1
|
Hamar-Farkas D, Kisvarga S, Ördögh M, Orlóci L, Honfi P, Kohut I. Comparison of Festuca glauca 'Uchte' and Festuca amethystina 'Walberla' Varieties in a Simulated Extensive Roof Garden Environment. PLANTS (BASEL, SWITZERLAND) 2024; 13:2216. [PMID: 39204652 PMCID: PMC11360096 DOI: 10.3390/plants13162216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
One of the most effective means of increasing urban green areas is the establishment of roof gardens. They have many positive properties and ecological functions, such as filling empty spaces with plants, protecting buildings, dust retention and air cleaning. In the case of extensive constructions, mostly Sedum species are used, planted as carpet-like "grass" sods or by installing modular units as plugs; however, with the use of other plant genera, the efficiency of ecological services could be increased by expanding the diversity. Festuca taxa have good drought resistance, and these plants tolerate temperature alterations well. Their application would increase the biodiversity, quality and decorative value of roof gardens. Experiments were carried out on nursery benches imitating a roof garden, with the use of modular elements intended for Sedum species, which facilitate the establishment of green roofs. In our trial, varieties of two European native species, Festuca glauca Vill. 'Uchte' and F. amethystina L. 'Walberla', were investigated. In order to find and determine the differences between the cultivars and the effects of the media (leaf mold and rhyolite tuff), we drew inferences after morphological (height, circumference, root weight, fresh and dry weight) and physiological tests (peroxidase and proline enzyme activity). We concluded that F. glauca 'Uchte' is recommended for roof garden conditions, planted in modular elements. Although the specimens were smaller in the medium containing fewer organic components than in the version with larger amounts, they were less exposed to the effects of drought stress. This can be a key factor for survival in extreme roof gardens or even urban conditions for all plants.
Collapse
Affiliation(s)
- Dóra Hamar-Farkas
- Department of Floriculture and Dendrology, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, 1114 Budapest, Hungary; (D.H.-F.); (I.K.)
- Ornamental Plant and Green System Management, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, 1223 Budapest, Hungary;
| | - Szilvia Kisvarga
- Ornamental Plant and Green System Management, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, 1223 Budapest, Hungary;
| | - Máté Ördögh
- Department of Floriculture and Dendrology, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, 1114 Budapest, Hungary; (D.H.-F.); (I.K.)
| | - László Orlóci
- Ornamental Plant and Green System Management, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, 1223 Budapest, Hungary;
| | - Péter Honfi
- Department of Floriculture and Dendrology, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, 1114 Budapest, Hungary; (D.H.-F.); (I.K.)
| | - Ildikó Kohut
- Department of Floriculture and Dendrology, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, 1114 Budapest, Hungary; (D.H.-F.); (I.K.)
| |
Collapse
|
2
|
Hussain M, Hafeez A, Rizwan M, Rasheed R, Seleiman MF, Ashraf MA, Ali S, Farooq U, Nafees M. Pervasive influence of heavy metals on metabolic pathways is potentially relieved by hesperidin to enhance the phytoremediation efficiency of Bassia scoparia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34526-34549. [PMID: 38709411 DOI: 10.1007/s11356-024-33530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Hesperidin (HSP), a flavonoid, is a potent antioxidant, metal chelator, mediator of signaling pathways, and regulator of metal uptake in plants. The study examined the ameliorative effects of HSP (100 μM) on Bassia scoparia grown under excessive levels of heavy metals (zinc (500 mg kg-1), copper (400 mg kg-1), cadmium (100 mg kg-1), and chromium (100 mg kg-1)). The study clarifies the underlying mechanisms by which HSP lessens metabolic mayhem to enhance metal stress tolerance and phytoremediation efficiency of Bassia scoparia. Plants manifested diminished growth because of a drop in chlorophyll content and nutrient acquisition, along with exacerbated deterioration of cellular membranes reflected in elevated reactive oxygen species (ROS) production, lipid peroxidation, and relative membrane permeability. Besides the colossal production of cytotoxic methylglyoxal, the activity of lipoxygenase was also higher in plants under metal toxicity. Conversely, hesperidin suppressed the production of cytotoxic ROS and methylglyoxal. Hesperidin improved oxidative defense that protected membrane integrity. Hesperidin caused a more significant accumulation of osmolytes, non-protein thiols, and phytochelatins, thereby rendering metal ions non-toxic. Hydrogen sulfide and nitric oxide endogenous levels were intricately maintained higher in plants treated with HSP. Hesperidin increased metal accumulation in Bassia scoparia and thereby had the potential to promote the reclamation of metal-contaminated soils.
