1
|
Ke D, Zhang Y, Teng Y, Zhao X. Transcriptomic Profiling Uncovers Molecular Basis for Sugar and Acid Metabolism in Two Pomegranate ( Punica granatum) Varieties. Foods 2025; 14:1755. [PMID: 40428534 PMCID: PMC12111560 DOI: 10.3390/foods14101755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/05/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Soluble sugars and organic acids constitute the primary flavor determinants in fruits and elucidating their metabolic mechanisms provides crucial theoretical foundations for fruit breeding practices and food industry development. Through integrated physiological and transcriptomic analysis of pomegranate varieties 'Sharp Velvet' with high acid content and 'Azadi' with low acid content, this study demonstrated that the differences in flavor between the two varieties were mainly caused by differences in citric acid content rather than in soluble sugar content. Transcriptome profiling identified 11 candidate genes involved in sugar and acid metabolism, including three genes associated with soluble sugar metabolism (FBA1, SS, and SWEET16) and eight genes linked to organic acid metabolism (ADH1, GABP1, GABP2, GABP3, GABP4, ICL, ME1, and PDC4). These data indicated that differences in citric acid content between the two varieties mainly stemmed from differences in the regulation of the citric acid degradation pathway, which relies mainly on the γ-aminobutyric acid (GABA) branch rather than the isocitric acid lyase (ICL) pathway. Citric acid accumulation in pomegranate fruit was driven by metabolic fluxes rather than vesicular storage capacity. Weighted gene co-expression network analysis (WGCNA) uncovered a significant citric acid content associated module (r = -0.72) and predicted six core transcriptional regulators (bHLH42, ERF4, ERF062, WRKY6, WRKY23, and WRKY28) within this network. Notably, bHLH42, ERF4, and WRKY28 showed significant positive correlations with citric acid content, whereas ERF062, WRKY6, and WRKY23 demonstrated significant negative correlations. Our findings provide comprehensive insights into the genetic architecture governing soluble sugars and organic acids homeostasis in pomegranate, offering both a novel mechanistic understanding of fruit acidity regulation and valuable molecular targets for precision breeding of fruit quality traits.
Collapse
Affiliation(s)
- Ding Ke
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (D.K.); (Y.Z.); (Y.T.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yilong Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (D.K.); (Y.Z.); (Y.T.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yingfen Teng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (D.K.); (Y.Z.); (Y.T.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (D.K.); (Y.Z.); (Y.T.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Zhao L, Hu W, Liu Y, Liu D, Kuang L, Song J, Xiong Z, Liao X, Wu X, Yang L. Decoding xenia effects on 'Jinsha' pomelo: Insights from physiological, transcriptomics and metabolomics analyses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109654. [PMID: 40022882 DOI: 10.1016/j.plaphy.2025.109654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/26/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
'Xenia' is the terminology and biology of direct, or immediate, pollen effects on seeds and fruits. In this study, we found that the pollination of 'Jinsha' pomelo (JS) with pollen from Grapefruit (GR) and 'Majia' pomelo (MJ) led to significant differences in the seed numbers and primary metabolite (soluble sugar and amino acid). In pollinated pistils, the differences in the number of pollen tubes entering the embryo sac and the content of cytokinin components at 5 d post-pollination between the two pollen sources might be the important factor contributing to the discrepancies of seed trait and further affected fruit quality. In addition, joint analysis result of metabolomics and transcriptomics showed that the down-regulated expression of genes in the sucrose and starch metabolism pathways, glycolysis pathway and amino acid metabolism pathway of JS × MJ fruit compared to those of JS × GR fruit might also be resulted in an increase in the content of fructose and glucose and a decrease in the content of a large number of free amino acid components. This study revealed the reasons for the changes in seed and fruit characteristics induced by the xenia effect under two different pollen sources, and the hub genes novel.155 (HK), Cg2g040280 (bglX), Cg4g020710 (ISA), and Cg3g021210 (P4HA) were obtained by co-expression network analysis.
