1
|
Sun D, Lei Z, Carriquí M, Zhang Y, Liu T, Wang S, Song K, Zhu L, Zhang W, Zhang Y. Reductions in mesophyll conductance under drought stress are influenced by increases in cell wall chelator-soluble pectin content and denser microfibril alignment in cotton. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1116-1130. [PMID: 39844343 DOI: 10.1093/jxb/erae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Plants commonly undergo leaf morphoanatomy and composition modifications to cope with drought stress, and these tend to reduce mesophyll conductance to CO2 diffusion (gm), a key limitation to photosynthesis. The cell wall appears to play a crucial role in this reduction, yet the specific effect of cell wall component on gm and the underlying regulatory mechanisms of cell wall thickness (Tcw) variation are not well understood. In this study, we subjected cotton plants to varying levels of water deficit to investigate the impact of leaf cell wall component and the arrangement patterns of microfibrils within cell walls on Tcw and leaf gas exchange. Drought stress resulted in a significant thickening of cell walls and a decrease in gm. Concurrently, drought stress increased the content of chelator-soluble pectin and cellulose while reducing hemicellulose content. The alignment of cellulose microfibrils became more parallel and their diameter increased under drought conditions, suggesting a decrease in cell wall effective porosity which coincides with the observed reduction in gm. This research demonstrates that reduced gm typically observed under drought stress is related not only to thickened cell walls, but also to ultra-anatomical and compositional variations. Specifically, increases in cellulose content, diameter, and a highly aligned arrangement of cellulose microfibrils collectively contributed to an increase in Tcw, which, together with increases in chelator-soluble pectin content, resulted in an increased cell wall resistance to CO2 diffusion.
Collapse
Affiliation(s)
- Dongsheng Sun
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Zhangying Lei
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Marc Carriquí
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Agro-Environmental and Water Economics Institute (INAGEA), Palma, Illes Balears, 07122, Spain
| | - Yujie Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Tianyang Liu
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Shengnan Wang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Kunhao Song
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Lan Zhu
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Wangfeng Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Yali Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
2
|
Farah UA, Fisher KM. Environmental gradients shape genetic variation in the desert moss, Syntrichia caninervis Mitt. (Pottiaceae). Sci Rep 2025; 15:2064. [PMID: 39814916 PMCID: PMC11735628 DOI: 10.1038/s41598-025-86305-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
The moss Syntrichia caninervis Mitt. is distributed throughout drylands globally, and often anchors ecologically significant communities known as biological soil crusts (biocrusts). The species occupies a variety of dryland habitats with varying levels of drought and temperature stress, suggesting the potential for ecological specialization within S. caninervis. Here, we sampled S. caninervis from sites along two elevation gradients and used restriction site associated DNA sequencing to compare the relative impacts of environmental factors and geospatial distances on genetic differentiation in S. caninervis populations. While we found no evidence of isolation by distance in our data, one environmental variable, mean annual precipitation (MAP), was found to be a positive predictor of FST. An ecological association analysis identified 32 SNP alleles that covary significantly with MAP, 15 of which fall within the exonic regions of genes with annotations suggesting diverse roles in response to dehydration stress. Understanding the degree to which genetic variation in S. caninervis is associated with environmental factors is key to predicting its potential for persistence in the face of global climate change, which is predicted to be especially detrimental to desert organisms already living at their physiological limits.
Collapse
Affiliation(s)
- Ugbad A Farah
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Kirsten M Fisher
- Department of Biological Sciences, California State University Los Angeles, 5151 State University Dr, Los Angeles, CA, 90032, USA.
| |
Collapse
|
3
|
Arzac MI, Miranda-Apodaca J, de Los Ríos A, Castanyer-Mallol F, García-Plazaola JI, Fernández-Marín B. The outstanding capacity of Prasiola antarctica to thrive in contrasting harsh environments relies on the constitutive protection of thylakoids and on morphological plasticity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:65-83. [PMID: 38608130 DOI: 10.1111/tpj.16742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
The determination of physiological tolerance ranges of photosynthetic species and of the biochemical mechanisms underneath are fundamental to identify target processes and metabolites that will inspire enhanced plant management and production for the future. In this context, the terrestrial green algae within the genus Prasiola represent ideal models due to their success in harsh environments (polar tundras) and their extraordinary ecological plasticity. Here we focus on the outstanding Prasiola antarctica and compare two natural populations living in very contrasting microenvironments in Antarctica: the dry sandy substrate of a beach and the rocky bed of an ephemeral freshwater stream. Specifically, we assessed their photosynthetic performance at different temperatures, reporting for the first time gnsd values in algae and changes in thylakoid metabolites in response to extreme desiccation. Stream population showed lower α-tocopherol content and thicker cell walls and thus, lower gnsd and photosynthesis. Both populations had high temperatures for optimal photosynthesis (around +20°C) and strong constitutive tolerance to freezing and desiccation. This tolerance seems to be related to the high constitutive levels of xanthophylls and of the cylindrical lipids di- and tri-galactosyldiacylglycerol in thylakoids, very likely related to the effective protection and stability of membranes. Overall, P. antarctica shows a complex battery of constitutive and plastic protective mechanisms that enable it to thrive under harsh conditions and to acclimate to very contrasting microenvironments, respectively. Some of these anatomical and biochemical adaptations may partially limit photosynthesis, but this has a great potential to rise in a context of increasing temperature.