Collapse
Affiliation(s)
- Mazhar Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Arslan Hafeez
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Mahmoud F Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Umer Farooq
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Nafees
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 21023, Jiangsu, China
| |
Collapse
|
3
|
Jalil S, Nazir MM, Ali Q, Zulfiqar F, Moosa A, Altaf MA, Zaid A, Nafees M, Yong JWH, Jin X. Zinc and nano zinc mediated alleviation of heavy metals and metalloids in plants: an overview. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:870-888. [PMID: 37598713 DOI: 10.1071/fp23021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/30/2023] [Indexed: 08/22/2023]
Abstract
Heavy metals and metalloids (HMs) contamination in the environment has heightened recently due to increasing global concern for food safety and human livability. Zinc (Zn2+ ) is an important nutrient required for the normal development of plants. It is an essential cofactor for the vital enzymes involved in various biological mechanisms of plants. Interestingly, Zn2+ has an additional role in the detoxification of HMs in plants due to its unique biochemical-mediating role in several soil and plant processes. During any exposure to high levels of HMs, the application of Zn2+ would confer greater plant resilience by decreasing oxidative stress, maintaining uptake of nutrients, photosynthesis productivity and optimising osmolytes concentration. Zn2+ also has an important role in ameliorating HMs toxicity by regulating metal uptake through the expression of certain metal transporter genes, targeted chelation and translocation from roots to shoots. This review examined the vital roles of Zn2+ and nano Zn in plants and described their involvement in alleviating HMs toxicity in plants. Moving forward, a broad understanding of uptake, transport, signalling and tolerance mechanisms of Zn2+ /zinc and its nanoparticles in alleviating HMs toxicity of plants will be the first step towards a wider incorporation of Zn2+ into agricultural practices.
Collapse
Affiliation(s)
- Sanaullah Jalil
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, Punjab University, Lahore 54590, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agricultural and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Abbu Zaid
- Department of Botany, Government Gandhi Memorial Science College, Jammu, India
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden
| | - Xiaoli Jin
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
4
|
Sánchez-Castro I, Molina L, Prieto-Fernández MÁ, Segura A. Past, present and future trends in the remediation of heavy-metal contaminated soil - Remediation techniques applied in real soil-contamination events. Heliyon 2023; 9:e16692. [PMID: 37484356 PMCID: PMC10360604 DOI: 10.1016/j.heliyon.2023.e16692] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/28/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023] Open
Abstract
Most worldwide policy frameworks, including the United Nations Sustainable Development Goals, highlight soil as a key non-renewable natural resource which should be rigorously preserved to achieve long-term global sustainability. Although some soil is naturally enriched with heavy metals (HMs), a series of anthropogenic activities are known to contribute to their redistribution, which may entail potentially harmful environmental and/or human health effects if certain concentrations are exceeded. If this occurs, the implementation of rehabilitation strategies is highly recommended. Although there are many publications dealing with the elimination of HMs using different methodologies, most of those works have been done in laboratories and there are not many comprehensive reviews about the results obtained under field conditions. Throughout this review, we examine the different methodologies that have been used in real scenarios and, based on representative case studies, we present the evolution and outcomes of the remediation strategies applied in real soil-contamination events where legacies of past metal mining activities or mine spills have posed a serious threat for soil conservation. So far, the best efficiencies at field-scale have been reported when using combined strategies such as physical containment and assisted-phytoremediation. We have also introduced the emerging problem of the heavy metal contamination of agricultural soils and the different strategies implemented to tackle this problem. Although remediation techniques used in real scenarios have not changed much in the last decades, there are also encouraging facts for the advances in this field. Thus, a growing number of mining companies publicise in their webpages their soil remediation strategies and efforts; moreover, the number of scientific publications about innovative highly-efficient and environmental-friendly methods is also increasing. In any case, better cooperation between scientists and other soil-related stakeholders is still required to improve remediation performance.
