance-related functional genes and their corresponding molecular mechanisms is of great value. In our previous report, compared with HD14 (HT sensitive), JD21 is an HT-resistant variety, and further analysis of the transcriptome and proteome has revealed the HT tolerance mechanism of JD21 anthers. We found that compared with those of HD14 (28.72%), the leaves of JD21 also exhibited HT resistance, and the degree of leaf wilting in JD21 plants after HT stress treatment was 11.02%; however, the regulatory mechanism of the response of JD21 to HT stress is still unclear. RESULTS In this study, comparative transcriptome analysis of JD21 and HD14 soybean leaves after HT stress and field control plants was performed by RNA-seq analysis. The results showed that the number of upregulated differentially expressed genes (DEGs) in JD21 and HD14 was greater than the number of downregulated DEGs after HT stress, and the number of up- or down-regulated DEGs in JD21 was higher than those of HD14. Bioinformatics analysis revealed that many DEGs were involved in various molecular functions and metabolic pathways. QRT‒PCR analysis verified that the gene expression pattern results determined via RNA-seq was reliable. In addition, through analysis of gene expression level and conserved domain, 18 key candidate genes related to the response of soybean leaves to HT stress were screened. CONCLUSIONS This study systematically revealed the regulation mechanism of soybean leaves molecular transcription level by RNA-seq, and several key candidate DEGs (transcription factor, HSPs, HSFs, GmCYP78A6, etc.) involved in the response to HT stress were identified based on the bioinformatics analysis. The results provided a theoretical basis for studying the response mechanism of soybean leaves to HT stress.
Collapse
Affiliation(s)
- Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xianguan Zhi
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Haoran Chen
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Linying Chen
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yun Lu
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wei Liao
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Zhuo Tian
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Meiyan Wu
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yajing Shan
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Heng Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Long Yan
- National Soybean Improvement Center Shijiazhuang Sub-Center, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, 050035, China
| | - Bingqiang Liu
- National Soybean Improvement Center Shijiazhuang Sub-Center, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, 050035, China.
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
7
|
Liu M, Zhou Y, Sun J, Mao F, Yao Q, Li B, Wang Y, Gao Y, Dong X, Liao S, Wang P, Huang S. From the floret to the canopy: High temperature tolerance during flowering. PLANT COMMUNICATIONS 2023; 4:100629. [PMID: 37226443 PMCID: PMC10721465 DOI: 10.1016/j.xplc.2023.100629] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Heat waves induced by climate warming have become common in food-producing regions worldwide, frequently coinciding with high temperature (HT)-sensitive stages of many crops and thus threatening global food security. Understanding the HT sensitivity of reproductive organs is currently of great interest for increasing seed set. The responses of seed set to HT involve multiple processes in both male and female reproductive organs, but we currently lack an integrated and systematic summary of these responses for the world's three leading food crops (rice, wheat, and maize). In the present work, we define the critical high temperature thresholds for seed set in rice (37.2°C ± 0.2°C), wheat (27.3°C ± 0.5°C), and maize (37.9°C ± 0.4°C) during flowering. We assess the HT sensitivity of these three cereals from the microspore stage to the lag period, including effects of HT on flowering dynamics, floret growth and development, pollination, and fertilization. Our review synthesizes existing knowledge about the effects of HT stress on spikelet opening, anther dehiscence, pollen shedding number, pollen viability, pistil and stigma function, pollen germination on the stigma, and pollen tube elongation. HT-induced spikelet closure and arrest of pollen tube elongation have a catastrophic effect on pollination and fertilization in maize. Rice benefits from pollination under HT stress owing to bottom anther dehiscence and cleistogamy. Cleistogamy and secondary spikelet opening increase the probability of pollination success in wheat under HT stress. However, cereal crops themselves also have protective measures under HT stress. Lower canopy/tissue temperatures compared with air temperatures indicate that cereal crops, especially rice, can partly protect themselves from heat damage. In maize, husk leaves reduce inner ear temperature by about 5°C compared with outer ear temperature, thereby protecting the later phases of pollen tube growth and fertilization processes. These findings have important implications for accurate modeling, optimized crop management, and breeding of new varieties to cope with HT stress in the most important staple crops.
