1
|
Liu Z, Yan J, Wang D, Ahmad P, Qin M, Li R, Ali B, Sonah H, Deshmukh R, Yadav KK, El-Sheikh MA, Zhang L, Liu P. Silicon improves salt resistance by enhancing ABA biosynthesis and aquaporin expression in Nicotiana tabacum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108977. [PMID: 39084167 DOI: 10.1016/j.plaphy.2024.108977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Silicon (Si) can significantly improve the salt tolerance of plants, but its mechanism remains unclear. In this study, role of abscisic acid (ABA) in Si derived salt resistance in tobacco seedling was investigated. Under salt stress, the photosynthetic rate, stomatal conductance, and transpiration rate of tobacco seedlings were reduced by 86.17%, 80.63%, and 67.54% respectively, resulting in a decrease in biomass. The application of Si found to mitigate these stress-induced markers. However, positive role of Si was mainly attributed to the enhanced expression of aquaporin genes, which helped in enhancing root hydraulic conductance (Lpr) and ultimately maintaining the leaf relative water content (RWC). Moreover, sodium tungstate, an ABA biosynthesis inhibitor, was used to test the role of ABA on Si-regulating Lpr. The results indicated that the improvement of Lpr by Si was diminished in the presence of ABA inhibitor. In addition, it was observed that the ABA content was increased due to the Si-upregulated of ABA biosynthesis genes, namely NtNCED1 and NtNCED5. Conversely, the expression of ABA metabolism gene NtCYP7O7A was found to be reduced by Si. Together, this study suggested that Si increased ABA content, leading to enhanced efficiency of water uptake by the roots, ultimately facilitating an adequate water supply to maintain leaf water balance. As a result, there was an improvement in salt resistance in tobacco seedling.
Collapse
Affiliation(s)
- Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Dan Wang
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim yar Khan, 64200, Pakistan
| | - Humira Sonah
- Department of Biotechnology, Central University of Haryana, Mahendragarh, India
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University Ratibad, Bhopal, 462044, MP, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh,11451, Saudi Arabia
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, Shandong province, China.
| |
Collapse
|
2
|
Rady MS, Ghoneim IM, Feleafel MN, Hassan SM. Potassium silicate and vinasse enhance biometric characteristics of perennial sweet pepper (Capsicum annuum) under greenhouse conditions. Sci Rep 2024; 14:11248. [PMID: 38755228 PMCID: PMC11099072 DOI: 10.1038/s41598-024-61454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
An effective strategy for enhancing fruit production continuity during extended sweet pepper season involves adopting innovative biostimulants such as potassium silicate (PS) and vinasse. Adjusting PS and vinasse concentrations are crucial for maintaining the balance between vegetative and fruit growth, particularly in sweet pepper with a shallow root system, to sustain fruiting over prolonged season. However, the interaction between PS and vinasse and the underlying physiological mechanisms that extend the sweet pepper season under greenhouse conditions remain unclear. This study aimed to investigate the impact of PS and vinasse treatments on the yield and biochemical constituents of perennial pepper plants cultivated under greenhouse conditions. For two consecutive seasons [2018/2019 and 2019/2020], pepper plants were sprayed with PS (0, 0.5, and 1 g/l) and drenched with vinasse (0, 1, 2, and 3 l/m3). To estimate the impact of PS and vinasse on the growth, yield, and biochemical constituents of pepper plants, fresh and dry biomass, potential fruit yield, and some biochemical constituents were evaluated. Results revealed that PS (0.5 g/l) coupled with vinasse (3 l/m3) generated the most remarkable enhancement, in terms of plant biomass, total leaf area, total yield, and fruit weight during both growing seasons. The implementation of vinasse at 3 l/m3 with PS at 0.5 and 1 g/l demonstrated the most pronounced augmentation in leaf contents (chlorophyll index, nitrogen and potassium), alongside improved fruit quality, including total soluble solid and ascorbic acid contents, of extended sweet pepper season. By implementing the optimal combination of PS and vinasse, growers can significantly enhance the biomass production while maintaining a balance in fruiting, thereby maximizing the prolonged fruit production of superior sweet pepper under greenhouse conditions.