Collapse
Affiliation(s)
- Iván Sánchez-Castro
- Estación Experimental Del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Lázaro Molina
- Estación Experimental Del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - María-Ángeles Prieto-Fernández
- Misión Biolóxica de Galicia (CSIC), Sede Santiago de Compostela, Avda de Vigo S/n. Campus Vida, 15706, Santiago de Compostela, Spain
| | - Ana Segura
- Estación Experimental Del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
5
|
Esteves-Aguilar J, Mussali-Galante P, Valencia-Cuevas L, García-Cigarrero AA, Rodríguez A, Castrejón-Godínez ML, Tovar-Sánchez E. Ecotoxicological effects of heavy metal bioaccumulation in two trophic levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49840-49855. [PMID: 36781676 DOI: 10.1007/s11356-023-25804-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/04/2023] [Indexed: 04/16/2023]
Abstract
The pollution generated by the heavy metals (HM) contained in mining wastes (tailings) is a worldwide recognized environmental concern. Due to the persistence, toxicity, bioaccumulation, and biomagnification capacity through the food chains, the release of HM into the environment causes negative effects on human health and the ecosystems. Wigandia urens Kunth (Boraginaceae) is a plant species that naturally establishes and grows in tailings and is consumed by the grasshopper Sphenarium purpurascens Charpentier (Orthoptera: Pyrgomorphidae). HM accumulation in this plant and their subsequent consumption by defoliating insects allow these contaminants to enter the food webs and favor their biomagnification. This study evaluated the effect of HM bioaccumulation in the leaf tissue of W. urens on the characteristics associated with its physical defense against herbivores and the effect of HM exposure on population parameters of grasshoppers through their ontogeny under controlled conditions. The results showed a significant increase in leaf hardness and in the number of simple and glandular trichomes in the leaves of W. urens growing on mine tailing substrate compared to those grown on the control substrate without HM. W. urens individuals growing on mine tailing substrate presented the following heavy metal foliar bioaccumulation pattern: Fe > Zn > Pb > Cu. These metals were also bioaccumulated in individuals of S. purpurascens fed with leaves of the plants exposed to mine tailings, observing differences in their concentration pattern through ontogeny. Grasshoppers fed on leaf tissue containing HM showed higher mortality in the first two developmental instars and lower body biomass throughout their ontogeny in comparison to the individuals fed on leaf tissue of plants growing on the control treatment without HM. In conclusion, W. urens is a species with phytoremediation potential for soils contaminated with HM, since it is naturally established in contaminated sites, has a wide geographic distribution, and bioaccumulates significant amounts of different HM. Furthermore, as was observed in this report, the W. urens physical and chemical defense against herbivores was enhanced by HM exposure, compromising the fitness and development of the herbivore S. purpurascens through its ontogeny and thus interrupting the entry and transfer of heavy metal through the food chain.
Collapse
Affiliation(s)
- Janeth Esteves-Aguilar
- Doctorado en Ciencias Naturales, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, México
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, México
| | - Leticia Valencia-Cuevas
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, México
| | - Alexis Ariel García-Cigarrero
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, México
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, México
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, México
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, México.
