1
|
Krylova EA, Burlyaeva MO, Tvorogova VE, Khlestkina EK. Contrast Relative Humidity Response of Diverse Cowpea ( Vigna unguiculata (L.) Walp.) Genotypes: Deep Study Using RNAseq Approach. Int J Mol Sci 2024; 25:11056. [PMID: 39456837 PMCID: PMC11507454 DOI: 10.3390/ijms252011056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Cowpea (Vigna unguiculata (L.) Walp.) is appreciated for its suitability for cultivation and obtaining good yields in relatively extreme farming conditions. It is resistant to high temperatures and drought. Moreover, food products prepared from Vigna are rich in many nutrients such as proteins, amino acids, carbohydrates, minerals, fiber, vitamins, and other bioactive compounds. However, in East and Southeast Asia, where the products of this crop are in demand, the climate is characterized by excessive humidity. Under these conditions, the vast majority of cowpea varieties tend to have indeterminate growth (elongated shoot length) and are unsuitable for mechanized harvesting. The molecular mechanisms for tolerance to high relative humidity remain the least studied in comparison with those for other abiotic stress factors (drought, heat, cold, flooding, etc.). The purpose of the work was to reveal and investigate differentially expressed genes in cowpea accessions having contrasting growth habits (determinate and indeterminate) under humid and drought conditions. We performed RNA-seq analysis using selected cowpea accessions from the VIR collection. Among the genotypes used, some have significant changes in their plant architecture in response to high relative humidity, while others were tolerant to these conditions. In total, we detected 1697 upregulated and 1933 downregulated genes. The results showed that phytohormone-related genes are involved in cowpea response to high relative humidity. DEGs associated with jasmonic acid signaling are proposed to be key contributors in the maintenance of compact architecture under humid conditions.
Collapse
Affiliation(s)
- Ekaterina A. Krylova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia; (M.O.B.); (V.E.T.); (E.K.K.)
| | - Marina O. Burlyaeva
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia; (M.O.B.); (V.E.T.); (E.K.K.)
| | - Varvara E. Tvorogova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia; (M.O.B.); (V.E.T.); (E.K.K.)
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Emb, 199034 Saint Petersburg, Russia
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia
| | - Elena K. Khlestkina
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia; (M.O.B.); (V.E.T.); (E.K.K.)
| |
Collapse
|
2
|
Li X, Zhang P, Liu J, Wang H, Liu J, Li H, Xie H, Wang Q, Li L, Zhang S, Huang L, Liu C, Qin P. Integrated Metabolomic and Transcriptomic Analysis of the Quinoa Seedling Response to High Relative Humidity Stress. Biomolecules 2023; 13:1352. [PMID: 37759752 PMCID: PMC10527060 DOI: 10.3390/biom13091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Quinoa is of great interest because it is cold- and drought-resistant; however, little research has been performed on quinoa under high relative humidity (RH) stress. In this study, quinoa seedlings of a highly HR-resistant variety ("Dianli-439") and a sensitive variety ("Dianli-969") were subjected to morphological and physiological measurements and metabolome and transcriptome analyses to investigate their response to high RH stress. In total, 1060 metabolites were detected, and lipids and flavonoids were the most abundant, with 173 and 167 metabolites, respectively. In total, 13,095 differentially expressed genes were identified, and the results showed that abscisic acid, auxin, and jasmonic-acid-related genes involved in plant hormone signaling may be involved in the response of quinoa seedlings to high RH stress. The analysis of the transcription factors revealed that the AP2/ERF family may also play an important role in the response to high RH stress. We identified the possible regulatory mechanisms of the hormone signaling pathways under high RH stress. Our findings can provide a basis for the selection and identification of highly resistant quinoa varieties and the screening of the metabolite-synthesis- and gene-regulation-related mechanisms in quinoa in response to RH stress.
Collapse
Affiliation(s)
- Xinyi Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Jia Liu
- Yuxi Academy of Agricultural Science, Yuxi 653100, China;
| | - Hongxin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Hanxue Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Heng Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Shan Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Liubin Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Chenghong Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| |
Collapse
|
3
|
Brookbank BP, Patel J, Gazzarrini S, Nambara E. Role of Basal ABA in Plant Growth and Development. Genes (Basel) 2021; 12:genes12121936. [PMID: 34946886 PMCID: PMC8700873 DOI: 10.3390/genes12121936] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 01/01/2023] Open
Abstract
Abscisic acid (ABA) regulates various aspects of plant physiology, including promoting seed dormancy and adaptive responses to abiotic and biotic stresses. In addition, ABA plays an im-portant role in growth and development under non-stressed conditions. This review summarizes phenotypes of ABA biosynthesis and signaling mutants to clarify the roles of basal ABA in growth and development. The promotive and inhibitive actions of ABA in growth are characterized by stunted and enhanced growth of ABA-deficient and insensitive mutants, respectively. Growth regulation by ABA is both promotive and inhibitive, depending on the context, such as concentrations, tissues, and environmental conditions. Basal ABA regulates local growth including hyponastic growth, skotomorphogenesis and lateral root growth. At the cellular level, basal ABA is essential for proper chloroplast biogenesis, central metabolism, and expression of cell-cycle genes. Basal ABA also regulates epidermis development in the shoot, by inhibiting stomatal development, and deposition of hydrophobic polymers like a cuticular wax layer covering the leaf surface. In the root, basal ABA is involved in xylem differentiation and suberization of the endodermis. Hormone crosstalk plays key roles in growth and developmental processes regulated by ABA. Phenotypes of ABA-deficient and insensitive mutants indicate prominent functions of basal ABA in plant growth and development.