Collapse
Affiliation(s)
- Mayang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuhan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiaxin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fen Mao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Baole Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuanyuan Wang
- College of Agronomy, South China Agricultural University, Guangdong, China
| | - Yingbo Gao
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xin Dong
- Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
8
|
Li J, Chen L, Zhi X, Wang J, Lu Y, Tian Z, Wu M, Shan Y, Chen H, Liao W, Long Q, Zhu S, Wu J, Qiu L, Wang X. Integrated transcriptome and proteome analysis reveals molecular responses of soybean anther under high-temperature stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1187922. [PMID: 37389300 PMCID: PMC10303809 DOI: 10.3389/fpls.2023.1187922] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023]
Abstract
It is well documented that high temperature (HT) severely affects the development of soybean male reproductive organs. However, the molecular mechanism of thermo-tolerance in soybean remains unclear. To explore the candidate genes and regulatory mechanism of soybean response to HT stress and flower development, here, the anthers of two previously identified HT-tolerant (JD21) and HT-sensitive (HD14) varieties were analyzed by RNA-seq. In total, 219 (172 upregulated and 47 downregulated), 660 (405 upregulated and 255 downregulated), and 4,854 (2,662 upregulated and 2,192 downregulated) differentially expressed genes (DEGs) were identified between JD21 anthers treated with HT stress vs. JD21 anthers in the natural field conditions (TJA vs. CJA), HD14 anthers treated with HT stress vs. HD14 anthers in the natural field conditions (THA vs. CHA), and JD21 vs. HD14 anthers treated with HT stress (TJA vs. THA), respectively. The results showed that there were more DEGs upregulated in JD21; this might be the reason why JD21 was more HT-resistant than the HT-sensitive variety HD14. GO annotation and KEGG enriched analysis showed that many DEGs are mainly involved in defense response, response to biological stimuli, auxin-activated signaling pathway, plant hormone signal transduction, MAPK signaling pathway-plant, starch and sucrose metabolism, etc. The conjoint analysis of RNA-seq and previous iTRAQ results found that there were 1, 24, and 54 common DEGs/DAPs showing the same expression pattern and 1, 2, and 13 common DEGs/DAPs showing the opposite pattern between TJA vs. CJA, THA vs. CHA, and TJA vs. THA at the protein and gene level, respectively, among which HSPs, transcription factor, GSTU, and other DEGs/DAPs participated in the response to HT stress and flower development. Notably, the qRT-PCR analysis and physiological index change results coincided with the sequencing results of RNA-seq and iTRAQ. In conclusion, the HT-tolerant cultivar performed better under stress than the HT-sensitive cultivar through modulation of HSP family proteins and transcription factors, and by keeping key metabolic pathways such as plant hormone signal transduction normal. This study provided important data and some key candidate genes to better study the effect and molecular basis of HT on anther in soybean at a transcription and translation level.
Collapse
Affiliation(s)
- Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Linying Chen
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xianguan Zhi
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jianxin Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yun Lu
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Zhuo Tian
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Meiyan Wu
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yajing Shan
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Haoran Chen
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wei Liao
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Qun Long
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Shangshang Zhu
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Juntao Wu
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Lijuan Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Soybean Biology in Beijing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| |
Collapse
|
9
|
Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. Abiotic Stress in Crop Production. Int J Mol Sci 2023; 24:ijms24076603. [PMID: 37047573 PMCID: PMC10095105 DOI: 10.3390/ijms24076603] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The vast majority of agricultural land undergoes abiotic stress that can significantly reduce agricultural yields. Understanding the mechanisms of plant defenses against stresses and putting this knowledge into practice is, therefore, an integral part of sustainable agriculture. In this review, we focus on current findings in plant resistance to four cardinal abiotic stressors—drought, heat, salinity, and low temperatures. Apart from the description of the newly discovered mechanisms of signaling and resistance to abiotic stress, this review also focuses on the importance of primary and secondary metabolites, including carbohydrates, amino acids, phenolics, and phytohormones. A meta-analysis of transcriptomic studies concerning the model plant Arabidopsis demonstrates the long-observed phenomenon that abiotic stressors induce different signals and effects at the level of gene expression, but genes whose regulation is similar under most stressors can still be traced. The analysis further reveals the transcriptional modulation of Golgi-targeted proteins in response to heat stress. Our analysis also highlights several genes that are similarly regulated under all stress conditions. These genes support the central role of phytohormones in the abiotic stress response, and the importance of some of these in plant resistance has not yet been studied. Finally, this review provides information about the response to abiotic stress in major European crop plants—wheat, sugar beet, maize, potatoes, barley, sunflowers, grapes, rapeseed, tomatoes, and apples.
Collapse
Affiliation(s)
- Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
10
|
Rutley N, Harper JF, Miller G. Reproductive resilience: putting pollen grains in two baskets. TRENDS IN PLANT SCIENCE 2022; 27:237-246. [PMID: 34627662 DOI: 10.1016/j.tplants.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
To ensure reproductive success, flowering plants produce an excess of pollen to fertilize a limited number of ovules. Pollen grains mature into two distinct subpopulations - those that display high metabolic activity and elevated reactive oxygen species (ROS) levels immediately after hydration (high-ROS/active), and those that maintain an extended period of dormancy with low metabolic activity (low-ROS/inactive/arrested/dormant). We propose that the dormant pollen serves as a backup to provide a second chance for successful fertilization when the 'first wave' of pollen encounters an unpredictable growth condition such as heat stress. This model provides a framework for considering the role of dormancy in reproductive stress tolerance as well as strategies for mitigating pollen thermovulnerability to daytime and night-time warming that is associated with global climate change.