Collapse
Affiliation(s)
- Lingji Zhao
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Wei Hu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Yong Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Dechun Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Liuqing Kuang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Jie Song
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Zhonghua Xiong
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Xiangjiao Liao
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Xia Wu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Li Yang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China.
| |
Collapse
|
3
|
Zhang K, Wei L, Geng J, Zhan W, Li Y, Shi Y, Zhang Y, Chen S, Yang J. Integrated transcriptome and metabolome analysis reveals the impacts of prolonged light exposure on starch and protein content in maize kernels. BMC Genomics 2025; 26:373. [PMID: 40229716 PMCID: PMC11998427 DOI: 10.1186/s12864-025-11578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/07/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND The light environment significantly influences crop growth, development, quality, and yield, particularly in controlled-environment agriculture. Recent advances in artificial lighting technology have allowed growers to precisely control the light environment in terms of duration, spectrum, and intensity. Starch and protein are the most significant nutritional constituents of maize kernels. However, little is known about the effects of the light environment on starch and protein content in maize kernels. Therefore, we investigated the effects of natural light and supplemental exposure to blue (B), far-red (FR), and red (R) light on starch and protein content in kernels of the inbred maize line B73. RESULTS Exposure to supplemental B, FR, or R light resulted in significant increases in starch content but decreases in protein content. Notably, protein content was lowest under B light. Substantial proportions of genes (5.03-75.23%) and metabolites (46.89-85.64%) were regulated by different wavelengths of light. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, as well as weighted gene co-expression network analysis (WGCNA), revealed that differentially expressed genes (DEGs) under B, FR, and R light were involved in pathways related to starch and protein synthesis. KEGG metabolomic analysis showed that differentially abundant metabolites (DAMs) were primarily associated with histidine, D-amino acid, cysteine, and methionine metabolism. Nine DEGs related to starch synthesis were identified as potential candidates for investigating the effects of light quality on starch synthesis, and 14 DEGs related to protein synthesis provided evidence for the influence of light quality on protein synthesis in maize. CONCLUSIONS This study identified the regulatory network governing starch and protein content in B73 maize kernels under different light conditions, contributing to a deeper understanding of how light quality affects the nutritional components of maize kernels.
Collapse
Affiliation(s)
- Kangni Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lina Wei
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jingpeng Geng
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weimin Zhan
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yankun Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yong Shi
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanpei Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Shizhan Chen
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jianping Yang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
4
|
Wu W, Chen L, Liang R, Huang S, Li X, Huang B, Luo H, Zhang M, Wang X, Zhu H. The role of light in regulating plant growth, development and sugar metabolism: a review. FRONTIERS IN PLANT SCIENCE 2025; 15:1507628. [PMID: 39840366 PMCID: PMC11747448 DOI: 10.3389/fpls.2024.1507628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Light provides the necessary energy for plant photosynthesis, which allows plants to produce organic matter and energy conversion, during plant growth and development. Light provides material energy to plants as the basis for cell division and differentiation, chlorophyll synthesis, tissue growth and stomatal movement, and light intensity, photoperiod, and light quality play important roles in these processes. There are several regulatory mechanisms involved in sugar metabolism in plants, and light, as one of the regulatory factors, affects cell wall composition, starch granules, sucrose synthesis, and vascular bundle formation. Similarly, sugar species and genes are affected in the context of light-regulated sugar metabolism. We searched the available databases and found that there are fewer relevant reviews. Therefore, this paper provides a summary of the effects of light on plant growth and development and sugar metabolism, further elaborates on the mechanisms of light effects on plants, and provides some new insights for a better understanding of how plant growth is regulated under different light conditions.
Collapse
Affiliation(s)
- Wenyuan Wu
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Long Chen
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) – CITEXVI, Universidade de Vigo, Vigo, Spain
| | - Rentao Liang
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Shiping Huang
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiang Li
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Bilei Huang
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Huimin Luo
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Miao Zhang
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaoxun Wang
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Hua Zhu
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
5
|
Edema H, Ashraf MF, Samkumar A, Jaakola L, Karppinen K. Characterization of cellulases from softening fruit for enzymatic depolymerization of cellulose. Carbohydr Polym 2024; 343:122493. [PMID: 39174143 DOI: 10.1016/j.carbpol.2024.122493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/24/2024]
Abstract
Cellulose is a major renewable resource for a wide variety of sustainable industrial products. However, for its utilization, finding new efficient enzymes for plant cell wall depolymerization is crucial. In addition to microbial sources, cellulases also exist in plants, however, are less studied. Fleshy fruit ripening includes enzymatic cell wall hydrolysis, leading to tissue softening. Therefore, bilberry (Vaccinium myrtillus L.), which produces small fruits that undergo extensive and rapid softening, was selected to explore cellulases of plant origin. We identified 20 glycoside hydrolase family 9 (GH9) cellulases from a recently sequenced bilberry genome, including four of which showed fruit ripening-specific expression and could be associated with fruit softening based on phylogenetic, transcriptomic and gene expression analyses. These four cellulases were secreted enzymes: two B-types and two C-types with a carbohydrate binding module 49. For functional characterization, these four cellulases were expressed in Pichia pastoris. All recombinant enzymes demonstrated glucanase activity toward cellulose and hemicellulose substrates. Particularly, VmGH9C1 demonstrated high activity and ability to degrade cellulose, xyloglucan, and glucomannan. In addition, all the enzymes retained activity under wide pH (6-10) and temperature ranges (optimum 70 °C), revealing the potential applications of plant GH9 cellulases in the industrial bioprocessing of lignocellulose.