Collapse
Affiliation(s)
- Miren I Arzac
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Jon Miranda-Apodaca
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Asunción de Los Ríos
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Serrano 115 dpdo, 28006, Madrid, Spain
| | - Francesc Castanyer-Mallol
- Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears (UIB), INAGEA, Balearic Islands, Palma, Spain
| | - José I García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Beatriz Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), Canary Islands, 38200, La Laguna, Spain
| |
Collapse
|
4
|
Zhou H, Peng J, Zhao W, Zeng Y, Xie K, Huang G. Leaf diffusional capacity largely contributes to the reduced photosynthesis in rice plants under magnesium deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108565. [PMID: 38537380 DOI: 10.1016/j.plaphy.2024.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Numerous studies have clarified the impacts of magnesium (Mg) on leaf photosynthesis from the perspectives of protein synthesis, enzymes activation and carbohydrate partitioning. However, it still remains largely unknown how stomatal and mesophyll conductances (gs and gm, respectively) are regulated by Mg. In the present study, leaf gas exchanges, leaf hydraulic parameters, leaf structural traits and cell wall composition were examined in rice plants grown under high and low Mg treatments to elucidate the impacts of Mg on gs and gm. Our results showed that reduction of leaf photosynthesis under Mg deficiency was mainly caused by the decreased gm, followed by reduced leaf biochemical capacity and gs, and leaf outside-xylem hydraulic conductance (Kox) was the major factor restricting gs under Mg deficiency. Moreover, increased leaf hemicellulose, lignin and pectin contents and decreased cell wall effective porosity were observed in low Mg plants relative to high Mg plants. These results suggest that Kox and cell wall composition play important roles in regulating gs and gm, respectively, in rice plants under Mg shortages.
Collapse
Affiliation(s)
- Haimei Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jiang Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Wanling Zhao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yongjun Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Kailiu Xie
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| | - Guanjun Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
5
|
Song X, Gu J, Ye Y, Wang M, Wang R, Ma H, Shao X. Exploring Intraspecific Trait Variation in a Xerophytic Moss Species Indusiella thianschanica (Ptychomitriaceae) across Environmental Gradients on the Tibetan Plateau. PLANTS (BASEL, SWITZERLAND) 2024; 13:921. [PMID: 38611451 PMCID: PMC11013618 DOI: 10.3390/plants13070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
Investigating intraspecific trait variability is crucial for understanding plant adaptation to various environments, yet research on lithophytic mosses in extreme environments remains scarce. This study focuses on Indusiella thianschanica Broth. Hal., a unique lithophytic moss species in the extreme environments of the Tibetan Plateau, aiming to uncover its adaptation and response mechanisms to environmental changes. Specimens were collected from 26 sites across elevations ranging from 3642 m to 5528 m, and the relationships between 23 morphological traits and 15 environmental factors were analyzed. Results indicated that coefficients of variation (CV) ranged from 5.91% to 36.11%, with gametophyte height (GH) and basal cell transverse wall thickness (STW) showing the highest and lowest variations, respectively. Temperature, elevation, and potential evapo-transpiration (PET) emerged as primary environmental drivers. Leaf traits, especially those of the leaf sheath, exhibited a more pronounced response to the environment. The traits exhibited apparent covariation in response to environmental challenges and indicated flexible adaptive strategies. This study revealed the adaptation and response patterns of different morphological traits of I. thianschanica to environmental changes on the Tibetan Plateau, emphasizing the significant effect of temperature on trait variation. Our findings deepen the understanding of the ecology and adaptive strategies of lithophytic mosses.
Collapse
Affiliation(s)
- Xiaotong Song
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (X.S.); (J.G.); (M.W.)
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Jiqi Gu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (X.S.); (J.G.); (M.W.)
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanhui Ye
- Resources & Environment College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China;
| | - Mengzhen Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (X.S.); (J.G.); (M.W.)
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Ruihong Wang
- Institute of Tibet Plateau Ecology, Tibet Agricultural & Animal Husbandry University, Nyingchi 860000, China; (R.W.); (H.M.)
- Key Laboratory of Forest Ecology in Tibet Plateau, Tibet Agricultural & Animal Husbandry University, Ministry of Education, Nyingchi 860000, China
| | - Heping Ma
- Institute of Tibet Plateau Ecology, Tibet Agricultural & Animal Husbandry University, Nyingchi 860000, China; (R.W.); (H.M.)
- Key Laboratory of Forest Ecology in Tibet Plateau, Tibet Agricultural & Animal Husbandry University, Ministry of Education, Nyingchi 860000, China
| | - Xiaoming Shao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (X.S.); (J.G.); (M.W.)