Collapse
Affiliation(s)
- Benjamin P. Brookbank
- Department of Cells and Systems Biology, University of Toronto, Toronto, ON M3S 3G5, Canada; (B.P.B.); (J.P.)
| | - Jasmin Patel
- Department of Cells and Systems Biology, University of Toronto, Toronto, ON M3S 3G5, Canada; (B.P.B.); (J.P.)
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Sonia Gazzarrini
- Department of Cells and Systems Biology, University of Toronto, Toronto, ON M3S 3G5, Canada; (B.P.B.); (J.P.)
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
- Correspondence: (S.G.); (E.N.)
| | - Eiji Nambara
- Department of Cells and Systems Biology, University of Toronto, Toronto, ON M3S 3G5, Canada; (B.P.B.); (J.P.)
- Correspondence: (S.G.); (E.N.)
| |
Collapse
|
4
|
Li S, Liu F. Exogenous Abscisic Acid Priming Modulates Water Relation Responses of Two Tomato Genotypes With Contrasting Endogenous Abscisic Acid Levels to Progressive Soil Drying Under Elevated CO 2. FRONTIERS IN PLANT SCIENCE 2021; 12:733658. [PMID: 34899772 PMCID: PMC8651563 DOI: 10.3389/fpls.2021.733658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Plants have evolved multiple strategies to survive and adapt when confronting the changing climate, including elevated CO2 concentration (e[CO2]) and intensified drought stress. To explore the role of abscisic acid (ABA) in modulating the response of plant water relation characteristics to progressive drought under ambient (a[CO2], 400 ppm) and e[CO2] (800 ppm) growth environments, two tomato (Solanum lycopersicum) genotypes, Ailsa Craig (AC) and its ABA-deficient mutant (flacca), were grown in pots, treated with or without exogenous ABA, and exposed to progressive soil drying until all plant available water in the pot was depleted. The results showed that exogenous ABA application improved leaf water potential, osmotic potential, and leaf turgor and increased leaf ABA concentrations ([ABA]leaf) in AC and flacca. In both genotypes, exogenous ABA application decreased stomatal pore aperture and stomatal conductance (g s), though these effects were less pronounced in e[CO2]-grown AC and g s of ABA-treated flacca was gradually increased until a soil water threshold after which g s started to decline. In addition, ABA-treated flacca showed a partly restored stomatal drought response even when the accumulation of [ABA]leaf was vanished, implying [ABA]leaf might be not directly responsible for the decreased g s. During soil drying, [ABA]leaf remained higher in e[CO2]-grown plants compared with those under a[CO2], and a high xylem sap ABA concentration was also noticed in the ABA-treated flacca especially under e[CO2], suggesting that e[CO2] might exert an effect on ABA degradation and/or redistribution. Collectively, a fine-tune ABA homeostasis under combined e[CO2] and drought stress allowed plants to optimize leaf gas exchange and plant water relations, yet more detailed research regarding ABA metabolism is still needed to fully explore the role of ABA in mediating plant physiological response to future drier and CO2-enriched climate.
Collapse
|
5
|
Jalakas P, Takahashi Y, Waadt R, Schroeder JI, Merilo E. Molecular mechanisms of stomatal closure in response to rising vapour pressure deficit. THE NEW PHYTOLOGIST 2021; 232:468-475. [PMID: 34197630 PMCID: PMC8455429 DOI: 10.1111/nph.17592] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/28/2021] [Indexed: 05/26/2023]
Abstract
Vapour pressure deficit (VPD), the difference between the saturation and actual air vapour pressures, indicates the level of atmospheric drought and evaporative pressure on plants. VPD increases during climate change due to changes in air temperature and relative humidity. Rising VPD induces stomatal closure to counteract the VPD-mediated evaporative water loss from plants. There are important gaps in our understanding of the molecular VPD-sensing and signalling mechanisms in stomatal guard cells. Here, we discuss recent advances, research directions and open questions with respect to the three components that participate in VPD-induced stomatal closure in Arabidopsis, including: (1) abscisic acid (ABA)-dependent and (2) ABA-independent regulation of the protein kinase OPEN STOMATA 1 (OST1), and (3) the passive hydraulic stomatal response. In the ABA-dependent component, two models are proposed: ABA may be rapidly synthesised or its basal levels may be involved in the stomatal VPD response. Further studies on stomatal VPD signalling should clarify: (1) whether OST1 activation above basal activity is needed for VPD responses, (2) which components are involved in ABA-independent regulation of OST1, (3) the role of other potential OST1 targets in VPD signalling, and (4) to which extent OST1 contributes to stomatal VPD sensitivity in other plant species.
Collapse
Affiliation(s)
- Pirko Jalakas
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Yohei Takahashi
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Rainer Waadt
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Julian I. Schroeder
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Ebe Merilo
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|