Collapse
Affiliation(s)
- Nicholas Rutley
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 5290002, Israel
| | - Jeffery F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada at Reno, NV 89557, USA
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
11
|
Rane J, Singh AK, Kumar M, Boraiah KM, Meena KK, Pradhan A, Prasad PVV. The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses. Int J Mol Sci 2021; 22:12970. [PMID: 34884769 PMCID: PMC8657814 DOI: 10.3390/ijms222312970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 01/02/2023] Open
Abstract
Abiotic stresses, including drought, extreme temperatures, salinity, and waterlogging, are the major constraints in crop production. These abiotic stresses are likely to be amplified by climate change with varying temporal and spatial dimensions across the globe. The knowledge about the effects of abiotic stressors on major cereal and legume crops is essential for effective management in unfavorable agro-ecologies. These crops are critical components of cropping systems and the daily diets of millions across the globe. Major cereals like rice, wheat, and maize are highly vulnerable to abiotic stresses, while many grain legumes are grown in abiotic stress-prone areas. Despite extensive investigations, abiotic stress tolerance in crop plants is not fully understood. Current insights into the abiotic stress responses of plants have shown the potential to improve crop tolerance to abiotic stresses. Studies aimed at stress tolerance mechanisms have resulted in the elucidation of traits associated with tolerance in plants, in addition to the molecular control of stress-responsive genes. Some of these studies have paved the way for new opportunities to address the molecular basis of stress responses in plants and identify novel traits and associated genes for the genetic improvement of crop plants. The present review examines the responses of crops under abiotic stresses in terms of changes in morphology, physiology, and biochemistry, focusing on major cereals and legume crops. It also explores emerging opportunities to accelerate our efforts to identify desired traits and genes associated with stress tolerance.
Collapse
Affiliation(s)
- Jagadish Rane
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Ajay Kumar Singh
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Mahesh Kumar
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Karnar M. Boraiah
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Kamlesh K. Meena
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - Aliza Pradhan
- National Institute of Abiotic Stress Management, Baramati 413115, India; (A.K.S.); (M.K.); (K.M.B.); (K.K.M.); (A.P.)
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
12
|
Singh S, Kumar V, Parihar P, Dhanjal DS, Singh R, Ramamurthy PC, Prasad R, Singh J. Differential regulation of drought stress by biological membrane transporters and channels. PLANT CELL REPORTS 2021; 40:1565-1583. [PMID: 34132878 DOI: 10.1007/s00299-021-02730-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Stress arising due to abiotic factors affects the plant's growth and productivity. Among several existing abiotic stressors like cold, drought, heat, salinity, heavy metal, etc., drought condition tends to affect the plant's growth by inducing two-point effect, i.e., it disturbs the water balance as well as induces toxicity by disturbing the ion homeostasis, thus hindering the growth and productivity of plants, and to survive under this condition, plants have evolved several transportation systems that are involved in regulating the drought stress. The role of membrane transporters has gained interest since genetic engineering came into existence, and they were found to be the important modulators for tolerance, avoidance, ion movements, stomatal movements, etc. Here in this comprehensive review, we have discussed the role of transporters (ABA, protein, carbohydrates, etc.) and channels that aids in withstanding the drought stress as well as the regulatory role of transporters involved in osmotic adjustments arising due to drought stress. This review also provides a gist of hydraulic conductivity by roots that are involved in regulating the drought stress.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 56001, India
| | - Vijay Kumar
- Department of Chemistry, Regional Ayurveda Research Institute for Drug Development, Gwalior, Madhya Pradesh, 474009, India
| | - Parul Parihar
- Department of Botany, Lovely Professional University, Jalandhar, Punjab, 144111, India
- Department of Botany, University of Allahabad, Prayagraj, 211008, India
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Rachana Singh
- Department of Botany, University of Allahabad, Prayagraj, 211008, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 56001, India.