| |
Collapse
|
6
|
Abdelkrim S, Abid G, Chaieb O, Taamalli W, Mannai K, Louati F, Jebara M, Jebara SH. Plant growth promoting rhizobacteria modulates the antioxidant defense and the expression of stress-responsive genes providing Pb accumulation and tolerance of grass pea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10789-10802. [PMID: 36083364 DOI: 10.1007/s11356-022-22874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
To ensure the success of phytoremediation, it is important to consider the appropriate combination of plants and microorganisms. This study was conducted to get a better insight into the underlying molecular and biochemical mechanism of grass pea (Lathyrus sativus L.) induced by plant growth promoting rhizobacteria (PGPR), when exposed for 3, 6, 9, and 14 days to 1 mM Pb in a hydroponic system. The significant positive effect of bacterial inoculation was reproduced in various parameters. Results indicated that inoculation of PGPR significantly increased the accumulation of Pb by 20%, 66%, 43%, and 36% in roots and by 46%, 55%, 37%, and 46% in shoots, respectively after 3, 6, 9, and 14 days of metal exposure compared to the uninoculated plants. The metal accumulation in grass pea plants triggered a significant elevation in the synthesis of non-protein thiols (NPT), particularly in inoculated plant leaves where it was about 3 and 2-fold higher than the uninoculated set on the 6th and the 9th day. Nevertheless, Pb treatment significantly increased oxidative stress and membrane damage in leaves with the highest hydrogen peroxide (H2O2) production and tissue malondialdehyde (MDA) concentration recorded in uninoculated plants. Furthermore, the PGPR inoculation alleviated the oxidative stress, improved significantly plant tolerance, and modulated the activities of antioxidant enzymes (SOD, CAT, APX, GR, DHAR, and MDHAR). Similarly, the expression patterns of LsPCS, LsGCN, LsCNGC, LsGR, and LsGST through qRT-PCR demonstrated that bacterial inoculation significantly induced gene expression levels in leaves 6 days after Pb treatment, indicating that PGPR act as regulators of stress-responsive genes. The findings suggest the key role of PGPR (R. leguminosarum (M5) + Pseudomonas fluorescens (K23) + Luteibacter sp. + Variovorax sp.) in enhancing Pb accumulation, reducing metal toxicity, strengthening of the antioxidant system, and conferring higher Pb tolerance to grass pea plants. Hence, the association Lathyrus sativus-PGPR is an effective tool to achieve the goal of remediation of Pb contaminated sites.
Collapse
Affiliation(s)
- Souhir Abdelkrim
- Laboratory of Legumes and Sustainable Agro-systems, Center of Biotechnology of Borj Cedria, BP 901, 2050, Hammam Lif, Tunisia
- National Agronomic Institute of Tunisia, University of Carthage, Tunis, Tunisia
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agro-systems, Center of Biotechnology of Borj Cedria, BP 901, 2050, Hammam Lif, Tunisia
| | - Oumaima Chaieb
- Laboratory of Legumes and Sustainable Agro-systems, Center of Biotechnology of Borj Cedria, BP 901, 2050, Hammam Lif, Tunisia
| | - Wael Taamalli
- Laboratory of Olive Biotechnology, Center of Biotechnology of Borj Cedria, BP 901, 2050, Hammam Lif, Tunisia
- Higher Institute of Biotechnology of Beja, University of Jendouba, BP 382, 9000, Beja, Tunisia
| | - Khediri Mannai
- Laboratory of Legumes and Sustainable Agro-systems, Center of Biotechnology of Borj Cedria, BP 901, 2050, Hammam Lif, Tunisia
| | - Faten Louati
- Laboratory of Legumes and Sustainable Agro-systems, Center of Biotechnology of Borj Cedria, BP 901, 2050, Hammam Lif, Tunisia
| | - Moez Jebara
- Laboratory of Legumes and Sustainable Agro-systems, Center of Biotechnology of Borj Cedria, BP 901, 2050, Hammam Lif, Tunisia.
| | - Salwa Harzalli Jebara
- Laboratory of Legumes and Sustainable Agro-systems, Center of Biotechnology of Borj Cedria, BP 901, 2050, Hammam Lif, Tunisia
| |
Collapse
|
7
|
Bedair H, Ghosh S, Abdelsalam IM, Keerio AA, AlKafaas SS. Potential implementation of trees to remediate contaminated soil in Egypt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78132-78151. [PMID: 36175731 DOI: 10.1007/s11356-022-22984-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Soil and water in Egypt have become contaminated with multiple pollutants. These contaminants arise from diverse sources, including misuse of fertilizers, industrial effluent discharged into irrigation water, discharge of wastewater in rural areas, and mining activities discharging wet and dry atmospheric deposits and heavy metal contamination. The pollutants can directly affect the quality of air, water, and food and have an adverse effect on human health. About 33% of the cultivated lands in Egypt are salinized due to extreme conditions like high temperatures and aridity. The presence of elevated salt levels in the soil leads to grave consequences for seed germination, plant biochemical processes, development, and reproduction, all of which result in the output of reactive oxygen species and eventually plant death. Despite the possibility of thermal, chemical, or a combination of the two to remediate contaminated soils, their applications are complicated and costly. Some plants, called hyperaccumulators, exhibit the potential to clean up pollutants safely from the soil and water at a low cost. All the technologies used in soil decontamination are called phytoremediation. Some physiological (e.g., phytoextraction, phytostabilization, phytotransformation, rhizofiltration, phytostimulation, phytovolatilization, phytodegradation, and phytodesalination) and molecular parameters (e.g., genes, peptides, and proteins) are involved in heavy metals accumulation of these plants. Although trees are not classified as hyperaccumulators, they have recently proved higher phytoremediation potential than herbaceous plants due to their deeper root system and greater biomass growth. Indeed, this review sheds the light on the application of trees for the phytoremediation of salts and heavy metals in Egypt.