Collapse
Affiliation(s)
- Hilary Edema
- The Arctic Centre for Sustainable Energy, UiT The Arctic University of Norway, Tromsø 9037, Norway; Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway.
| | - Muhammad Furqan Ashraf
- The Arctic Centre for Sustainable Energy, UiT The Arctic University of Norway, Tromsø 9037, Norway; Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway.
| | - Amos Samkumar
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway; Department of Plant Science, Norwegian University of Life Sciences, Ås 1430, Norway.
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway; Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), Ås 1431, Norway.
| | - Katja Karppinen
- The Arctic Centre for Sustainable Energy, UiT The Arctic University of Norway, Tromsø 9037, Norway; Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9037, Norway.
| |
Collapse
|
6
|
Yang M, He C, Hou G, She M, Zhao M, Hu R, Xiao W, Yu H, Lin Y, Zhang Y, Wang Y, He W, Li M, Chen Q, Zhang Y, Wang X, Tang H, Luo Y. Combining transcriptomics and HPLC to uncover variations in quality formation between 'Benihoppe' and 'Fenyu No.1' strawberries. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109043. [PMID: 39181084 DOI: 10.1016/j.plaphy.2024.109043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
'Benihoppe' and 'Fenyu No.1' are representative varieties of red and pink strawberries in China, possess distinct hue and flavor profiles. This study analyzed the underlying biochemical and molecular differences of two varieties utilizing transcriptomics and high-performance liquid chromatography (HPLC). Ripening 'Benihoppe' fruits accumulated more sucrose and pelargonin-3-glucoside (P3G) with a little cyanidin and higher firmness. Whereas ripening 'Fenyu No.1' fruits contained more fructose, glucose, malic acid and ascorbic acid (AsA), but less P3G and citric acid. Moreover, genotype significantly influenced phenolic compounds contents in strawberries. Transcriptome analysis revealed that pectin degradation (PL, PG, PE), sucrose synthesis (CWINV, SUS, TPS) and citric acid metabolism (α-OGDH, ICDH, GAD, GS, GDH, PEPCK, AST) were weakened in 'Benihoppe' fruit. In contrast, the synthesis of sucrose (CWINH, SPS), citric acid (CS, PEPC), anthocyanin (F3H, F3'H, F3'5'H, DFR, UFGT and ANS), and citric acid transport (V-ATPase) was enhanced. In 'Fenyu No.1' fruit, the degradation of sucrose, citric acid, and pectin was enhanced, along with the synthesis of malic acid (ME) and ascorbic acid (PMM, MDHAR and GaLUR). However, anthocyanins synthesis, glucose metabolism (HK, G6PI, PFK, G6PDH, PGK, PGM, ENO, PK), fructose metabolism (FK), citric acid synthesis and transport, and AsA degradation (AO, APX) were relatively weak. RT-qPCR results corroborated the transcriptome data. In conclusion, this study revealed the distinctions and characteristics of strawberries with different fruit colors regarding texture, flavor and color formation processes. These findings offer valuable insights for regulating metabolic pathways and identifying key candidate genes to improve strawberry quality.