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| |
Collapse
|
13
|
Callwood J, Melmaiee K, Kulkarni KP, Vennapusa AR, Aicha D, Moore M, Vorsa N, Natarajan P, Reddy UK, Elavarthi S. Differential Morpho-Physiological and Transcriptomic Responses to Heat Stress in Two Blueberry Species. Int J Mol Sci 2021; 22:ijms22052481. [PMID: 33804571 PMCID: PMC7957502 DOI: 10.3390/ijms22052481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/07/2023] Open
Abstract
Blueberries (Vaccinium spp.) are highly vulnerable to changing climatic conditions, especially increasing temperatures. To gain insight into mechanisms underpinning the response to heat stress, two blueberry species were subjected to heat stress for 6 and 9 h at 45 °C, and leaf samples were used to study the morpho-physiological and transcriptomic changes. As compared with Vaccinium corymbosum, Vaccinium darrowii exhibited thermal stress adaptation features such as small leaf size, parallel leaf orientation, waxy leaf coating, increased stomatal surface area, and stomatal closure. RNAseq analysis yielded ~135 million reads and identified 8305 differentially expressed genes (DEGs) during heat stress against the control samples. In V. corymbosum, 2861 and 4565 genes were differentially expressed at 6 and 9 h of heat stress, whereas in V. darrowii, 2516 and 3072 DEGs were differentially expressed at 6 and 9 h, respectively. Among the pathways, the protein processing in the endoplasmic reticulum (ER) was the highly enriched pathway in both the species: however, certain metabolic, fatty acid, photosynthesis-related, peroxisomal, and circadian rhythm pathways were enriched differently among the species. KEGG enrichment analysis of the DEGs revealed important biosynthesis and metabolic pathways crucial in response to heat stress. The GO terms enriched in both the species under heat stress were similar, but more DEGs were enriched for GO terms in V. darrowii than the V. corymbosum. Together, these results elucidate the differential response of morpho-physiological and molecular mechanisms used by both the blueberry species under heat stress, and help in understanding the complex mechanisms involved in heat stress tolerance.
Collapse
Affiliation(s)
- Jodi Callwood
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| | - Kalpalatha Melmaiee
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
- Correspondence:
| | - Krishnanand P. Kulkarni
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| | - Amaranatha R. Vennapusa
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| | - Diarra Aicha
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| | - Michael Moore
- Optical Science Center for Applied Research (OSCAR), Delaware State University, Dover, DE 19901, USA;
| | - Nicholi Vorsa
- Philip E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, Chatsworth, NJ 08019, USA;
| | - Purushothaman Natarajan
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (P.N.); (U.K.R.)
| | - Umesh K. Reddy
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (P.N.); (U.K.R.)
| | - Sathya Elavarthi
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (J.C.); (K.P.K.); (A.R.V.); (D.A.); (S.E.)
| |
Collapse
|
14
|
Janda T, Tajti J, Hamow KÁ, Marček T, Ivanovska B, Szalai G, Pál M, Zalewska ED, Darkó É. Acclimation of photosynthetic processes and metabolic responses to elevated temperatures in cereals. PHYSIOLOGIA PLANTARUM 2021; 171:217-231. [PMID: 32909668 DOI: 10.1111/ppl.13207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 05/14/2023]
Abstract
The aim of the present work was to better understand the molecular mechanisms of heat acclimation processes in cereals. A large number of winter and spring wheat, barley and oat varieties were grown under either control conditions (22/20°C) or under a mild heat stress (30°C) that induce the acclimation processes. The temperature dependence of chlorophyll a fluorescence induction and gas exchange parameters showed that heat acclimation increased the thermotolerance of the photosynthetic apparatus, but these changes did not differ sharply in the winter-spring type cereals. Similarly, to wheat, elevated temperature also led to increasing transpiration rate and reduced water use efficiency in barley and oat plants. A non-targeted metabolomic analysis focusing on polar metabolites in two selected barley (winter type Mv Initium and spring type Conchita) and in two oat varieties (winter type Mv Hópehely and spring type Mv Pehely) revealed substantial differences between both the two species and between the acclimated and non-acclimated plants. Several compounds, including sugars, organic acids, amino acids and alcohols could be separated and detected. The expression level of the CYP707, HSP90, galactinol synthase, raffinose synthase and α-galactosidase genes showed genotype-dependent changes after 1 day; however, the CYP707 was the only one, which was still upregulated in at least some of the genotypes. Results suggest that heat acclimation itself does not require general induction of primary metabolites. However, induction of specific routes, e.g. the induction of the raffinose family oligosaccharides, especially the synthesis of galactinol, may also contribute the improved heat tolerance in cereals.
Collapse
Affiliation(s)
- Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| | - Judit Tajti
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| | - Kamirán Á Hamow
- Institute of Plant Protection, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| | - Tihana Marček
- Department of Food and Nutrition Research, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Beti Ivanovska
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| | - Gabriella Szalai
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| | - Magda Pál
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| | - Ewa D Zalewska
- Department of Vegetable and Herbs, University of Life Sciences in Lublin, Lublin, Poland
| | - Éva Darkó
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| |
Collapse
|