Collapse
Affiliation(s)
- Heba Bedair
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | | | - Ayaz Ali Keerio
- Faculty of Crop Production, Sindh Agriculture University Tando Jam, Sindh, Hyderabad, Pakistan
| | - Samar Sami AlKafaas
- Chemistry Department, Division of Biochemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
8
|
Narayanan M, Pugazhendhi A, Ma Y. Assessment of PGP traits of Bacillus cereus NDRMN001 and its influence on Cajanus cajan (L.) Millsp. phytoremediation potential on metal-polluted soil under controlled conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:1017043. [PMID: 36311057 PMCID: PMC9606752 DOI: 10.3389/fpls.2022.1017043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The current study looked at the plant growth-promoting (PGP) traits of the pre-isolated and metal-tolerant Bacillus cereus NDRMN001 as well as their stimulatory effect on the physiology, biomolecule content, and phytoremediation potential of Cajanus cajan (L.) Millsp. on metal-polluted soil. The bauxite mine, which is surrounded by farmland (1 km away), has been severely polluted by metals such as Cd (31.24 ± 1.68), Zn (769.57 ± 3.46), Pb (326.85 ± 3.43), Mn (2519.6 ± 5.71), and Cr (302.34 ± 1.62 mg kg-1) that exceeded Indian standards. The metal-tolerant B. cereus NDRMN001 had excellent PGP activities such as synthesis of hydrogen cyanide (HCN), siderophore, indole acetic acid (IAA), N2 fixation, and P solubilization. Furthermore, the optimal growth conditions (temperature of 30°C, pH 6.5, 6% glucose, 9% tryptophan, and 1.5% tricalcium phosphate) for effective synthesis and expression of PGP traits in B. cereus NDRMN001 were determined. Such metal-tolerant B. cereus NDRMN001 traits can significantly reduce metals in polluted soil, and their PGP traits significantly improve plant growth in polluted soil. Hence, this strain (B. cereus NDRMN001) significantly improved the growth and phytoremediation potential of C. cajan (L.) Millsp on metal-polluted soil without [study I: 2 kg of sieved and autoclaved metal-polluted soil seeded with bacterium-free C. cajan (L.) Millsp. seeds] and with [study II: 2 kg of sieved and autoclaved metal-polluted soil seeded with B. cereus NDRMN001-coated C. cajan (L.) Millsp. seeds] B. cereus NDRMN001 amalgamation. Fertile soil was used as control. The physiological parameters, biomolecule contents, and the phytoremediation (Cr: 7.74, Cd: 12.15, Zn: 16.72, Pb: 11.47, and Mn: 14.52 mg g-1) potential of C. cajan (L.) Millsp. were significantly effective in study II due to the metal-solubilizing and PGP traits of B. cereus NDRMN001. These results conclude that the test bacteria B. cereus NDRMN001 considerably improved the phytoremediation competence of C. cajan (L.) Millsp. on metal-polluted soil in a greenhouse study.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Division of Research and Innovations, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Tamil Nadu, India
| | | | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Koza NA, Adedayo AA, Babalola OO, Kappo AP. Microorganisms in Plant Growth and Development: Roles in Abiotic Stress Tolerance and Secondary Metabolites Secretion. Microorganisms 2022; 10:1528. [PMID: 36013946 PMCID: PMC9415082 DOI: 10.3390/microorganisms10081528] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Crops aimed at feeding an exponentially growing population are often exposed to a variety of harsh environmental factors. Although plants have evolved ways of adjusting their metabolism and some have also been engineered to tolerate stressful environments, there is still a shortage of food supply. An alternative approach is to explore the possibility of using rhizosphere microorganisms in the mitigation of abiotic stress and hopefully improve food production. Several studies have shown that rhizobacteria and mycorrhizae organisms can help improve stress tolerance by enhancing plant growth; stimulating the production of phytohormones, siderophores, and solubilizing phosphates; lowering ethylene levels; and upregulating the expression of dehydration response and antioxidant genes. This article shows the secretion of secondary metabolites as an additional mechanism employed by microorganisms against abiotic stress. The understanding of these mechanisms will help improve the efficacy of plant-growth-promoting microorganisms.