Collapse
Affiliation(s)
- Min Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Caixia He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoyan Hou
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Musha She
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mantong Zhao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ruixin Hu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenfei Xiao
- Hangzhou Academy of Agricultural Sciences, Hangzhou, 310000, China
| | - Hong Yu
- Hangzhou Academy of Agricultural Sciences, Hangzhou, 310000, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
7
|
Saeed A, Kauser S, Hussain A, Siddiqui NJ, Abidi SHI, Syed Q, Nadeem AA. Tracking the Variations in Trace Elements, Some Nutrients, Phenolics, and Anthocyanins in Grewia asiatica L. (Phalsa) at Different Fruit Development Stages. Biol Trace Elem Res 2024; 202:1784-1801. [PMID: 37464170 DOI: 10.1007/s12011-023-03763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
Grewia asiatica L. (phalsa) is a very prevalent berry in Pakistan and is consumed extensively as raw or in the form of juice. Here, for the first time, we assessed phalsa from Pakistan in terms of variations in macro and micro minerals, nutrients, and bio-active phyto-constituents including total phenolic and anthocyanin contents at different fruit developmental stages. It was found that the sugars in phalsa increased from D1 (small at the initial fruit setting stage) to D6 development stage (fully ripened fruit) where sugars at D5 (near to fully ripe) and D6 stages were many times greater than at D1, D2 (unripe close to full-size completion), D3 (close to semi ripe), and D4 stage (semi ripened and full-size attainment). Total acidity of was declined in all developmental stages, where the D1 stage displayed maximum and D6 with the lowest acidity. Ascorbic acid was decreased from D1 to D2 and then increased gradually from D3 to D5 stages. At the D6 stage, again a steep decline in ascorbic acid was observed. The total phenolics (mg gallic acid equivalents/100g) at stage D6 were higher (136.02 ± 1.17), whereas D1 being the lowermost in total phenolic content (79.89 ± 1.72). For anthocyanins (mg/100g), an increasing pattern of changes was observed in all stages of phalsa fruit where the D1 stage showed lower (13.97 ± 4.84) anthocyanin contents which then increased gradually at stage D2 (67.79 ± 6.73), but increased sharply at D3 (199.66 ± 4.90), D4 (211.02 ± 18.85), D5 (328.41 ±14.96) and D6 (532.30 ± 8.51) stages. A total of four anthocyanins such as cyanidin, delphidine-3-glucoside, pelargonidin, and malvidin in phalsa were identified using HPLC procedures, and a significant > 90 % DPPH inhibition in phalsa was observed at the D5 and D6 development stages. The macro and micro minerals including Ni, Zn, Fe, Ca, Cu, Mg, Na, P, and K contents were decreased from initial (D1) stage to the final (D6) development stage, while only Fe displayed an increasing trend from the initial to final fruit development stages (D1-D6). Conclusively, these findings could be of great interest for patients who are intended to consume phalsa as adjuvant therapy against diabetes and metabolic syndromes and other diseases involving reactive oxygen species with minimum metal toxicity.
Collapse
Affiliation(s)
- Asma Saeed
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore, Punjab, 54600, Pakistan
| | - Shabana Kauser
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore, Punjab, 54600, Pakistan
| | - Adil Hussain
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore, Punjab, 54600, Pakistan.
| | - Nida Jamil Siddiqui
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore, Punjab, 54600, Pakistan
| | - Syed Hussain Imam Abidi
- Pakistan Council of Scientific and Industrial Research (PCSIR), Head Office, 1 Constitution Avenue, G-5/2, Islamabad, 44000, Pakistan
| | - Quratulain Syed
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore, Punjab, 54600, Pakistan
| | - Abad Ali Nadeem
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore, Punjab, 54600, Pakistan
| |
Collapse
|
8
|
Zeng T, He Z, He J, Lv W, Huang S, Li J, Zhu L, Wan S, Zhou W, Yang Z, Zhang Y, Luo C, He J, Wang C, Wang L. The telomere-to-telomere gap-free reference genome of wild blueberry ( Vaccinium duclouxii) provides its high soluble sugar and anthocyanin accumulation. HORTICULTURE RESEARCH 2023; 10:uhad209. [PMID: 38023474 PMCID: PMC10681038 DOI: 10.1093/hr/uhad209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Vaccinium duclouxii, endemic to southwestern China, is a berry-producing shrub or small tree belonging to the Ericaceae family, with high nutritive, medicinal, and ornamental value, abundant germplasm resources, and good edible properties. In addition, V. duclouxii exhibits strong tolerance to adverse environmental conditions, making it a promising candidate for research and offering wide-ranging possibilities for utilization. However, the lack of V. duclouxii genome sequence has hampered its development and utilization. Here, a high-quality telomere-to-telomere genome sequence of V. duclouxii was de novo assembled and annotated. All of 12 chromosomes were assembled into gap-free single contigs, providing the highest integrity and quality assembly reported so far for blueberry. The V. duclouxii genome is 573.67 Mb, which encodes 41 953 protein-coding genes. Combining transcriptomics and metabolomics analyses, we have uncovered the molecular mechanisms involved in sugar and acid accumulation and anthocyanin biosynthesis in V. duclouxii. This provides essential molecular information for further research on the quality of V. duclouxii. Moreover, the high-quality telomere-to-telomere assembly of the V. duclouxii genome will provide insights into the genomic evolution of Vaccinium and support advancements in blueberry genetics and molecular breeding.