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
- Resources & Environment College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China;
| |
Collapse
|
6
|
Krieg CP, Smith DD, Adams MA, Berger J, Layegh Nikravesh N, von Wettberg EJ. Greater ecophysiological stress tolerance in the core environment than in extreme environments of wild chickpea (Cicer reticulatum). Sci Rep 2024; 14:5744. [PMID: 38459248 PMCID: PMC10923935 DOI: 10.1038/s41598-024-56457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
Global climate change and land use change underlie a need to develop new crop breeding strategies, and crop wild relatives (CWR) have become an important potential source of new genetic material to improve breeding efforts. Many recent approaches assume adaptive trait variation increases towards the relative environmental extremes of a species range, potentially missing valuable trait variation in more moderate or typical climates. Here, we leveraged distinct genotypes of wild chickpea (Cicer reticulatum) that differ in their relative climates from moderate to more extreme and perform targeted assessments of drought and heat tolerance. We found significance variation in ecophysiological function and stress tolerance between genotypes but contrary to expectations and current paradigms, it was individuals from more moderate climates that exhibited greater capacity for stress tolerance than individuals from warmer and drier climates. These results indicate that wild germplasm collection efforts to identify adaptive variation should include the full range of environmental conditions and habitats instead of only environmental extremes, and that doing so may significantly enhance the success of breeding programs broadly.
Collapse
Affiliation(s)
| | | | - Mark A Adams
- Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Jens Berger
- CSIRO, Agriculture and Food, Perth, WA, Australia
| | | | - Eric J von Wettberg
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA
| |
Collapse
|
7
|
Avila RT, Kane CN, Batz TA, Trabi C, Damatta FM, Jansen S, McAdam SAM. The relative area of vessels in xylem correlates with stem embolism resistance within and between genera. TREE PHYSIOLOGY 2023; 43:75-87. [PMID: 36070431 DOI: 10.1093/treephys/tpac110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The resistance of xylem conduits to embolism is a major factor defining drought tolerance and can set the distributional limits of species across rainfall gradients. Recent work suggests that the proximity of vessels to neighbors increases the vulnerability of a conduit. We therefore investigated whether the relative vessel area of xylem correlates with intra- and inter-generic variation in xylem embolism resistance in species pairs or triplets from the genera Acer, Cinnamomum, Ilex, Quercus and Persea, adapted to environments differing in aridity. We used the optical vulnerability method to assess embolism resistance in stems and conducted anatomical measurements on the xylem in which embolism resistance was quantified. Vessel lumen fraction (VLF) correlated with xylem embolism resistance across and within genera. A low VLF likely increases the resistance to gas movement between conduits, by diffusion or advection, whereas a high VLF enhances gas transport thorough increased conduit-to-conduit connectivity and reduced distances between conduits and therefore the likelihood of embolism propagation. We suggest that the rate of gas movement due to local pressure differences and xylem network connectivity is a central driver of embolism propagation in angiosperm vessels.
Collapse
Affiliation(s)
- Rodrigo T Avila
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Cade N Kane
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Timothy A Batz
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Christophe Trabi
- Faculty of Natural Sciences, Institute of Systematic Botany and Ecology, Ulm University, Ulm, Baden-Württemberg 89081, Germany
| | - Fábio M Damatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Steven Jansen
- Faculty of Natural Sciences, Institute of Systematic Botany and Ecology, Ulm University, Ulm, Baden-Württemberg 89081, Germany
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Pfeifer L, Mueller KK, Classen B. The cell wall of hornworts and liverworts: innovations in early land plant evolution? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4454-4472. [PMID: 35470398 DOI: 10.1093/jxb/erac157] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
An important step for plant diversification was the transition from freshwater to terrestrial habitats. The bryophytes and all vascular plants share a common ancestor that was probably the first to adapt to life on land. A polysaccharide-rich cell wall was necessary to cope with newly faced environmental conditions. Therefore, some pre-requisites for terrestrial life have to be shared in the lineages of modern bryophytes and vascular plants. This review focuses on hornwort and liverwort cell walls and aims to provide an overview on shared and divergent polysaccharide features between these two groups of bryophytes and vascular plants. Analytical, immunocytochemical, and bioinformatic data were analysed. The major classes of polysaccharides-cellulose, hemicelluloses, and pectins-seem to be present but have diversified structurally during evolution. Some polysaccharide groups show structural characteristics which separate hornworts from the other bryophytes or are too poorly studied in detail to be able to draw absolute conclusions. Hydroxyproline-rich glycoprotein backbones are found in hornworts and liverworts, and show differences in, for example, the occurrence of glycosylphosphatidylinositol (GPI)-anchored arabinogalactan-proteins, while glycosylation is practically unstudied. Overall, the data are an appeal to researchers in the field to gain more knowledge on cell wall structures in order to understand the changes with regard to bryophyte evolution.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| | - Kim-Kristine Mueller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| |
Collapse
|