Collapse
Affiliation(s)
- Ntombikhona Appear Koza
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Afeez Adesina Adedayo
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology Group, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| |
Collapse
|
10
|
Chot E, Reddy MS. Role of Ectomycorrhizal Symbiosis Behind the Host Plants Ameliorated Tolerance Against Heavy Metal Stress. Front Microbiol 2022; 13:855473. [PMID: 35418968 PMCID: PMC8996229 DOI: 10.3389/fmicb.2022.855473] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/15/2022] [Indexed: 12/05/2022] Open
Abstract
Soil heavy metal (HM) pollution, which arises from natural and anthropogenic sources, is a prime threat to the environment due to its accumulative property and non-biodegradability. Ectomycorrhizal (ECM) symbiosis is highly efficient in conferring enhanced metal tolerance to their host plants, enabling their regeneration on metal-contaminated lands for bioremediation programs. Numerous reports are available regarding ECM fungal potential to colonize metal-contaminated lands and various defense mechanisms of ECM fungi and plants against HM stress separately. To utilize ECM–plant symbiosis successfully for bioremediation of metal-contaminated lands, understanding the fundamental regulatory mechanisms through which ECM symbiosis develops an enhanced metal tolerance in their host plants has prime importance. As this field is highly understudied, the present review emphasizes how plant’s various defense systems and their nutrient dynamics with soil are affected by ECM fungal symbiosis under metal stress, ultimately leading to their host plants ameliorated tolerance and growth. Overall, we conclude that ECM symbiosis improves the plant growth and tolerance against metal stress by (i) preventing their roots direct exposure to toxic soil HMs, (ii) improving plant antioxidant activity and intracellular metal sequestration potential, and (iii) altering plant nutrient uptake from the soil in such a way to enhance their tolerance against metal stress. In some cases, ECM symbiosis promotes HM accumulation in metal stressed plants simultaneous to improved growth under the HM dilution effect.
Collapse
Affiliation(s)
- Eetika Chot
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Mondem Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
11
|
Rajput VD, Minkina T, Upadhyay SK, Kumari A, Ranjan A, Mandzhieva S, Sushkova S, Singh RK, Verma KK. Nanotechnology in the Restoration of Polluted Soil. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:769. [PMID: 35269257 PMCID: PMC8911862 DOI: 10.3390/nano12050769] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
The advancements in nanoparticles (NPs) may be lighting the sustainable and eco-friendly path to accelerate the removal of toxic compounds from contaminated soils. Many efforts have been made to increase the efficiency of phytoremediation, such as the inclusion of chemical additives, the application of rhizobacteria, genetic engineering, etc. In this context, the integration of nanotechnology with bioremediation has introduced new dimensions for revamping the remediation methods. Hence, advanced remediation approaches combine nanotechnological and biological remediation methods in which the nanoscale process regulation supports the adsorption and deterioration of pollutants. Nanoparticles absorb/adsorb a large variety of contaminants and also catalyze reactions by lowering the energy required to break them down, owing to their unique surface properties. As a result, this remediation process reduces the accumulation of pollutants while limiting their spread from one medium to another. Therefore, this review article deals with all possibilities for the application of NPs for the remediation of contaminated soils and associated environmental concerns.
Collapse
Affiliation(s)
- Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.K.); (A.R.); (S.M.); (S.S.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.K.); (A.R.); (S.M.); (S.S.)
| | - Sudhir K. Upadhyay
- Department of Environmental Science, V.B.S. Purvanhal University, Jaunpur 222003, India;
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.K.); (A.R.); (S.M.); (S.S.)
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.K.); (A.R.); (S.M.); (S.S.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.K.); (A.R.); (S.M.); (S.S.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.K.); (A.R.); (S.M.); (S.S.)
| | - Rupesh Kumar Singh
- InnovPlantProtect Collaborative Laboratory, Department of Protection of Specific Crops, 7350-999 Elvas, Portugal;
| | - Krishan K. Verma
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| |
Collapse
|