Collapse
Affiliation(s)
- Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Zhijiao He
- Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Sciences, Lijiang 674199, Yunnan, China
| | - Jiefang He
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Wei Lv
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Shixiang Huang
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Jiawen Li
- School of Advanced Agricultural Sciences, Peking University, 100871 Beijing, China
| | - Liyong Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuang Wan
- Wuhan Benagen Technology Co., Ltd, Wuhan 430070, China
| | - Wanfei Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengsong Yang
- Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Sciences, Lijiang 674199, Yunnan, China
| | - Yatao Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Chong Luo
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Jiawei He
- Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Sciences, Lijiang 674199, Yunnan, China
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Felipez W, Villavicencio J, Nizolli VO, Pegoraro C, da Maia L, Costa de Oliveira A. Genome-Wide Identification of Bilberry WRKY Transcription Factors: Go Wild and Duplicate. PLANTS (BASEL, SWITZERLAND) 2023; 12:3176. [PMID: 37765340 PMCID: PMC10535657 DOI: 10.3390/plants12183176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 09/29/2023]
Abstract
WRKY transcription factor genes compose an important family of transcriptional regulators that are present in several plant species. According to previous studies, these genes can also perform important roles in bilberry (Vaccinium myrtillus L.) metabolism, making it essential to deepen our understanding of fruit ripening regulation and anthocyanin biosynthesis. In this context, the detailed characterization of these proteins will provide a comprehensive view of the functional features of VmWRKY genes in different plant organs and in response to different intensities of light. In this study, the investigation of the complete genome of the bilberry identified 76 VmWRKY genes that were evaluated and distributed in all twelve chromosomes. The proteins encoded by these genes were classified into four groups (I, II, III, and IV) based on their conserved domains and zinc finger domain types. Fifteen pairs of VmWRKY genes in segmental duplication and four pairs in tandem duplication were detected. A cis element analysis showed that all promoters of the VmWRKY genes contain at least one potential cis stress-response element. Differential expression analysis of RNA-seq data revealed that VmWRKY genes from bilberry show preferential or specific expression in samples. These findings provide an overview of the functional characterization of these proteins in bilberry.
Collapse
Affiliation(s)
- Winder Felipez
- Instituto de Agroecología y Seguridad Alimentaria, Facultad de Ciências Agrárias, Universidad San Francisco Xavier de Chuquisaca—USFX, Casilla, Correo Central, Sucre 1046, Bolivia;
- Plant Genomics and Breeding Center, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas—UFPel, Pelotas CEP 96010-900, RS, Brazil; (J.V.); (V.O.N.); (L.d.M.)
| | - Jennifer Villavicencio
- Plant Genomics and Breeding Center, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas—UFPel, Pelotas CEP 96010-900, RS, Brazil; (J.V.); (V.O.N.); (L.d.M.)