Collapse
Affiliation(s)
- Mahmoud S Rady
- Department of Vegetable Crops, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
- Plant and Environmental Sciences Department, Coastal Research and Education Center, Clemson University, Charleston, SC, 29414, USA.
| | - Ibrahim M Ghoneim
- Department of Vegetable Crops, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Mostafa N Feleafel
- Department of Vegetable Crops, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Shimaa M Hassan
- Department of Vegetable Crops, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| |
Collapse
|
3
|
Coquerel R, Arkoun M, Dupas Q, Leroy F, Laîné P, Etienne P. Silicon Supply Improves Nodulation and Dinitrogen Fixation and Promotes Growth in Trifolium incarnatum Subjected to a Long-Term Sulfur Deprivation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2248. [PMID: 37375874 DOI: 10.3390/plants12122248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
In many crops species, sulfur (S) deprivation negatively affects growth, seed yield quality and plant health. Furthermore, silicon (Si) is known to alleviate many nutritional stresses but the effects of Si supply on plants subjected to S deficiency remain unclear and poorly documented. The objective of this study was to evaluate whether Si supply would alleviate the negative effects of S deprivation on root nodulation and atmospheric dinitrogen (N2) fixation capacity in Trifolium incarnatum subjected (or not) to long-term S deficiency. For this, plants were grown for 63 days in hydroponic conditions with (500 µM) or without S and supplied (1.7 mM) or not with Si. The effects of Si on growth, root nodulation and N2 fixation and nitrogenase abundance in nodules have been measured. The most important beneficial effect of Si was observed after 63 days. Indeed, at this harvest time, a Si supply increased growth, the nitrogenase abundance in nodules and N2 fixation in S-fed and S-deprived plants while a beneficial effect on the number and total biomass of nodules was only observed in S-deprived plants. This study shows clearly for the first time that a Si supply alleviates negative effects of S deprivation in Trifolium incarnatum.
Collapse
Affiliation(s)
- Raphaël Coquerel
- Unicaen, INRAE, UMR 950 EVA, SF Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Agro Innovation International-TIMAC AGRO, 35400 Saint-Malo, France
| | - Quentin Dupas
- Unicaen, INRAE, UMR 950 EVA, SF Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France
| | - Fanny Leroy
- Plateau Technique d'Isotopie de Normandie (PLATIN'), Unité de Services EMERODE, Normandie Université, 14000 Caen, France
| | - Philippe Laîné
- Unicaen, INRAE, UMR 950 EVA, SF Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France
| | - Philippe Etienne
- Unicaen, INRAE, UMR 950 EVA, SF Normandie Végétal (FED4277), Normandie Université, 14000 Caen, France
| |
Collapse
|
4
|
New outcomes on how silicon enables the cultivation of Panicum maximum in soil with water restriction. Sci Rep 2022; 12:1897. [PMID: 35115626 PMCID: PMC8814238 DOI: 10.1038/s41598-022-05927-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/13/2022] [Indexed: 01/06/2023] Open
Abstract
Climate change increases the occurrence of droughts, decreasing the production of tropical forages through the induction of physiological stress. Si is expected to broaden the limit from physiological stress of forages grown under water restriction, which may come from an improvement in the stoichiometric homeostasis of Si with N and C, favoring physiological aspects. This study assessed whether Si supply via fertigation improves physiological aspects and the water content in the plant by means of an antioxidant defense system and changes in the C:N:Si stoichiometry during the regrowth of two cultivars of Panicum maximum grown under two soil water regimes (70 and 40% of the soil's water retention capacity). The forages studied are sensitive to water deficit without silicon supply. The application of Si via fertigation attenuated the water deficit, favoring plant growth by stabilizing the stoichiometric homeostasis C:N and C:Si, which are responsible for increasing the plant capacity of converting accumulated C in dry mass, favoring the water content of the plant tissue and the photosynthetic efficiency. This study highlights the importance of the physiological function of Si, and effects on the stoichiometry of C and N, which are neglected in most research on forages grown under water restriction.
Collapse
|