- Carrera de Ingeniería Agroforestal, Facultad de Ciencias Ambientales, Universidad Cientifica del Sur—UCSUR, Antigua Panamericana Sur km 19 Villa el Salvador, Lima CP 150142, Peru
| | - Valeria Oliveira Nizolli
- Plant Genomics and Breeding Center, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas—UFPel, Pelotas CEP 96010-900, RS, Brazil; (J.V.); (V.O.N.); (L.d.M.)
| | - Camila Pegoraro
- Plant Genomics and Breeding Center, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas—UFPel, Pelotas CEP 96010-900, RS, Brazil; (J.V.); (V.O.N.); (L.d.M.)
| | - Luciano da Maia
- Plant Genomics and Breeding Center, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas—UFPel, Pelotas CEP 96010-900, RS, Brazil; (J.V.); (V.O.N.); (L.d.M.)
| | - Antonio Costa de Oliveira
- Plant Genomics and Breeding Center, Departamento de Fitotecnia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas—UFPel, Pelotas CEP 96010-900, RS, Brazil; (J.V.); (V.O.N.); (L.d.M.)
| |
Collapse
|
10
|
Huang R, Peng F, Wang D, Cao F, Guo C, Yu L, Zhang J, Yang Y. Transcriptome analysis of differential sugar accumulation in the developing embryo of contrasting two Castanea mollissima cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1206585. [PMID: 37404530 PMCID: PMC10315843 DOI: 10.3389/fpls.2023.1206585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023]
Abstract
Chinese chestnut (Castanea mollissima) is an important nut tree species, and its embryo is rich in sugar. We combined metabolomic and transcriptomic data to analyze metabolites and genes related to sugar in two Chinese chestnut cultivars at 60, 70, 80, 90 and 100 days after flowering (DAF). The soluble sugar content of high-sugar cultivar at maturity is 1.5 times that of low-sugar cultivar. Thirty sugar metabolites were identified in embryo, with the most dominant being sucrose. Analysis of the gene expression patterns revealed that the high-sugar cultivar promoted the conversion of starch to sucrose by up-regulating genes related to starch degradation and sucrose synthesis at 90-100 DAF. It also strongly increased the enzyme activity of SUS-synthetic, which may promote sucrose synthesis. Gene co-expression network analysis showed that ABA and peroxide were related to starch decomposition during Chinese chestnut ripening. Our study analyzed the composition and molecular synthesis mechanism of sugar in Chinese chestnut embryos, and provided a new insight into the regulation pattern of high sugar accumulation in Chinese chestnut nuts.
Collapse
Affiliation(s)
- Ruimin Huang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| | - Fei Peng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Dongsheng Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| | - Fei Cao
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Chunlei Guo
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| | - Liyang Yu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| | - Jingzheng Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Yuedong Yang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| |
Collapse
|
11
|
Amundsen M, Hykkerud AL, Kelanne N, Tuominen S, Schmidt G, Laaksonen O, Yang B, Martinussen I, Jaakola L, Aaby K. Composition of Sugars, Organic Acids, Phenolic Compounds, and Volatile Organic Compounds in Lingonberries ( Vaccinium vitis-idaea L.) at Five Ripening Stages. Foods 2023; 12:2154. [PMID: 37297398 PMCID: PMC10253110 DOI: 10.3390/foods12112154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Wild lingonberries are a traditional source of food in the Nordic countries and an important contributor to economic activity of non-wood forest products in the region. Lingonberries are a rich source of bioactive compounds and can be a valuable contributor to a healthy diet. However, there are few studies available on how the bioactive compounds in lingonberries develop as they ripen. In this investigation, we examined the content of 27 phenolic compounds, three sugars, four organic acids, and 71 volatile organic compounds at five ripening stages. The study showed that, while the highest content of phenolic compounds was found early in the development, the organoleptic quality of the fruits improved as they ripened. From the first to the last stage of development, anthocyanins went from being nearly absent to 100 mg/100 g fw, and there was an increased content of sugars from 2.7 to 7.2 g/100 g fw, whereas the content of organic acids decreased from 4.9 to 2.7 g/100 g fw, and there were several changes in the profile of volatiles. The contents of flavonols, cinnamic acid derivatives, flavan-3-ols, and the total concentration of phenolic compounds were significantly lower in the fully ripe berries compared to berries in the early green stage. In addition to the changes occurring due to ripening, there was observed variation in the profile of both phenolic compounds and volatiles, depending on the growth location of the berries. The present data are useful for the assessment of harvest time to obtain the desired quality of lingonberries.
Collapse
Affiliation(s)
- Mathias Amundsen
- Nofima AS, Osloveien 1, 1340 Ås, Norway; (G.S.); (K.A.)
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, 9037 Tromsø, Norway;
| | - Anne Linn Hykkerud
- Norwegian Institute of Bioeconomy Research (NIBIO), 1431 Ås, Norway; (A.L.H.); (I.M.)
| | - Niina Kelanne
- Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (N.K.); (S.T.); (O.L.); (B.Y.)
| | - Sanni Tuominen
- Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (N.K.); (S.T.); (O.L.); (B.Y.)
| | | | - Oskar Laaksonen
- Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (N.K.); (S.T.); (O.L.); (B.Y.)
| | - Baoru Yang
- Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland; (N.K.); (S.T.); (O.L.); (B.Y.)
| | - Inger Martinussen
- Norwegian Institute of Bioeconomy Research (NIBIO), 1431 Ås, Norway; (A.L.H.); (I.M.)
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, 9037 Tromsø, Norway;
- Norwegian Institute of Bioeconomy Research (NIBIO), 1431 Ås, Norway; (A.L.H.); (I.M.)
| | - Kjersti Aaby
- Nofima AS, Osloveien 1, 1340 Ås, Norway; (G.S.); (K.A.)
| |
Collapse
|
12
|
Lou H, Han X, Fan B, Guo C, Fu R, Long T, Zhang J, Zhang G. The effect of incorporating lingonberry (Vaccinium vitis-idaea L.) on the physicochemical, nutrient, and sensorial properties of Chinese sweet rice wine. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Zhuansun W, Xu J, Liu H, Zhao Y, Chen L, Shan S, Song S, Zhang H, Dong T, Zeng H, Xu Q. Optimisation of the production of a selenium-enriched polysaccharide from Cordyceps cicadae S1 and its structure and antioxidant activity. Front Nutr 2022; 9:1032289. [PMID: 36337663 PMCID: PMC9631440 DOI: 10.3389/fnut.2022.1032289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/28/2022] [Indexed: 07/30/2023] Open
Abstract
The fermentation medium of a newly identified Cordyceps cicadae S1 was optimized by response surface methodology, with the optimal medium containing sucrose (80 g/L), yeast powder (60 g/L), KH2PO4 (5 g/L), MgSO4·7H2O (1 g/L) and Na2SeO3 (0. 1 g/L). Under these conditions, the extracellular polysaccharide yield was 8.09 g/L. A novel selenium-enriched polysaccharide (PACI-1) was isolated from Cordyceps cicadae, purified and identified as a homofructose polysaccharide with a low average molecular weight of 9.95 × 103 Da. The fine structure of PACI-1 was analyzed using NMR, CD, and AFM. Additionally, the in vitro antioxidant results showed that the PACI-1 had stronger antioxidant capacity than natural polysaccharides. These results provided a candidate strain for producing selenium polysaccharide and a new polysaccharide from C. cicadae, which showed good antioxidant activity.
Collapse
Affiliation(s)
- Wanwan Zhuansun
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences Huaibei Normal University, Huaibei, China
| | - Jun Xu
- R&D Center of Anhui Kouzi Distillery Co., Ltd, Huaibei, China
| | - Hengzhao Liu
- R&D Center of Anhui Kouzi Distillery Co., Ltd, Huaibei, China
| | - Ying Zhao
- R&D Center of Anhui Kouzi Distillery Co., Ltd, Huaibei, China
| | - Lulu Chen
- R&D Center of Anhui Kouzi Distillery Co., Ltd, Huaibei, China
| | - Shufang Shan
- R&D Center of Anhui Kouzi Distillery Co., Ltd, Huaibei, China
| | - Shiqin Song
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang, China
- National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang R&D Center for Se-enriched Products, Ankang, China
| | - Haoyu Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences Huaibei Normal University, Huaibei, China
| | - Tingting Dong
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences Huaibei Normal University, Huaibei, China
| | - Huawei Zeng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences Huaibei Normal University, Huaibei, China
| | - Qinxiang Xu
- R&D Center of Anhui Kouzi Distillery Co., Ltd, Huaibei, China
| |
Collapse
|
14
|
Nägele T, Gibon Y, Le Hir R. Plant sugar metabolism, transport and signalling in challenging environments. PHYSIOLOGIA PLANTARUM 2022; 174:e13768. [PMID: 36281839 DOI: 10.1111/ppl.13768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, Planegg, Germany
| | - Yves Gibon
- Université Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, Centre INRAE Nouvelle-Aquitaine Bordeaux, Villenave d'Ornon, France
| | - Rozenn Le Hir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|